Chapter L—Coal-Bed Methane Gas-In-Place Resource Estimates

Total Page:16

File Type:pdf, Size:1020Kb

Chapter L—Coal-Bed Methane Gas-In-Place Resource Estimates Chapter L National Coal Resource Coal-Bed Methane Gas-In-Place Resource Assessment Estimates Using Sorption Isotherms and Burial History Reconstruction: An Example from the Ferron Sandstone Member Click here to return to Disc 1 Volume Table of Contents of the Mancos Shale, Utah By Todd A. Dallegge1 and Charles E. Barker1 Chapter L of Geologic Assessment of Coal in the Colorado Plateau: Arizona, Colorado, New Mexico, and Utah Edited by M.A. Kirschbaum, L.N.R. Roberts, and L.R.H. Biewick U.S. Geological Survey Professional Paper 1625–B* 1 U.S. Geological Survey, Denver, Colorado 80225 * This report, although in the USGS Professional Paper series, is available only on CD-ROM and is not available separately U.S. Department of the Interior U.S. Geological Survey Contents Overview ...................................................................................................................................................... L1 What Is Coal-Bed Methane? ...................................................................................................................... 2 Importance of Coal-Bed Methane Production ........................................................................................ 2 How Much Coal-Bed Methane is Available?........................................................................................... 3 How Do Coal Beds Generate and Store Methane? ................................................................................ 4 Details About Coal Cleat..................................................................................................................... 5 Production of Coal-Bed Methane .............................................................................................................. 6 Indtroduction to Ferron Sandstone CBM.................................................................................................. 7 Regional Geology.......................................................................................................................................... 8 Structural Setting in the Western United States During the Late Cretaceous.......................... 9 Depositional Environment for the Ferron Sandstone Member ........................................................... 10 Formation of Ferron Coal ........................................................................................................................... 11 Ferron Coals................................................................................................................................................. 12 Characteristics of Lower Ferron Coal at Drunkards Wash......................................................... 13 Characteristics of Upper Ferron Coal at Emery............................................................................ 13 Similarities of Upper and Lower Ferron Coals .............................................................................. 14 Procedures for Estimating Gas-In-Place................................................................................................ 15 Direct Method .................................................................................................................................... 15 Direct Measurements of Coal-Bed Methane Content........................................................ 15 Methods for Determining Sorption Isotherms ............................................................ 15 Experimental Method........................................................................................................................ 16 Experimental Method of Estimating CBM Content.............................................................. 16 Theoretical Method .......................................................................................................................... 17 Theoretical Method of Estimating CBM Content: Burial History Reconstruction.......... 17 Biogenic Gas—An Unknown Quantity.................................................................................................... 19 Estimates of Total Coal Mass for Drunkards Wash Area..................................................................... 20 Method for Determining Gas-In-Place.................................................................................................... 21 Estimating the GIP for Drunkards Wash ........................................................................................ 22 Direct Method ........................................................................................................................... 22 Experimental Method............................................................................................................... 22 Thoeoretical Method................................................................................................................ 22 Summary ...................................................................................................................................................... 23 Caveats................................................................................................................................................ 23 References Cited ........................................................................................................................................ 23 Glossary 24 Figures 1. Photograph of the Ferron Sandstone Member showing thick sandstones and the Sub-A coal zone at the Interstate-70 roadcut south of Emery, Utah ................................................................................................ Frontispiece 2. Photograph of coal-bearing Ferron Sandstone Member of the Mancos Shale and the Marysvale volcanic field............................................................................................. L1 3. Map showing major U.S. coal-bed methane resources ........................................................ 2 4. Graph showing potential future availability of U.S. coal-bed methane............................... 3 5. Coal cleat terminology................................................................................................................. 4 6. Gas generation from sapropelic and humic coals.................................................................. 4 7. Photograph of outcrop showing pyrite filling cleat fracture................................................. 5 8. Photograph of cleats in the A coal horizon at the I-70 roadcut south of Emery, Utah .................................................................................................................... 5 9. Coal-bed methane release process .......................................................................................... 6 10. Measured, calculated, and hypothetical gas production curves for River Gas Corp. 25-7-6 well......................................................................................................... 6 11. Map showing location of Drunkards Wash study area.......................................................... 7 12. Depositional setting for Ferron Sandstone Member of the Mancos Shale........................ 8 13. Block diagram showing depositional environments of Upper Cretaceous rocks in the foreland basin of eastern Utah............................................................................. 8 14. Late Triassic–Late Cretaceous depositional pattern in the Western United States ......... 9 15. Diagrammatic cross section of the Sevier foreland basin .................................................... 9 16. Generalized cross section showing Ferron Sandstone Member stratigraphy ................ 10 17. Diagram showing depositional environment for Ferron Sandstone Member of the Mancos Shale.................................................................................................................. 10 18. Diagram showing peat environments and preservation of peat by a transgressive event ........................................................................................................... 11 19. Location map for coal-bed methane development in eastern Utah .................................. 11 20. Generalized cross section from the Wasatch Plateau to the San Rafael Swell showing position of Ferron coals............................................................................................. 12 21. Surface outcrop pattern of the Ferron Sandstone Member ............................................... 12 22. Photomicrograph of an upper Ferron coal showing vitrinite, the major gas-sorbing component of a coal............................................................................................ 13 23. Map showing vitrinite reflectance values for the Ferron Sandstone Member................ 13 24. Adsorption isotherm of lower Ferron coal from Utah 25-9-1 well ...................................... 15 25. Diagram of upper Ferron experimental gas-in-place estimate .......................................... 16 26. Drunkards Wash burial history reconstruction ..................................................................... 17 27. Muddy Creek (Emery) burial history reconstruction ............................................................ 18 28. Map showing isopachs of total coal for Drunkards Wash area......................................... 20 Table 1. Average analyses of Ferron coals ......................................................................................... L14 Figure 1 (Frontispiece). Photograph of the Ferron Sandstone Member of the Mancos Shale
Recommended publications
  • Coal and Oil: the Dark Monarchs of Global Energy – Understanding Supply and Extraction Patterns and Their Importance for Futur
    nam et ipsa scientia potestas est List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Höök, M., Aleklett, K. (2008) A decline rate study of Norwe- gian oil production. Energy Policy, 36(11):4262–4271 II Höök, M., Söderbergh, B., Jakobsson, K., Aleklett, K. (2009) The evolution of giant oil field production behaviour. Natural Resources Research, 18(1):39–56 III Höök, M., Hirsch, R., Aleklett, K. (2009) Giant oil field decline rates and their influence on world oil production. Energy Pol- icy, 37(6):2262–2272 IV Jakobsson, K., Söderbergh, B., Höök, M., Aleklett, K. (2009) How reasonable are oil production scenarios from public agen- cies? Energy Policy, 37(11):4809–4818 V Höök M, Söderbergh, B., Aleklett, K. (2009) Future Danish oil and gas export. Energy, 34(11):1826–1834 VI Aleklett K., Höök, M., Jakobsson, K., Lardelli, M., Snowden, S., Söderbergh, B. (2010) The Peak of the Oil Age - analyzing the world oil production Reference Scenario in World Energy Outlook 2008. Energy Policy, 38(3):1398–1414 VII Höök M, Tang, X., Pang, X., Aleklett K. (2010) Development journey and outlook for the Chinese giant oilfields. Petroleum Development and Exploration, 37(2):237–249 VIII Höök, M., Aleklett, K. (2009) Historical trends in American coal production and a possible future outlook. International Journal of Coal Geology, 78(3):201–216 IX Höök, M., Aleklett, K. (2010) Trends in U.S. recoverable coal supply estimates and future production outlooks. Natural Re- sources Research, 19(3):189–208 X Höök, M., Zittel, W., Schindler, J., Aleklett, K.
    [Show full text]
  • The Hydrology of Coalbed Methane Reservoirs and the Interplay of Gas, Water, and Coal in CBM Production
    University of Colorado Law School Colorado Law Scholarly Commons Coalbed Methane Development in the Intermountain West (April 4-5) 2002 4-4-2002 The Hydrology of Coalbed Methane Reservoirs and the Interplay of Gas, Water, and Coal in CBM Production Leslie Nogaret Follow this and additional works at: https://scholar.law.colorado.edu/coalbed-methane-development- intermountain-west Part of the Geotechnical Engineering Commons, Hydraulic Engineering Commons, Hydrology Commons, Natural Resources Management and Policy Commons, Oil, Gas, and Energy Commons, Science and Technology Law Commons, and the Water Resource Management Commons Citation Information Nogaret, Leslie, "The Hydrology of Coalbed Methane Reservoirs and the Interplay of Gas, Water, and Coal in CBM Production" (2002). Coalbed Methane Development in the Intermountain West (April 4-5). https://scholar.law.colorado.edu/coalbed-methane-development-intermountain-west/9 Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School. Leslie Nogaret, The Hydrology of Coalbed Methane Reservoirs and the Interplay of Gas, Water, and Coal in CBM Production, in COALBED METHANE DEVELOPMENT IN THE INTERMOUNTAIN WEST (Natural Res. Law Ctr., Univ. of Colo. Sch. of Law 2002). Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School. References Lyons, W.S., 2002, Seismic Assists Geologic Interpretation and Development Program in the Ferron Bowles, J., 2001, Phillips’ CBM Outlook, A.G. Edwards, Coalbed Methane Play, presentation to the Rocky March 14, 2001, Coal Bed Methane Energy Mountain Section of SEPM, February 26, 2002.
    [Show full text]
  • New Carbon Emissions Allowance Allocation Method Based on Equilibrium Strategy for Carbon Emission Mitigation in the Coal-Fired Power Industry
    sustainability Article New Carbon Emissions Allowance Allocation Method Based on Equilibrium Strategy for Carbon Emission Mitigation in the Coal-Fired Power Industry Qing Feng 1, Qian Huang 1, Qingyan Zheng 2 and Li Lu 1,2,* 1 Business School, Sichuan University, Chengdu 610064, China; [email protected] (Q.F.); [email protected] (Q.H.) 2 Tourism School, Sichuan University, Chengdu 610064, China; [email protected] * Correspondence: [email protected]; Tel.: +86-028-85996613 Received: 18 July 2018; Accepted: 17 August 2018; Published: 17 August 2018 Abstract: The carbon emissions from coal-fired power have become an increasing concern to governments around the world. In this paper, a carbon emissions allowances allocation based on the equilibrium strategy is proposed to mitigate coal-fired power generation carbon emissions, in which the authority is the lead decision maker and the coal-fired power plants are the follower decision makers, and an interactive solution approach is designed to achieve equilibrium. A real-world case study is then given to demonstrate the practicality and efficiency of this methodology. Sensitivity analyses under different constraint violation risk levels are also conducted to give authorities some insights into equilibrium strategies for different stakeholders and to identify the necessary tradeoffs between economic development and carbon emissions mitigation. It was found that the proposed method was able to mitigate coal-fired power generation carbon emissions significantly and encourage coal-fired power plants to improve their emissions performance. Keywords: carbon emission allowance allocation; emission mitigation; coal-fired power generation; cap and tax mechanism 1. Introduction Because of their major contribution to global climate change, there has been increased research to determine the best ways to reduce carbon emissions, which have been exponentially increasing due to the increased demand for energy [1–3].
    [Show full text]
  • Assessment of Contaminants Associated with Coal Bed Methane
    Contaminant Report Number: R6/721C/05 U.S. FISH & WILDLIFE SERVICE REGION 6 CONTAMINANTS PROGRAM Assessment of Contaminants Associated with Coal Bed Methane-Produced Water and Its Suitability for Wetland Creation or Enhancement Projects USFWS - Region 6 - EC Report - R6/721C/05 ABSTRACT Extraction of methane gas from coal seams has become a significant energy source in the Powder River Basin of northeastern Wyoming. In Wyoming, coalbed methane (CBM) gas is extracted by drilling wells into coal seams and removing water to release the gas. Each CBM well produces an average of 10 gallons per minute (gpm) of water and a maximum of 100 gpm. Disposal of CBM produced water is accomplished by direct discharge to surface drainages, and also by a variety of other treatment and disposal methods. Untreated CBM produced water discharged to surface drainages is the primary method of disposal provided that the CBM produced water meets Wyoming water quality standards. Water failing to meet water quality standards cannot legally be discharged into surface drainages and is alternately discharged into closed containment ponds for soil-ground water infiltration and evaporation. In 2000 and 2001, we collected and analyzed water from CBM discharges and receiving waters and sediment and biota from CBM produced water impoundments. In 2002, we collected and analyzed water from CBM closed containment impoundments. All the samples were analyzed for trace elements. The biota included pondweed (Potamogeton vaginatus), aquatic invertebrates, fish, and tiger salamanders (Ambystoma tigrinum). One CBM produced water discharge exceeded the chronic criterion for iron and several CBM produced water discharges exceeded the acute criterion for copper.
    [Show full text]
  • Coal Characteristics
    CCTR Indiana Center for Coal Technology Research COAL CHARACTERISTICS CCTR Basic Facts File # 8 Brian H. Bowen, Marty W. Irwin The Energy Center at Discovery Park Purdue University CCTR, Potter Center, 500 Central Drive West Lafayette, IN 47907-2022 http://www.purdue.edu/dp/energy/CCTR/ Email: [email protected] October 2008 1 Indiana Center for Coal Technology Research CCTR COAL FORMATION As geological processes apply pressure to peat over time, it is transformed successively into different types of coal Source: Kentucky Geological Survey http://images.google.com/imgres?imgurl=http://www.uky.edu/KGS/coal/images/peatcoal.gif&imgrefurl=http://www.uky.edu/KGS/coal/coalform.htm&h=354&w=579&sz= 20&hl=en&start=5&um=1&tbnid=NavOy9_5HD07pM:&tbnh=82&tbnw=134&prev=/images%3Fq%3Dcoal%2Bphotos%26svnum%3D10%26um%3D1%26hl%3Den%26sa%3DX 2 Indiana Center for Coal Technology Research CCTR COAL ANALYSIS Elemental analysis of coal gives empirical formulas such as: C137H97O9NS for Bituminous Coal C240H90O4NS for high-grade Anthracite Coal is divided into 4 ranks: (1) Anthracite (2) Bituminous (3) Sub-bituminous (4) Lignite Source: http://cc.msnscache.com/cache.aspx?q=4929705428518&lang=en-US&mkt=en-US&FORM=CVRE8 3 Indiana Center for Coal Technology Research CCTR BITUMINOUS COAL Bituminous Coal: Great pressure results in the creation of bituminous, or “soft” coal. This is the type most commonly used for electric power generation in the U.S. It has a higher heating value than either lignite or sub-bituminous, but less than that of anthracite. Bituminous coal
    [Show full text]
  • T U R G a Y E R T E K I N, B.Sc, M.Sc., Ph.D
    T U R G A Y E R T E K I N, B.Sc, M.Sc., Ph.D. ● P E N N S T A T E U N I V E R S I T Y ● U N I V E R S I T Y P A R K , P A 1 6 8 7 0 ● ● (8 14 ) 8 6 5 - 6 0 8 2 ● Professor Emeritus Petroleum and Natural Gas Engineering E DUC A T I ON Middle East Technical University, Ankara, Turkey, B.Sc., 1969, Petroleum Engineering Middle East Technical University, Ankara, Turkey, M.Sc., 1971, Petroleum Engineering Pennsylvania State University, University Park, USA, Ph.D., 1978, Petroleum and Natural Gas Engineering A C A D E M IC A N D A D M INIST R A T IVE P O S ITION S July 2017 to present Professor Emeritus of Petroleum and Natural Gas Engineering The Pennsylvania State University July 2013 to July 2017 Head, John and Willie Leone Family Department of Energy and Mineral Engineering, the George E. Trimble Chair in Earth and Mineral Sciences, the Pennsylvania State University May 2013 to May 2014 Co-Director, Institute of Natural Gas Research (INGaR), Pennsylvania State University July 2001 to Present Professor of Petroleum and Natural Gas Engineering and George E. Trimble Chair in Earth and Mineral Sciences, Pennsylvania State University July 1998 to June 2001 Associate Head, Department of Energy and Geo-Environmental Engineering July 1987 to Present Professor of Petroleum and Natural Gas Engineering, Pennsylvania State University July 1984 to January 2015 Chairman of Petroleum and Natural Gas Engineering, Pennsylvania State University July 1983 to July 1984 Associate Professor of Petroleum and Natural Gas Engineering, Pennsylvania State University
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,505,620 B2 Zupanick (45) Date of Patent: *Aug
    US00850562OB2 (12) United States Patent (10) Patent No.: US 8,505,620 B2 Zupanick (45) Date of Patent: *Aug. 13, 2013 (54) METHOD AND SYSTEM FOR ACCESSING (58) Field of Classification Search SUBTERRANEAN DEPOSTS FROM THE USPC .............................................. 166/50, 52, 245 SURFACE AND TOOLS THEREFOR See application file for complete search history. (75) Inventor: Joseph A. Zupanick, Beckley, WV (US) (56) References Cited (73) Assignee: Vitruvian Exploration, LLC, Houston, U.S. PATENT DOCUMENTS TX (US) 54,144 A 4, 1866 Hamar 274,740 A 3/1883 Douglass (*) Notice: Subject to any disclaimer, the term of this (Continued) patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. FOREIGN PATENT DOCUMENTS AU 85,49964 A 11, 1986 This patent is Subject to a terminal dis CA 2210866 1, 1998 claimer. (Continued) (21) Appl. No.: 11/982,249 OTHER PUBLICATIONS (22) Filed: Oct. 31, 2007 McCray, Arthur, et al., “Oil Well Drilling Technology.” University of Oklahoma Press, 1959, Title Page, Copyright Page and pp. 315-319 (65) Prior Publication Data (7 pages). US 2008/OO60806A1 Mar. 13, 2008 (Continued) Primary Examiner — John Kreck Related U.S. Application Data (74) Attorney, Agent, or Firm — Fish & Richardson P.C. (60) Continuation of application No. 10/630,345, filed on Jul. 29, 2003, which is a continuation-in-part of (57) ABSTRACT According to one embodiment, a system for accessing a Sub (Continued) terranean Zone from the surface includes a well bore extend ing from the Surface to the Subterranean Zone, and a well bore (51) Int. C. pattern connected to the junction and operable to drain fluid E2IB 43/00 (2006.01) from a region of the Subterranean Zone to the junction.
    [Show full text]
  • Coal Gas Origins and Exploration Strategies ©
    COAL GAS ORIGINS AND EXPLORATION STRATEGIES © Andrew R. Scott Altuda Energy Corporation San Antonio, Texas USA [email protected] A LTUDA Mid-Continent Coalbed Methane Symposium Tulsa, Oklahoma November 7-9, 2004 © 2004 A.R. Scott EARTH AT NIGHT Page1of1 1,400 1,200 1,000 800 600 400 200 0 1900 1950 2000 2050 2100 Year Data from U.S. Bureau of the Census; ftuture growth estimates from U.S. Census Bureau publication NP-T1, February 2000; website www.mnforsustain.org/united_states_population.htm World view problems 1. Energy 2. Water 3. Food 4. Environment 5. Poverty 6. Terrorism & War 7. Disease 2. Education 9. Democracy 10. Population Tinker (2004) after Smalley (2003) U.S. ENERGY COMPARISON To Produce 20% of US Energy Demand (20 Quads per year) 1 million kg biomass/km2* 16,000 BTU/kg = .02 Q/4,000km2 after loss 20 ac/turbine 175,000 Kwh/yr/turbine 33 million turbines Solar Wind Biomass According to Pimentel et al. (BioScience Sept. 1994), Tinker RMS AAPG Keynote (2004) A LTUDA NATURAL GAS DEPLETION RATES 60 50 40 30 20 10 0 Rocky Texas Oklahoma Offshore Lower 48 Mountain GOM Kenderdine (2002) 1990 1999 A LTUDA COALBED METHANE PRODUCTION IN U.S. 2,000 1,800 1614 1600 1,600 1562 1379 1,400 1252 1194 1,200 1090 1003 956 1,000 851 800 752 600 539 400 348 196 200 91 10 17 24 40 0 85 87 89 91 93 95 97 99 01 2003 Energy Information Year Administration (1992, 1995,1999, 2002, 2004) A LTUDA COALBED METHANE EXPLORATION MODEL Permeability Gas content Hydrodynamics CoalbedCoalbed MethaneMethane ProducibilityProducibility Coal rank and Depositional gas generation systems and coal distribution Tectonic and structural setting A LTUDA A LTUDA EVALUATION OF GAS CHEMISTRY • Gas chromatographic analyses provides information about gas chemistry; percentages of hydrocarbons, carbon dioxide, nitrogen, hydrogen, oxygen, etc.
    [Show full text]
  • CLIMATE ACTION PLAN Websites
    CLIMATE ACTION PLAN Websites Climate action cuts across all sectors of our economy and is being addressed in multiple ways. Information on government actions related to climate action are also found in the following: h LiveSmart BC http://www.livesmartbc.ca/ h The BC Energy Plan: A Vision for Clean Energy Leadership http://www.energyplan.gov.bc.ca/ h The BC Bioenergy Strategy http://www.energyplan.gov.bc.ca/bioenergy/ h The Agriculture Plan: Growing a Healthy Future for BC Farmers http://www.al.gov.bc.ca/Agriculture_Plan/ h The Mountain Pine Beetle Action Plan http://www.for.gov.bc.ca/hfp/mountain_pine_beetle/ h Living Water Smart: British Columbia's Water Plan http://www.livingwatersmart.ca./ h The BC Air Action Plan http://www.bcairsmart.ca/ h The BC Transit Plan http://www.th.gov.bc.ca/Transit_Plan/index.html h Energy Efficient Building Strategy http://www.energyplan.gov.bc.ca/efficiency/ h BC Green Building Code http://www.housing.gov.bc.ca/building/green/ h Pacific Institute for Climate Solutions http://www.pics.uvic.ca/ h Towns for Tomorrow http://www.townsfortomorrow.gov.bc.ca/ h Climate Action Secretariat http://www.climateactionsecretariat.gov.bc.ca/ BRITISH COLUMBIA’S Contents Message from the B.C. Government 1 Highlights 2 The Challenge 6 The Opportunity 10 The B.C. Climate Action Plan – Phase One 12 Section One: Setting the Course 13 Section Two: Acting in Every Sector 25 Acting in Every Sector: Transportation 26 Acting in Every Sector: Buildings 36 Acting in Every Sector: Waste 41 Acting in Every Sector: Agriculture 43 Acting
    [Show full text]
  • Lecture 32: Coke Production
    NPTEL – Chemical – Chemical Technology II Lecture 32: Coke production 32.1 Introduction Coal is used as fuel for electric power generation, industrial heating and steam generation, domestic heating, rail roads and for coal processing. Coal composition is denoted by rank. Rank increases with the carbon content and decreases with increasing oxygen content. Many of the products made by hydrogenation, oxidation, hydrolysis or fluorination are important for industrial use. Stable, low cost, petroleum and natural gas supplies has arose interest in some of the coal products as upgraded fuels to reduce air pollution as well as to take advantage of greater ease of handling of the liquid or gaseous material and to utilize existing facilities such as pipelines and furnaces. 32.2 Coking of coal Raw material is Bituminous coal. It appears to have specific internal surfaces in the range of 30 to 100m2/g. Generally one ton of bituminous coal produces 1400 lb of coke. 10 gallons of tar. Chemical reaction:- 4(C3H4)n nC6H6 + 5nC + 3nH2 + nCH4 Coal Benzene Coke Lighter hydrocarbon Joint initiative of IITs and IISc – Funded by MHRD Page 1 of 9 NPTEL – Chemical – Chemical Technology II Process flow sheet: Illustrated in Figure. Figure 32.1 Flow sheet of coking of coal 32.3 Functional role of each unit (Figure 32.1): (a) Coal crusher and screening: At first Bituminous coal is crushed and screened to a certain size. Preheating of coal (at 150-250˚C) is done to reduce coking time without loss of coal quality. Briquetting increases strength of coke produced and to make non - coking or poorly coking coals to be used as metallurgical coke.
    [Show full text]
  • Coal Mine Methane Recovery: a Primer
    Coal Mine Methane Recovery: A Primer U.S. Environmental Protection Agency July 2019 EPA-430-R-09-013 ACKNOWLEDGEMENTS This report was originally prepared under Task Orders No. 13 and 18 of U.S. Environmental Protection Agency (USEPA) Contract EP-W-05-067 by Advanced Resources, Arlington, USA and updated under Contract EP-BPA-18-0010. This report is a technical document meant for information dissemination and is a compilation and update of five reports previously written for the USEPA. DISCLAIMER This report was prepared for the U.S. Environmental Protection Agency (USEPA). USEPA does not: (a) make any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any apparatus, method, or process disclosed in this report may not infringe upon privately owned rights; (b) assume any liability with respect to the use of, or damages resulting from the use of, any information, apparatus, method, or process disclosed in this report; or (c) imply endorsement of any technology supplier, product, or process mentioned in this report. ABSTRACT This Coal Mine Methane (CMM) Recovery Primer is an update of the 2009 CMM Primer, which reviewed the major methods of CMM recovery from gassy mines. [USEPA 1999b, 2000, 2001a,b,c] The intended audiences for this Primer are potential investors in CMM projects and project developers seeking an overview of the basic technical details of CMM drainage methods and projects. The report reviews the main pre-mining and post-mining CMM drainage methods with associated costs, water disposal options and in-mine and surface gas collection systems.
    [Show full text]
  • Producing Fuel and Electricity from Coal with Low Carbon Dioxide Emissions
    Producing Fuel and Electricity from Coal with Low Carbon Dioxide Emissions K. Blok, C.A. Hendriks, W.C. Turkenburg Depanrnent of Science,Technology and Society University of Utrecht Oudegracht320, NL-351 1 PL Utrecht, The Netherlands R.H. Williams Center for Energy and Environmental Studies Princeton University Princeton, New Jersey08544, USA June 1991 Abstract. New energy technologies are needed to limit CO2 emissions and the detrimental effects of global warming. In this article we describe a process which produces a low-carbon gaseousfuel from coal. Synthesis gas from a coal gasifier is shifted to a gas mixture consisting mainly of H2 and CO2. The CO2 is isolated by a physical absorption process, compressed,and transported by pipeline to a depleted natural gas field where it is injected. What remains is a gaseousfuel consisting mainly of hydrogen. We describe two applications of this fuel. The first involves a combined cycle power plant integrated with the coal gasifier, the shift reactor and the CO2 recovery units. CO2 recovery and storage will increase the electricity production cost by one third. The secondprovides hydrogen or a hydrogen-rich fuel gas for distributed applications, including transportation; it is shown that the fuel can be produced at a cost comparable to projected costs for gasoline. A preliminary analysis reveals that all components of the process described here are in such a phase of development that the proposed technology is ready for demonstration. ~'> --. ~'"' .,.,""~ 0\ ~ 0\0 ;.., ::::. ~ ~ -.., 01) §~ .5~ c0 ~.., ~'> '" .~ ~ ..::. ~ ~ "'~'" '" 0\00--. ~~ ""00 Q....~~ '- ~~ --. ~.., ~ ~ ""~ 0000 .00 t¥") $ ~ .9 ~~~ .- ..~ c ~ ~ ~ .~ O"Oe) """1;3 .0 .-> ...~ 0 ~ ,9 u u "0 ...~ --.
    [Show full text]