Delayed Coking of South African Petroleum Heavy Residues for the Production of Anode Grade Coke and Automotive Fuels
Total Page:16
File Type:pdf, Size:1020Kb
DELAYED COKING OF SOUTH AFRICAN PETROLEUM HEAVY RESIDUES FOR THE PRODUCTION OF ANODE GRADE COKE AND AUTOMOTIVE FUELS John Graham Clark A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, in fulfilment of the requirements for the degree of Master of Science in Engineering Johannesburg, 2008 2 DECLARATION I declare that this dissertation is my own unaided work. It is being submitted to the Degree of Master of Science in Engineering to the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination to any other University ……………………………………………… (Signature of Candidate) ………………. day of …………………… year…………… (day) (month) (year) 3 ABSTRACT A laboratory scale delayed coking process was used to produce petrol precursors, diesel precursors, methane rich gas, green and calcined coke from five previously untested South African heavy petroleum residues. The ash content of the heavy petroleum residues was found to be detrimental to the microstructure of the green coke and Coefficient of Thermal Expansion (CTE) of the calcined coke. The sulphur content of the calcined cokes produced was found to be in-line with typical global anode grade cokes. De-ashing of the feedstock would be necessary to produce anode grade fillers for the aluminium industry. The local production of anode grade coke would serve to reduce imports and supply the aluminium smelters on the east coast of South Africa. The heavy petroleum residues (also known as heavy fuel oil) are currently used as bunker fuel in the shipping industry and are responsible for substantial air pollution. Delayed coking of these residues could extend the production of petrol and diesel per barrel of imported crude oil and reduce the effect on South Africa’s balance of payments deficit and impact the environment in a beneficial manner with respect to carbon dioxide and sulphur emissions. The research also evaluated the replacement of heavy fuel oil with marine diesel produced by delayed coking of the former. Marine diesel was found to emit less sulphur oxides and have a higher energy density per unit of carbon dioxide emitted. While seawater scrubbing of the heavy fuel oil would be more cost effective in reducing the sulphur oxide emissions, it would not contribute to carbon dioxide reductions. The research created a hypothetical scenario to determine the required value of Clean Development Mechanism credits for a marine diesel replacement, were shipping to be incorporated under the Kyoto Protocol in future. 4 DEDICATION Dedicated to my wife Karen Clark 5 ACKNOWLEDGEMENTS The author would like to acknowledge and express gratitude to the following people for their valued contribution: Professor Rosemary Falcon (Supervisor), University of the Witwatersrand Professor Herman Potgieter (Co-supervisor), University of the Witwatersrand Mr. Gregor van Deventer (Industrial supervisor), Sasol Group Services Dr. MP Hayes, Sasol Synfuels Marketing Mr. Mncedisi Mlilo, Sasol Synfuels Messers. Peter Hughes and John Milne, BHP Billiton (Hillside Aluminium) Mr. Rodney Youlden, Sapref Refinery Mr. Ian Baxter, Engen Refinery Dr. Esna Du Plessis, Sasol Technology (R&D) division Messers. Jo Spieth and Herman Mashaba, Leswikeng Carbon Dr Noel Machingawuta, Leswikeng Carbon Messers. Frans Wolters and Etienne Schuin, Sasol Technology (R&D) division Mr. LJ Botha, Sasol Technology, Fuels Research Division Sasol Carbo-Tar operations personnel, Secunda Mr. Patrick Parsons, Sasol Oil Mr. Riaan Klooper, Sasol Synfuels Marketing Mrs Karen Clark, Sasol Synfuels Mrs Marie Hooper, Sasol Synfuels Marketing The Image Laboratory, Bromhof, Randburg Mr. Gerrie Botha, Road Traffic Management Corporation Mr. Jan Harm van Wyk, Sasol Oil Mr. John Gillespie, Sasol Oil Mr. Paul Gravett, Sasol Technology, Fuels Research Division Captain Sanjoy Sen (Transnet) Dr Jaco van der Walt (NECSA) 6 CONTENTS DECLARATION..................................................................................................................................................2 ABSTRACT .......................................................................................................................................................3 DEDICATION......................................................................................................................................................4 ACKNOWLEDGEMENTS .................................................................................................................................5 CONTENTS .......................................................................................................................................................6 LIST OF FIGURES............................................................................................................................................10 LIST OF TABLES..............................................................................................................................................12 LIST OF SYMBOLS..........................................................................................................................................13 NOMENCLATURE ...........................................................................................................................................14 CONFIDENTIALITY NOTICE .......................................................................................................................15 1 INTRODUCTION.......................................................................................................................................16 1.1 BACKGROUND TO THE INVESTIGATION ......................................................................16 1.2 PROBLEM STATEMENT.................................................................................................16 1.3 HYPOTHESIS .................................................................................................................18 1.4 OBJECTIVES OF THE INVESTIGATION .........................................................................18 1.5 SCOPE OF THE INVESTIGATION ...................................................................................19 2 DELAYED COKING AND CALCINING................................................................................................21 2.1 DELAYED COKING – A HISTORICAL PERSPECTIVE .....................................................21 2.2 UNDERSTANDING OF THE TAR VALUE CHAIN .............................................................22 2.3 COMMERCIAL DELAYED COKING AND CALCINING ....................................................23 2.3.1 TYPES OF COMMERCIAL DELAYED COKES: .............................................................24 2.3.2 COMMERCIAL DELAYED COKING ............................................................................25 2.3.3 COMMERCIAL CALCINING .......................................................................................27 2.4 MESOPHASE CHEMISTRY .............................................................................................29 2.4.1 MOLECULAR COMPOSITION.....................................................................................30 2.4.2 THE DELAYED COKING REACTION...........................................................................31 2.4.3 CALCINATION..........................................................................................................38 2.4.4 GRAPHITISATION.....................................................................................................41 3 THE DEMAND FOR LIQUID FUELS IN SOUTH AFRICA................................................................44 3.1 THE DEMAND FOR AUTOMOTIVE FUELS .....................................................................44 3.2 THE NUMBER OF REGISTERED MOTOR VEHICLES IN SOUTH AFRICA.......................45 3.3 CRUDE OIL SUPPLY.......................................................................................................46 7 3.3.1 CRUDE OIL – A GLOBAL PERSPECTIVE ....................................................................46 3.3.2 CRUDE OIL – A SOUTH AFRICAN PERSPECTIVE.......................................................47 3.3.3 THE CAPACITY TO REFINE CRUDE OIL .....................................................................47 3.3.4 CRUDE OIL IMPORTS TO SOUTH AFRICA .................................................................48 3.3.5 THE COST OF IMPORTING CRUDE OIL.......................................................................49 3.3.6 CRUDE OIL IMPORTS AND THE BALANCE OF PAYMENTS .........................................51 3.4 THE VALUE OF DELAYED COKING TO SOUTH AFRICA...............................................53 4 ANODE COKE FOR THE ALUMINIUM INDUSTRY..........................................................................55 4.1 THE MARKET FOR ANODE COKE IN SOUTHERN AFRICA............................................55 4.2 ANODE COKE TRENDS ..................................................................................................56 4.2.1 GLOBAL SUPPLY / DEMAND TRENDS .......................................................................56 4.2.2 GLOBAL GREEN AND CALCINED COKE QUALITY .....................................................57 4.2.3 CRUDE OIL QUALITY VS. GREEN COKE QUALITY.....................................................58 5 EXPERIMENTAL PROCEDURES..........................................................................................................60