Lecture 32: Coke Production
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coal and Oil: the Dark Monarchs of Global Energy – Understanding Supply and Extraction Patterns and Their Importance for Futur
nam et ipsa scientia potestas est List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Höök, M., Aleklett, K. (2008) A decline rate study of Norwe- gian oil production. Energy Policy, 36(11):4262–4271 II Höök, M., Söderbergh, B., Jakobsson, K., Aleklett, K. (2009) The evolution of giant oil field production behaviour. Natural Resources Research, 18(1):39–56 III Höök, M., Hirsch, R., Aleklett, K. (2009) Giant oil field decline rates and their influence on world oil production. Energy Pol- icy, 37(6):2262–2272 IV Jakobsson, K., Söderbergh, B., Höök, M., Aleklett, K. (2009) How reasonable are oil production scenarios from public agen- cies? Energy Policy, 37(11):4809–4818 V Höök M, Söderbergh, B., Aleklett, K. (2009) Future Danish oil and gas export. Energy, 34(11):1826–1834 VI Aleklett K., Höök, M., Jakobsson, K., Lardelli, M., Snowden, S., Söderbergh, B. (2010) The Peak of the Oil Age - analyzing the world oil production Reference Scenario in World Energy Outlook 2008. Energy Policy, 38(3):1398–1414 VII Höök M, Tang, X., Pang, X., Aleklett K. (2010) Development journey and outlook for the Chinese giant oilfields. Petroleum Development and Exploration, 37(2):237–249 VIII Höök, M., Aleklett, K. (2009) Historical trends in American coal production and a possible future outlook. International Journal of Coal Geology, 78(3):201–216 IX Höök, M., Aleklett, K. (2010) Trends in U.S. recoverable coal supply estimates and future production outlooks. Natural Re- sources Research, 19(3):189–208 X Höök, M., Zittel, W., Schindler, J., Aleklett, K. -
Petrographic and Vitrinite Reflectance Analyses of a Suite of High Volatile Bituminous Coal Samples from the United States and Venezuela
Petrographic and vitrinite reflectance analyses of a suite of high volatile bituminous coal samples from the United States and Venezuela Open-File Report 2008-1230 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Dirk A. Kempthorne, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Hackley, P.C., Kolak, J.J., 2008, Petrographic and vitrinite reflectance analyses of a suite of high volatile bituminous coal samples from the United States and Venezuela: U.S. Geological Survey Open-File Report 2008-1230, 36 p., http://pubs.usgs.gov/of/2008/1230. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. ii Contents Introduction ........................................................................................................................................................................1 Methods ..............................................................................................................................................................................1 -
New Carbon Emissions Allowance Allocation Method Based on Equilibrium Strategy for Carbon Emission Mitigation in the Coal-Fired Power Industry
sustainability Article New Carbon Emissions Allowance Allocation Method Based on Equilibrium Strategy for Carbon Emission Mitigation in the Coal-Fired Power Industry Qing Feng 1, Qian Huang 1, Qingyan Zheng 2 and Li Lu 1,2,* 1 Business School, Sichuan University, Chengdu 610064, China; [email protected] (Q.F.); [email protected] (Q.H.) 2 Tourism School, Sichuan University, Chengdu 610064, China; [email protected] * Correspondence: [email protected]; Tel.: +86-028-85996613 Received: 18 July 2018; Accepted: 17 August 2018; Published: 17 August 2018 Abstract: The carbon emissions from coal-fired power have become an increasing concern to governments around the world. In this paper, a carbon emissions allowances allocation based on the equilibrium strategy is proposed to mitigate coal-fired power generation carbon emissions, in which the authority is the lead decision maker and the coal-fired power plants are the follower decision makers, and an interactive solution approach is designed to achieve equilibrium. A real-world case study is then given to demonstrate the practicality and efficiency of this methodology. Sensitivity analyses under different constraint violation risk levels are also conducted to give authorities some insights into equilibrium strategies for different stakeholders and to identify the necessary tradeoffs between economic development and carbon emissions mitigation. It was found that the proposed method was able to mitigate coal-fired power generation carbon emissions significantly and encourage coal-fired power plants to improve their emissions performance. Keywords: carbon emission allowance allocation; emission mitigation; coal-fired power generation; cap and tax mechanism 1. Introduction Because of their major contribution to global climate change, there has been increased research to determine the best ways to reduce carbon emissions, which have been exponentially increasing due to the increased demand for energy [1–3]. -
An Empirical Study on Laboratory Coke Oven-Based Coal Blending for Coking with Tar Residue, Chemical Engineering Transactions, 71, 385-390 DOI:10.3303/CET1871065 386
385 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 71, 2018 The Italian Association of Chemical Engineering Online at www.aidic.it/cet Guest Editors: Xiantang Zhang, Songrong Qian, Jianmin Xu Copyright © 2018, AIDIC Servizi S.r.l. ISBN 978-88-95608-68-6; ISSN 2283-9216 DOI: 10.3303/CET1871065 An Empirical Study on Laboratory Coke Oven-based Coal Blending for Coking with Tar Residue Wenqiu Liu Hebei Energy College of Vocation and Technology, Tangshan 063004, China [email protected] Tar residue is the solid waste produced in coking plants or gas generators. Utilizing tar residue as additive in coal blending for coking is an effective approach for coal coking in our country, not only improving the yield and nature of coking products, but also realizing the recycling of tar residue. In this paper, tar residue is used as additive in coal blending for coking experiments, and combined with experiments on the crucible coke, small coke oven and industrial coke oven, the influences of the addition amount of tar residue on coke yield, coke reactivity and coke strength after reaction are further analyzed. As the experiment results reveal, compared to the experiment results of crucible coke and small coke ovens, the coke yield, coke reactivity and coke strength after reaction of industrial coke ovens are all bigger, leading to potential industrialization of coal blending for coking. Moreover, the influence of the amount of tar residue on the coal tar yield rate and gas yield is the same as that of coke reactivity and coke strength after reaction. 1. Introduction With the rapid development of economy, the fast growth of iron and steel industry has led China's coke industry to accomplish extraordinary achievements (Si et al., 2017). -
Coal Characteristics
CCTR Indiana Center for Coal Technology Research COAL CHARACTERISTICS CCTR Basic Facts File # 8 Brian H. Bowen, Marty W. Irwin The Energy Center at Discovery Park Purdue University CCTR, Potter Center, 500 Central Drive West Lafayette, IN 47907-2022 http://www.purdue.edu/dp/energy/CCTR/ Email: [email protected] October 2008 1 Indiana Center for Coal Technology Research CCTR COAL FORMATION As geological processes apply pressure to peat over time, it is transformed successively into different types of coal Source: Kentucky Geological Survey http://images.google.com/imgres?imgurl=http://www.uky.edu/KGS/coal/images/peatcoal.gif&imgrefurl=http://www.uky.edu/KGS/coal/coalform.htm&h=354&w=579&sz= 20&hl=en&start=5&um=1&tbnid=NavOy9_5HD07pM:&tbnh=82&tbnw=134&prev=/images%3Fq%3Dcoal%2Bphotos%26svnum%3D10%26um%3D1%26hl%3Den%26sa%3DX 2 Indiana Center for Coal Technology Research CCTR COAL ANALYSIS Elemental analysis of coal gives empirical formulas such as: C137H97O9NS for Bituminous Coal C240H90O4NS for high-grade Anthracite Coal is divided into 4 ranks: (1) Anthracite (2) Bituminous (3) Sub-bituminous (4) Lignite Source: http://cc.msnscache.com/cache.aspx?q=4929705428518&lang=en-US&mkt=en-US&FORM=CVRE8 3 Indiana Center for Coal Technology Research CCTR BITUMINOUS COAL Bituminous Coal: Great pressure results in the creation of bituminous, or “soft” coal. This is the type most commonly used for electric power generation in the U.S. It has a higher heating value than either lignite or sub-bituminous, but less than that of anthracite. Bituminous coal -
Coal Gas Origins and Exploration Strategies ©
COAL GAS ORIGINS AND EXPLORATION STRATEGIES © Andrew R. Scott Altuda Energy Corporation San Antonio, Texas USA [email protected] A LTUDA Mid-Continent Coalbed Methane Symposium Tulsa, Oklahoma November 7-9, 2004 © 2004 A.R. Scott EARTH AT NIGHT Page1of1 1,400 1,200 1,000 800 600 400 200 0 1900 1950 2000 2050 2100 Year Data from U.S. Bureau of the Census; ftuture growth estimates from U.S. Census Bureau publication NP-T1, February 2000; website www.mnforsustain.org/united_states_population.htm World view problems 1. Energy 2. Water 3. Food 4. Environment 5. Poverty 6. Terrorism & War 7. Disease 2. Education 9. Democracy 10. Population Tinker (2004) after Smalley (2003) U.S. ENERGY COMPARISON To Produce 20% of US Energy Demand (20 Quads per year) 1 million kg biomass/km2* 16,000 BTU/kg = .02 Q/4,000km2 after loss 20 ac/turbine 175,000 Kwh/yr/turbine 33 million turbines Solar Wind Biomass According to Pimentel et al. (BioScience Sept. 1994), Tinker RMS AAPG Keynote (2004) A LTUDA NATURAL GAS DEPLETION RATES 60 50 40 30 20 10 0 Rocky Texas Oklahoma Offshore Lower 48 Mountain GOM Kenderdine (2002) 1990 1999 A LTUDA COALBED METHANE PRODUCTION IN U.S. 2,000 1,800 1614 1600 1,600 1562 1379 1,400 1252 1194 1,200 1090 1003 956 1,000 851 800 752 600 539 400 348 196 200 91 10 17 24 40 0 85 87 89 91 93 95 97 99 01 2003 Energy Information Year Administration (1992, 1995,1999, 2002, 2004) A LTUDA COALBED METHANE EXPLORATION MODEL Permeability Gas content Hydrodynamics CoalbedCoalbed MethaneMethane ProducibilityProducibility Coal rank and Depositional gas generation systems and coal distribution Tectonic and structural setting A LTUDA A LTUDA EVALUATION OF GAS CHEMISTRY • Gas chromatographic analyses provides information about gas chemistry; percentages of hydrocarbons, carbon dioxide, nitrogen, hydrogen, oxygen, etc. -
Coal Tar Pitch – Its Past, Present and Future in Commercial Roofing by Joe Mellott
- 1 - Coal Tar Pitch – Its Past, Present and Future in Commercial Roofing By Joe Mellott Coal tar remains a desired and strong source of technology within the roofing industry, as innovative coal tar products significantly reduce associated health hazards and environmental impact. To help you better understand the role that coal tar continues to play in the commercial roofing market, this article will explore: • The history of coal tar • Its associated hazards • Hot and cold coal tar adhesive technologies • Modified coal tar pitch membrane technologies • Coal tar’s sustainability attributes A Brief History of Coal Tar In order to understand what coal tar pitch is, it’s important to understand its origins and refinement methods. Coal tar can be refined from a number of sources including coal, wood, peat, petroleum, and other organic materials. The tar is removed by burning or heating the base substance and selectively distilling fractions of the burned chemical. Distillation involves heating the substance to a point where different fractions of the substance become volatile. The fractions are then collected by condensing the fraction at a specific temperature. A base substance can be split into any number of fractions through distillation. A good example of industrial distillation is the oil refining process. Through distillation, crude oil can be separated into fractions that include gasoline, jet fuel, motor oil bases, and other specialty chemicals. Fractionation or distillation is a tried-and-true method for breaking a substance into different parts of its composition. One of the first uses of coal tar was in the maritime industry. Trees stumps were burned and the tar fractions were collected through distillation of the tar. -
Spherical Graphite Produced by Waste Semi-Coke with Enhanced Properties As
Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2019 Spherical graphite produced by waste semi-coke with enhanced properties as anode material for Li-ion batteries Ming Shi, Zige Tai, Na Li, Kunyang Zou, Yuanzhen Chen, Junjie Sun, Yongning Liu* State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, PR China *Corresponding author E-mail address: [email protected] Fax: +86 29 8266 3453; Tel: +86 29 8266 4602 Fig. 1 N2 absorption/desorption profiles of (a) pristine semi-coke (SC); (b) synthetic graphite without Si (PG); and (c) synthetic graphite with 10% Si at 2300 °C (SG). Table 1 The percentage of impurity of pristine SC and SG (10% Si at 2300 °C). Content percentage / wt % samples B Si Al Ca Fe K Na Mg SC <0.1 4.25 5.5 3.3 0.8 0.3 0.09 <0.1 SG <0.1 1.01 1.9 0.1 <0.1 0.02 0.03 <0.1 Table 2 The SG capacity values with that of similar materials published in the literature. Materials Specific Capacity Rate capability Cyclic retention Ref. [mA h g-1] [mA h g-1] Spherical graphite produced 347.06 at 0.05C 329.8 at 0.1C; 317.4 at 97.7% at 0.5C after This by waste semi-coke 0.5 C and 262.3 at 1C 700 cycles work Iron‐catalyzed graphitic 306 at 0.1C 150 at rate of 2C Over 90 % after 200 1 materials from biomass cycles Carbonaceous composites 312 at 0.2C 149 at 1 C; 78 at 5C - 2 prepared by the mixture of graphite, cokes, and petroleum pitch. -
Projectprofile
EPSILON CARBON PRIVATE LIMITED ECPL CoalTar Distillation -300,000tpa Karnataka ProjectProfile General TheEpsilon CarbonprivateLimited is aspiring to emergeasadynamiccompanyin India in the field of coal tar processing for manufacture ofvarious value added products. The proposed green-field Coal tar distillation plant coupledwith solidpitchmeltingunitisproposedtosetupwith Coal tar processing capacity of 300,000tpaat Toranagallu in Bellary district of Karnataka. Process Description: The coal tar are separated by distillation process. Coal tar containing several chemical compounds with major being Coal tar pitch,Naphthalene,Wash Oil, Light Oil, Phenol Oil & Anthracene oil. Following are major manufacturing of process & Products: 1. Coal Tar pitch (Binder Grade Pitch) 2. Zero QI /Impregnated Pitch 3. Naphthalene &Naphthalene sulfonate formaldehyde (NSF) 4. Oils- Carbon Black Oil (CBO) ,Light oil, Phenol oil, Wash oil , Anthracene oil By Products: 5. Sodium Phenolate 6. Ammonical water 1. Binder Grade Pitch: Soft Pitch from the bottom of pitch column is sent to pitch column for further processing to modified pitch to increase QI content and blended with required high QI pitch to produce binder grade pitch for aluminum industry. 2. Impregnated Pitch : Blending of coal tar and wash oil in specific ratio, dehydration up to 180℃ to separate moisture content in coal tar. The dehydrated mixture is transferred to settling tank for reduction of QI. (Settling tank provide draw-off valve for QI sampling). QI value less material transfer to further distillation (Removal of Oils) to produce Impregnated Pitch. Project Profile for 300,000 tpa Coal Tar Distillation plant EPSILON CARBON PRIVATE LIMITED ECPL CoalTar Distillation -300,000tpa Karnataka ProjectProfile 3. Carbon Black Oil(CBO): Blending of Soft Pitch from the bottom of pitch column and Anthracene oil in specific ratio with required specific gravity to produce carbon black oil for tyre industry. -
Interpreting Tar Patterns at Former Manufactured Gas Plant Sites
1 Interpreting Tar Patterns at Former Manufactured Gas Plant Sites Brian L. Murphy, Ph.D. • INEF, Penn State • June 10, 2013 2 Why focus on tar? . Dense, nonaqueous-phase liquid (DNAPL) that can sink into the saturated zone and contaminate groundwater – Expensive to remediate . Insurance coverage litigation – How tar got there? (Expected and intended?) – When tar got there? (During coverage period?) – Is it still moving? (During coverage period?) 3 Outline . What is manufactured gas plant (MGP) tar? . How “tarry” is it? . How fast does it move? – Distance and time scales . How to interpret boring logs in terms of tar motion . How can you identify source locations at a site where tar has migrated? 4 Nomenclature . “Tar” generally = Density > Water . “Oil” generally = Density < Water . “Coal tar” = Tar from different processes – Coal gasification – Water gas – Carbureted water gas – Oil gas Which may not involve the use of coal at all! 5 Different Processes for Manufacturing Gas . Coal gas: Heat coal in the absence of oxygen . Water gas (blue gas): Steam sprayed on incandescent coke H2O+C→CO+H2 . Carbureted water gas: Petroleum is cracked and added to water gas—most popular Lowe process . Oil gas: Cracked petroleum for low molecular weight gases 6 Initial Coal Gas Period . 1812: First commercial plant chartered, London . First U.S. gas companies incorporated – 1817 Baltimore – 1823 New York – 1829 Boston 7 Advent of Water Gas . 1873: Lowe Carbureted Water Gas (CWG) Process patented; water gas provided superior illumination – 1884: Patents sold to United Gas Improvement Company – 1892: Lowe’s patents begin to expire . 1900: CWG accounts for 75% of U.S. -
Chapter L—Coal-Bed Methane Gas-In-Place Resource Estimates
Chapter L National Coal Resource Coal-Bed Methane Gas-In-Place Resource Assessment Estimates Using Sorption Isotherms and Burial History Reconstruction: An Example from the Ferron Sandstone Member Click here to return to Disc 1 Volume Table of Contents of the Mancos Shale, Utah By Todd A. Dallegge1 and Charles E. Barker1 Chapter L of Geologic Assessment of Coal in the Colorado Plateau: Arizona, Colorado, New Mexico, and Utah Edited by M.A. Kirschbaum, L.N.R. Roberts, and L.R.H. Biewick U.S. Geological Survey Professional Paper 1625–B* 1 U.S. Geological Survey, Denver, Colorado 80225 * This report, although in the USGS Professional Paper series, is available only on CD-ROM and is not available separately U.S. Department of the Interior U.S. Geological Survey Contents Overview ...................................................................................................................................................... L1 What Is Coal-Bed Methane? ...................................................................................................................... 2 Importance of Coal-Bed Methane Production ........................................................................................ 2 How Much Coal-Bed Methane is Available?........................................................................................... 3 How Do Coal Beds Generate and Store Methane? ................................................................................ 4 Details About Coal Cleat.................................................................................................................... -
THE GUIDE to SOLID FUELS This Leaflet Will Tell You All You Need To
THE GUIDE TO SOLID FUELS This leaflet will tell you all you need to know about: • The different solid fuels available and their suitability for the various types of appliances • Smoke control legislation • Buying solid fuel • Hints on getting the best from your fuel and appliance Choice of Fuel There are a great many different solid fuels for sale. Your choice will be based on a number of criteria, the most important of which will be the type of appliance you will be burning the fuel on and whether or not you live in a smoke control area (see page 4). Fuels for open fires Housecoal The most traditional fuel for open fires is housecoal. It is available in various sizes e.g. Large Cobbles, Cobbles, Trebles and Doubles. The larger sizes are usually a little more expensive than Doubles size. Housecoal comes from mines in Britain and other parts of the world, most notably Columbia and Indonesia. The coal may be sold by the name of the colliery it comes from e.g. Daw Mill, the port of entry e.g. Merseyport or a merchant’s own brand name, e.g. Stirling. Coal merchants also frequently sell the coal by grade – 1, 2 and 3 or A, B and C; 1 and A being the best quality. Wood Wood and logs can be burnt on open fires. They should be well-seasoned and preferably have a low resin content. You should not use any wood that has any kind of coating on the surface e.g. varnish or paint, as harmful gases may be emitted on burning.