AP 42 12.2 Coke Production
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Petrographic and Vitrinite Reflectance Analyses of a Suite of High Volatile Bituminous Coal Samples from the United States and Venezuela
Petrographic and vitrinite reflectance analyses of a suite of high volatile bituminous coal samples from the United States and Venezuela Open-File Report 2008-1230 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Dirk A. Kempthorne, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Hackley, P.C., Kolak, J.J., 2008, Petrographic and vitrinite reflectance analyses of a suite of high volatile bituminous coal samples from the United States and Venezuela: U.S. Geological Survey Open-File Report 2008-1230, 36 p., http://pubs.usgs.gov/of/2008/1230. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. ii Contents Introduction ........................................................................................................................................................................1 Methods ..............................................................................................................................................................................1 -
Update to the Developments of Hisarna an Ulcos Alternative Ironmaking Process Ir
Update to the Developments of Hisarna An Ulcos alternative ironmaking process Ir. Jan van der Stel , ir. Koen Meijer, ing. Cornelis Teerhuis, dr. Christiaan Zeijlstra, ir. Guus Keilman and ing. Maarten Ouwehand Tata Steel IJmuiden, The Netherlands Research, Development & Technology IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop Tokyo, Japan 4 – 7 November 2013 Confidential Content 1. HIsarna technology 2. HIsarna and CCS 3. HIsarna pilot plant 4. Campaign results 5. Conclusions 6. Forward plan 2 IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop , Tokyo, Japan, 4 – 7 November 2013. Confidential Ulcos IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop , Tokyo, Japan, 4 – 7 November 2013. Confidential 1. HIsarna technology Comparison with the BF route Blast furnace sinter Iron ore coke Liquid iron coal 4 IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop , Tokyo, Japan, 4 – 7 November 2013. Confidential 1. HIsarna technology Comparison with the BF route Blast furnace sinter Iron ore coke coal Direct use of coal and ore Liquid iron No coking and agglomeration 5 IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop , Tokyo, Japan, 4 – 7 November 2013. Confidential 1. HIsarna technology Top gas Oxygen Ore Oxygen Coal Slag Hot metal 6 IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop , Tokyo, Japan, 4 – 7 November 2013. Confidential 1.1. HIsarna technology Melting cyclone technology Melting and partial reduction of fine iron ores “2 Fe 2O3(s) + 2 CO(g) → 4 FeO(l) + 2 CO 2(g) ” • The cyclone product is a molten mixture of Fe 3O4 and FeO (~ 20 % reduced) • Pure oxygen is injected to generate the required melting temperature • The fines are separated from the gas by centrifugal flow of the gas IEAGHG/IETS Iron and steel Industry CCUS and Process Integration Workshop , Tokyo, Japan, 4 – 7 November 2013. -
Coal Characteristics
CCTR Indiana Center for Coal Technology Research COAL CHARACTERISTICS CCTR Basic Facts File # 8 Brian H. Bowen, Marty W. Irwin The Energy Center at Discovery Park Purdue University CCTR, Potter Center, 500 Central Drive West Lafayette, IN 47907-2022 http://www.purdue.edu/dp/energy/CCTR/ Email: [email protected] October 2008 1 Indiana Center for Coal Technology Research CCTR COAL FORMATION As geological processes apply pressure to peat over time, it is transformed successively into different types of coal Source: Kentucky Geological Survey http://images.google.com/imgres?imgurl=http://www.uky.edu/KGS/coal/images/peatcoal.gif&imgrefurl=http://www.uky.edu/KGS/coal/coalform.htm&h=354&w=579&sz= 20&hl=en&start=5&um=1&tbnid=NavOy9_5HD07pM:&tbnh=82&tbnw=134&prev=/images%3Fq%3Dcoal%2Bphotos%26svnum%3D10%26um%3D1%26hl%3Den%26sa%3DX 2 Indiana Center for Coal Technology Research CCTR COAL ANALYSIS Elemental analysis of coal gives empirical formulas such as: C137H97O9NS for Bituminous Coal C240H90O4NS for high-grade Anthracite Coal is divided into 4 ranks: (1) Anthracite (2) Bituminous (3) Sub-bituminous (4) Lignite Source: http://cc.msnscache.com/cache.aspx?q=4929705428518&lang=en-US&mkt=en-US&FORM=CVRE8 3 Indiana Center for Coal Technology Research CCTR BITUMINOUS COAL Bituminous Coal: Great pressure results in the creation of bituminous, or “soft” coal. This is the type most commonly used for electric power generation in the U.S. It has a higher heating value than either lignite or sub-bituminous, but less than that of anthracite. Bituminous coal -
Lecture 32: Coke Production
NPTEL – Chemical – Chemical Technology II Lecture 32: Coke production 32.1 Introduction Coal is used as fuel for electric power generation, industrial heating and steam generation, domestic heating, rail roads and for coal processing. Coal composition is denoted by rank. Rank increases with the carbon content and decreases with increasing oxygen content. Many of the products made by hydrogenation, oxidation, hydrolysis or fluorination are important for industrial use. Stable, low cost, petroleum and natural gas supplies has arose interest in some of the coal products as upgraded fuels to reduce air pollution as well as to take advantage of greater ease of handling of the liquid or gaseous material and to utilize existing facilities such as pipelines and furnaces. 32.2 Coking of coal Raw material is Bituminous coal. It appears to have specific internal surfaces in the range of 30 to 100m2/g. Generally one ton of bituminous coal produces 1400 lb of coke. 10 gallons of tar. Chemical reaction:- 4(C3H4)n nC6H6 + 5nC + 3nH2 + nCH4 Coal Benzene Coke Lighter hydrocarbon Joint initiative of IITs and IISc – Funded by MHRD Page 1 of 9 NPTEL – Chemical – Chemical Technology II Process flow sheet: Illustrated in Figure. Figure 32.1 Flow sheet of coking of coal 32.3 Functional role of each unit (Figure 32.1): (a) Coal crusher and screening: At first Bituminous coal is crushed and screened to a certain size. Preheating of coal (at 150-250˚C) is done to reduce coking time without loss of coal quality. Briquetting increases strength of coke produced and to make non - coking or poorly coking coals to be used as metallurgical coke. -
THE GUIDE to SOLID FUELS This Leaflet Will Tell You All You Need To
THE GUIDE TO SOLID FUELS This leaflet will tell you all you need to know about: • The different solid fuels available and their suitability for the various types of appliances • Smoke control legislation • Buying solid fuel • Hints on getting the best from your fuel and appliance Choice of Fuel There are a great many different solid fuels for sale. Your choice will be based on a number of criteria, the most important of which will be the type of appliance you will be burning the fuel on and whether or not you live in a smoke control area (see page 4). Fuels for open fires Housecoal The most traditional fuel for open fires is housecoal. It is available in various sizes e.g. Large Cobbles, Cobbles, Trebles and Doubles. The larger sizes are usually a little more expensive than Doubles size. Housecoal comes from mines in Britain and other parts of the world, most notably Columbia and Indonesia. The coal may be sold by the name of the colliery it comes from e.g. Daw Mill, the port of entry e.g. Merseyport or a merchant’s own brand name, e.g. Stirling. Coal merchants also frequently sell the coal by grade – 1, 2 and 3 or A, B and C; 1 and A being the best quality. Wood Wood and logs can be burnt on open fires. They should be well-seasoned and preferably have a low resin content. You should not use any wood that has any kind of coating on the surface e.g. varnish or paint, as harmful gases may be emitted on burning. -
A Life Cycle Analysis of Deploying Coking Technology to Utilize Low-Rank Coal in China
sustainability Article A Life Cycle Analysis of Deploying Coking Technology to Utilize Low-Rank Coal in China Yan Li 1, Guoshun Wang 1, Zhaohao Li 2, Jiahai Yuan 3 , Dan Gao 2,* and Heng Zhang 2 1 School of Business, Central South University, Changsha 410083, China; [email protected] (Y.L.); [email protected] (G.W.) 2 School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China; [email protected] (Z.L.); [email protected] (H.Z.) 3 School of Economics and Management, North China Electric Power University, Beijing 102206, China; [email protected] * Correspondence: [email protected] Received: 12 May 2020; Accepted: 10 June 2020; Published: 15 June 2020 Abstract: At present, the excess capacity in China’s coke industry can be deployed to utilize some low-rank coal, replacing coking coal with potential economic gains, energy efficiency, and environmental benefits. This study presents a life cycle analysis to model these potential benefits by comparing a metallurgical coke technical pathway with technical pathways of gasification coke integrated with different chemical productions. The results show that producing gasification coke is a feasible technical pathway for the transformation and development of the coke industry. However, its economic feasibility depends on the price of cokes and coals. The gasification coke production has higher energy consumption and CO2 emissions because of its lower coke yield. Generally speaking, using gasification coke to produce F-T oils has higher economic benefits than producing methanol, but has lower energy efficiency and higher carbon emissions. Keywords: coal coking; life cycle analysis; gasification coke; metallurgical coke; low-rank coal 1. -
Fuel Which May Not Be Burned in the Low Smoke Zone
Cork Low Smoke Fuel Zone Fuel which may not be burned in the low smoke zone Bituminous (Smoky) coal Often labelled “Polish”, “Columbian”, “Texan”, “Russian” or “House” coal. This is sometimes labelled “Premium” coal, but many low smoke brands also carry the “Premium” tag. If it doesn’t say “Low smoke” on the bag, don’t burn it in the low smoke zone. “Singles”, “Doubles” and “slack” are usually bituminous, and may not be burned, except for low smoke singles. Bituminous coal when burned emits many toxic substances, which have been linked to heart attack, stroke, cancer, asthma and many other heart and lung ailments. Timber effect sheeting or treated timber Scrap Chipboard (particle board), plywood, Oriented Strand Board (OSB), Medium Density Fibreboard (MDF), or any other material that has been made using glues, resins, etc. Chipboard (particle board) Plywood In addition to being harmful to the environment, these can release harmful substances into your home when burned. You should not burn broken furniture, or any other timber which has been treated with preservative, paint, varnish, lacquer or polish. These may not be burned in any domestic fire, Oriented Strand Board Medium Density Fibre in or outside the low smoke zone. (OSB) Board (MDF) Household waste Plastics, Tetra-paks, Styrofoam cartons and wrappers, polythene, etc. Burning of household waste has a detrimental effect on the environment inside and outside the home. It releases carcinogenic substances called dioxins. These may not be burned in any domestic fire, inside or outside the low smoke zone. Types of fuel which may be burned in the low smoke zone Anthracite A naturally low smoke, hard, shiny coal. -
High Quality Graphite Electrode Products
HIGH QUALITY GRAPHITE ELECTRODE PRODUCTS GrafTech International is a leading manufacturer of high quality graphite electrode products essential to the production of Electric Arc Furnace (or EAF) steel and other ferrous and non-ferrous metals. We have a broad portfolio of competitive graphite electrode manufacturing facilities, including three of the highest capacity facilities in the world. We are the only large scale graphite electrode producer that is substantially vertically integrated into petroleum needle coke, a key raw material for graphite electrode manufacturing. This unique position provides competitive advantages in product quality and cost. MAXIMIZING STEEL PRODUCTIVITY THROUGH TECHNOLOGY AND SERVICE LEADERSHIP Founded in 1886, we have over 130 years of experience in the research and development (or R&D) of graphite and carbon based solutions, and our intellectual property portfolio is extensive. We currently have graphite electrode manufacturing facilities in Calais, France, Pamplona, Spain, Monterrey, Mexico and St. Marys, Pennsylvania. Our customers include major steel producers and other ferrous and non ferrous metal producers in Europe, the Middle East and Africa (or EMEA), the Americas and Asia Pacific (or APAC), which sell their products into the automotive, construction, appliance, machinery, equipment and transportation industries. Our vision is to provide highly engineered graphite electrode services, solutions and products to EAF operators. Based on the high quality of our graphite electrodes, reliability of our petroleum needle coke supply and our excellent customer service, we believe that we are viewed as a preferred supplier by the global EAF steel producer market. GRAFTECH SERVICE AND SOLUTIONS We consider sustained customer satisfaction as a key measure of product and service performance. -
Anthracite Anthracite – an Overview
ANTHRACITE ANTHRACITE – AN OVERVIEW Anthracite is a high-rank coal, representing a coal that has been subjected to the highest grade of metamorphism. Anthracite is shiny black, hard and brittle and has the highest fixed-carbon content. Due to its low volatile matter, anthracite's combustion process is slow. Most anthracites have low-moisture content and their heating value is up to 8,200 kcal/kg. Anthracite combusts with hot, clean flame, containing low content of sulfur and volatiles. Due to these characteristics, anthracite is often used in specialized industrial uses that require smokeless fuels. 2 CLASSIFICATION OF COAL 3 ANTHRACITE – AN OVERVIEW Anthracite has a history of use A small amount of impurities in blast furnaces for iron smelting; and a high percentage of carbon however, it lacks the pore space of makes anthracite coal the most metallurgical coke, which advantageous for combustion, as eventually replaced anthracite. it gives the maximum amount of Nonetheless, anthracite is a unique energy. high-tech raw material characterized by the maximum carbon content. In various grades In its calorific value, UHQ of coal, this parameter can range anthracite surpasses all other from 50 pct in brown coal (lignite), grades of coal – 8,200 kcal/kg to 95 pct of ultra high quality compared to 7,000 kcal/kg of anthracite coal (UHQ). The higher natural gas. Coal Anthracite is the the carbon content in coal, the hardest of all coals and practically smaller the volume of various does not sinter. impurities, such as nitrogen, hydrogen, ash, and so on. 4 USES OF UHQ ANTHRACITE Anthracites can be used in various spheres of human activity, like industrial production (metal smelting, power generation, chemical – filtering sugar to make it white and as catalyst support, soda ash, and pharmaceutical industry as a material absorbents in the production of medicines, etc.). -
Hisarna Smelting Reduction
HISARNA SMELTING REDUCTION A SOLUTION FOR SUSTAINABLE HOT METAL PRODUCTION Jan van der Stel, Koen Meijer, Christiaan Zeilstra, Johan van Boggelen, Tim Peeters and Rod Dry (*) Tata Steel Research & Development, IJmuiden, The Netherlands (*) RIO TINTO Perth, Australia Reducing the carbon footprint of the steel industry, 19-20 April 1 ZaandamAll rights and reserved Petten - Reducing, theThe carbon Netherlands footprint of the steel industry - 19-20 April 2017 – Zaandam and Petten, The Netherlands Content 1. HIsarna development 2. Technology background 3. The HIsarna pilot plant 3.1. Milestones of the test campaigns 4. Forward program 4.1. Further experimental work in pilot plant 4.2. Industrial scale demonstration plant 5. Conclusions 6. Challenges 2 All rights reserved - Reducing the carbon footprint of the steel industry - 19-20 April 2017 – Zaandam and Petten, The Netherlands 1. HIsarna development • In 2004 several European steelmakers proactively started the ULCOS project with the objective to achieve 50 % reduction of the CO 2 emissions of steelmaking • HIsarna is one of the four process development that originate from the ULCOS project. • Since 2007 Tata Steel, Rio Tinto and ULCOS have been active developing this coal-based smelting reduction process. • To date over 80 mln Euro has been invested in this new technology. • The HIsarna process offers a combination of environmental and economical benefits. 3 All rights reserved - Reducing the carbon footprint of the steel industry - 19-20 April 2017 – Zaandam and Petten, The Netherlands 1.1 Comparison BF route - HIsarna Blast Furnace Iron ore Hot metal Coal Coking/Agglomeration Ironmaking HIsarna Iron ore Hot metal Direct use of fine ores and coal Coal (no agglomeration and coking) Ironmaking 4 All rights reserved - Reducing the carbon footprint of the steel industry - 19-20 April 2017 – Zaandam and Petten, The Netherlands 1.2. -
Heats of Combustion of Anthracite Cokes and of Artificial and Natural Graphites 1
1 U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS RESEARCH PAPER RP1139 Part of Journal of Research of the National Bureau of Standards, Volume 21 : October 1938 HEATS OF COMBUSTION OF ANTHRACITE COKES AND OF ARTIFICIAL AND NATURAL GRAPHITES 1 By Phillip H. Dewey 2 and D. Roberts Harper, 3d 3 ABSTRACT There have been determined the heats of combustion of 30 samples of anthracite coke of known different temperatures of preparation (900° to 1,300° C) , hydrogen contents (0.08 to 0.78 percent), and adsorptive capacities (0.13 t o 37.5 cma of gaseous CO2 pel' gram of solid carbon), in order to study the effect of these proper ties on the energy content of the material. Data were also obtained on the heats of combustion of two samples of pure ash-free artifi cial graphite and four different samples of natural graphite. The heats evolved, expressed in international kilojoul es, for the combustion of 1 mole of solid carbon to form CO2, at 25.0° C and a pressure of 1 atmosphere, without the production of external work, are as follows : Art ificial graphit.e No. 0, 393.39 ± 0.17; artificial graphite No. I, 393.25 ± 0.15; Ticonderoga natural graphite, 393.32 ± 0.1l; Buckingham nat ural graphite, 393.35 ±0.13; Baffin Island natural graphite, 393.37 ± 0.26; and hydrogen-free anthracite coke, 403.03 ±0.29 (obtained by linear extrapolation to zero hydrogen content of the data on the hydrogen-containing cokes). CONTENTS Page I. Introduction __ _________ ____ ______ ____ ______ __________________ _ 457 II. -
Tutorial: Delayed Coking Fundamentals
Tutorial: Delayed Coking Fundamentals Paul J. Ellis Christopher A. Paul Great Lakes Carbon Corporation Port Arthur, TX Prepared for presentation at the AIChE 1998 Spring National Meeting New Orleans, LA March 8-12, 1998 Topical Conference on Refinery Processing Tutorial Session: Delayed Coking Paper 29a Copyright 1998 Great Lakes Carbon Corporation UNPUBLISHED March 9, 1998 1 ABSTRACT Great Lakes Carbon Corporation has worked closely with refineries producing delayed coke in all forms, fuel grade (shot or sponge), anode grade (sponge), and electrode grade (needle) since start-up of the company's first calcining operation in 1937. With on-going research in the area of delayed coking since 1942, Great Lakes Carbon (GLC) has operated delayed coking pilot units including an excellent large-scale pilot unit with a coke drum 0.3 meter (1 ft) diameter by 2.1 meters (7 ft) long and has developed physical models which explain coke formation in coke drums. Knowledge of commercial delayed coking units as well as that of the GLC Pilot Delayed Coker is used in this tutorial paper to describe the formation and uses of the three types of structures of delayed petroleum coke: needle, sponge, and shot. Troubleshooting tips are included on many aspects of the delayed coking drum cycle including: steam stripping, water quenching, coke cutting, drum warm-up, and drum switching technique. Suggestions and descriptions of delayed coking unit hardware are included. The objective of this tutorial paper is to acquaint the non-refinery technologist and further the knowledge of refinery personnel with the delayed coking operation, delayed coking unit hardware, types of coke that can be produced, coke formation models, and the uses of petroleum coke.