Q Demand Factor Is Defined As a Object Oriented Design Always Dominates the Structural Design a Maximum Demand X Connected Load

Total Page:16

File Type:pdf, Size:1020Kb

Q Demand Factor Is Defined As a Object Oriented Design Always Dominates the Structural Design a Maximum Demand X Connected Load These are sample MCQs to indicate pattern, may or may not appear in examination G.M. VEDAK INSTITUTE OF TECHNOLOGY Program: Mechanical Engineering Curriculum Scheme: Revised 2016 Examination: Final Year Semester VIII Course Code:MEDLO8041 and Course Name: PPE Time: 1 hour Max. Marks: 50 Q Demand factor is defined as A Object oriented design always dominates the structural design A Maximum demand X Connected load A Maximum demand/ Connected laod A Connected laod/Maximum demand Q Load factor is defined as A Average load/Maximum demand A Average load X Maximum demand A Maximum demand/Average laod A Maximum demand X Connected load Q Diversity factor is always A Equal to unity A More than unity A More than than twenty A Less than unity Q Load factor for heavy industries may be taken as A 10 to 15% A 15 to 40% A 50 to 70% A 70 to 80% Q Which of the following is not suitable to use as peak plant? A Hydroelectric power plant A Gas power plant A Diesel elected plant A Nuclear power plant Q Which of the following power plant cannot be used as base load plant? A Diesel power plant A Hydroelectric power plant A Nuclear power plant A Thermal power plant The system supplying base and peak loads will be more economical if power is supplied by _________ Q A Only gas turbine power plant A Only thermal power plant A Only Diesel power plant A Combined operation of various power plants Q Load factor of power station is generally A Less then unity A Equal to unity A More than unity A More than Ten Q Diversity factor is defined as A Sum of individual maximum demands/Maximum demand of entire group A Maximum demand of entire group/Sum of individual maximum demands A Maximum demand of entire group X Sum of individual maximum demands A Maximum demand of entire group + Sum of individual maximum demands Q In order to have lower cost of electrical energy generation A The load factor and diversity factor should be low. A The load factor should be low but diversity factor should be high A The load factor should be low but diversity factor low. A The load factor and diversity factors should be high. Q A load curve is a plot of A Load versus generation capacity A Load versus current A Load versus time A Load versus cost of power Q The area under the load curve represents ____________ A Maximum demand A The average load on power system A Number of units generated A Load factor Q Load duration curve indicates _______ A The variation of load during different hours of the day A Total number of units generated for the given demand A Total energy consumed by the load A The number of hours for which the particular load lasts during a day Q Which of the following is called as cold reserve? A Reserve capacity available but not ready for use A Reserve capacity available and ready for use A Generating capacity connected to bus and ready to take load A Capacity in service in excess of peak load Q Which of the following has highest diversity factor? A Commercial lightning A Domestic lightning A Industrial power A Domestic power Q In a power plant if the maximum demand on plant is equal to the plant capacity then A Diversity factor will be unity A Plant reserve capacity will be zero A Load factor will be unity A Load factor will be zero Q Which of the following have highest operating cost? A Solar electric power plant A Hydroelectric power plant A Thermal power plant A Nuclear power plant Q Which of the following least affect the cost of electricity produced in thermal power plant? A Cost of fuel A The load factor A Cost of transportation A Salaries of higher officials Q The control rods in the control system of nuclear reactors are used to A Absorb excess neutrons A Control fuel consumption A Control temperature A Control the pressure Which of the following type of pump is used in liquid metal cooled reactor for circulation of liquid Q metal A Centrifugal A Axial A Reciprocation A Electromagnetic Q Each fission of U₂₃₅ produces on the average _________ fast neutrons as a product of reaction A 2.46 A 24.6 A 246 A 2460 Q The coolant used in boiling water reactor is A CO2 A Pressurised water A Mixture of water and steam A Liquid metal Q Effective moderators are those materials which contain A Light weight atoms A Heavy weight atoms A Critical atoms A Zero weight atoms A nuclear fission is initiated when the critical energy as compared to neutron binding energy of the Q atoms is A Same A More A Less A There is no such criterion Q The commonly used material for shielding is A Lead or concrete A Lead and tin A Graphite or cadmium A Thick galvanized sheets Q Enriched uranium is one in which A Percentage of U₂₃₅ has been artificially increased A Percentage of U has been artificially increased A Percentage of U₂₃₄ has been artificially increased A Extra energy is pumped from outside Q Gas cooled reactor uses following materials as moderator, and coolant A Graphite, CO2 A Graphite, air A Heavy water, CO2 A Lead, H2 Q Pick up the wrong statement fast breeder reactors A Operate at extremely high power densities A Are liquid metal cooled A Produce more fuel than they consume A Use water as coolant Enriched uranium is required as a fuel in a nuclear reactor, when light water is used as moderator and Q coolant, because light water has A High neutron absorption cross-section A Low moderating efficiency A High neutron scatter cross-section A Low neutron absorption cross-section Q Electron volt is the unit of A Atomic power A Energy A Voltage A Radio activity Q A moderator, in nuclear power plants, is a medium introduced into the fuel mass in order to A Slow down the speed of fast moving neutrons A Give faster speed to fast moving neutrons A Reduce the temperature A Extracts heat from nuclear reaction Q One gram of uranium will produce energy equivalent to approximately A 1 tonne of high grade coal A 4.5 tonnes of high grade coal A 10 tonnes of high grade coal A 100 tonnes of high grade coal Where reactor operation is designed with fast neutrons such as in reactors using highly enriched fuel, Q the moderator used is A Heavy water A Graphite A Carbon dioxide A No moderator is needed Q The nuclear energy is measured as A MeV A Curie A Farads A MW Q Isotopes of same elements have A Same atomic number and different masses A Same chemical properties but different atomic numbers A Different masses and different atomic numbers A Different chemical properties and same atomic numbers Q A boiling water reactor uses following as fuel A Enriched uranium A Plutonium A Thorium A Uranium Q Maximum supplementary firing means _________ A Minimum fuel that can be fired A Maximum fuel that can fired with the oxygen available in turbine A Maximum fuel that can be fired in given time A Maximum fuel that can be fired at given pressure Q By using combined cycle steam and gas power plant _________ A Specific fuel consumption can be decreased A Efficiency increased A Specific fuel consumption can be decreased and efficiency increased A Specific fuel consumption can be decreased and efficiency decreased Gas and Steam turbine combined power plant produces more electricity than traditional power plants Q by how much percent? A 25 A 40 A 50 A The given statement is false Q Marine compound power plants are also the combined gas and steam power plants A Statement is true A Stetement is false A Statement is incomplete A Statement is inappropriate Q How many sections does waste heat recovery boiler have in steam generators? A 1 A 2 A 3 A 4 Q Turbines that are run by exhaust gases are called _______ A Power recovery turbines A Stepped turbines A Turbo compounded engine A Turbo stepped turbines Q What are turbo-compound engines? A Turbines run at exhausts of Otto and diesel cycles A Combination of turbofan and turbojet engines A Combination of turboprop and turbofan engines A Combination of turboprop and turbojet engines Q The installation time for a gas turbine power plant is ______________ A Comparatively less than thermal power plant A Comparatively more than thermal power plant A Equal to thermal power plant A Very much longer than thermal power plant Q Heating value of coal is approximately A 1000-2000 kcal / kg A 2000-4000 kcal / kg A 5000-6500 kcal / kg A 9000-10,500 kcal / kg Q What is the function of cyclon separator in pneumatich ash handling system A To separate the lighter dust particles A To force up the movement of ash in pipes and tubes A To draw out the dust from furnace A To separate minute coal particles Q Coal used in power plant is also known as A Steam coal A Charcoal A Coke A Soft coal Q Which of the following is considered as superior quality of coal ? A Bituminous coal A peat A lignite A coke Q In a power plant, coal is carried from storage place to boilers generally by means of A Bucket A V-belts A trolleys A Manually Q Live storage of coal in a power plant means A Coal ready for combustion A Preheated coal A Storage of coal sufficient to meet 24 hour demand of the plant A Coal in transit.
Recommended publications
  • Set No.1 Code No: M0328 R07
    Set No.1 Code No: M0328 R07 IV B.Tech. I Semester Regular Examinations, November, 2011 POWER PLANT ENGINEERING (Mechanical Engineering) Time: 3 Hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks ******* 1. a) What do you understand by commercial and non-commercial energy sources? List out the changes from non-commercial to commercial during the last nine plans? [10] b) Why the development of nuclear power is slow in India? [6] 2. Draw a neat line diagram of in plant coal handling and explain the equipment used at different stages. [16] 3. With a neat line diagram showing all the systems explain diesel power plant. [16] 4. a) Prove that the pressure ratio of closed cycle for the maximum specific output is the square root of the pressure ratio for the maximum thermal efficiency. Why low pressure is used in gas turbine power plant. [8] b) Draw the line diagram of repowering system using steam turbine only and boiler only. Discuss their relative merits and demerits. [8] 5. a) What are the different factors to be considered while selecting the site for Hydro- electric power plant? [8] b) What is a spillway? Explain any three types of spillways with sketches. [8] 6. a) Explain the components of Tidal power plant. [8] b) Compare flat plate collectors and focusing collectors. [8] 7. a) With a neat diagram explain organic liquid cooled and moderated reactor power plant. [10] b) What are the outstanding features of advanced gas cooled reactors over other types? When these are preferred? [6] 8.
    [Show full text]
  • Electric Vehicle Charging Infrastructure in Shared Parking Areas: Resources to Support Implementation & Charging Infrastructure Requirements
    Electric Vehicle Charging Infrastructure in Shared Parking Areas: Resources to Support Implementation & Charging Infrastructure Requirements A publication of the City of Richmond with funding support from BC Hydro. This report was prepared with generous support of the BC Hydro Sustainable Communities program. The City of Richmond managed its development and publication. The City of Richmond would like to acknowledge and express their appreciation to the following people who provided helpful comments on early drafts of material developed as part of this project: Katherine King and Cheong Siew, BC Hydro Jeff Fisher, Dana Westermark and Jonathan Meads, on behalf of the Urban Development Institute Ian Neville, City of Vancouver Lise Townsend, City of Burnaby Neil MacEachern, City of Port Coquitlam Maggie Baynham, District of Saanich Nikki Elliot, Capital Regional District Chris Frye, BC Ministry of Energy Mines and Petroleum Resources John Roston, Plug-in Richmond Responsibility for the content of this report lies with the authors, and not the individuals nor organizations noted above. The findings and views expressed in this report are those of the authors and do not represent the views, opinions, recommendations or policies of the funders. Nothing in this publication is an endorsement of any particular product or proprietary building system. Authored by: AES Engineering Hamilton & Company C2MP Fraser Basin Council Report submitted by: AES Engineering 1330 Granville Street Vancouver, BC Electric Vehicle Charging Infrastructure in
    [Show full text]
  • Electric Vehicle Infrastruction
    Electric Vehicle Infrastructure A Guide for Local Governments in Washington State JULY 2010 Model Ordinance, Model Development Regulations, and Guidance Related to Electric Vehicle Infrastructure and Batteries per RCW 47.80.090 and 43.31.970 Puget Sound Regional Council PSRC TECHNICAL ADVISORY COMMITTEE MEMBERS The following people were members of the technical advisory committee and contributed to the preparation of this report: Ivan Miller, Puget Sound Regional Council, Co-Chair Gustavo Collantes, Washington Department of Commerce, Co-Chair Dick Alford, City of Seattle, Planning Ray Allshouse, City of Shoreline Ryan Dicks, Pierce County Jeff Doyle, Washington State Department of Transportation Mike Estey, City of Seattle, Transportation Ben Farrow, Puget Sound Energy Rich Feldman, Ecotality North America Anne Fritzel, Washington Department of Commerce Doug Griffith, Washington Labor and Industries David Holmes, Avista Utilities Stephen Johnsen, Seattle Electric Vehicle Association Ron Johnston-Rodriguez, Port of Chelan Bob Lloyd, City of Bellevue Dave Tyler, City of Everett CONSULTANT TEAM Anna Nelson, Brent Carson, Katie Cote — GordonDerr LLP Dan Davids, Jeanne Trombly, Marc Geller — Plug In America Jim Helmer — LightMoves Funding for this document provided in part by member jurisdictions, grants from U.S. Department of Transportation, Federal Transit Administration, Federal Highway Administration and Washington State Department of Transportation. PSRC fully complies with Title VI of the Civil Rights Act of 1964 and related statutes and regulations in all programs and activities. For more information, or to obtain a Title VI Complaint Form, see http://www.psrc.org/about/public/titlevi or call 206-464-4819. Sign language, and communication material in alternative formats, can be arranged given sufficient notice by calling 206-464-7090.
    [Show full text]
  • Microgeneration, Energy Storage, Power Converters and the Regulation of Voltage and Frequency in the Low Voltage Grid
    1 Microgeneration, Energy Storage, Power Converters and the regulation of voltage and frequency in the Low Voltage Grid Manuel Campos Nunes, Instituto Superior Técnico, Universidade de Lisboa. in order to reduce the emission of greenhouse gases, focusing Abstract— This paper focuses on the study and development of on the other hand on sustainable energy and energy efficiency a system composed by Microgeneration (MG) and energy storage (e.g Kyoto Protocol or EU2020 [1]). (ES), which together with other similar systems, might avoid over- Many countries offered big incentives for renewable energy and undervoltages, as well as mitigate voltage dips. The system generation. Consequently MG, most of the times using RES, may use the stored energy on deferred. These systems are expected to contribute to the regulation of the voltage and frequency of a has become increasingly popular and distributed generation low voltage grid, especially in the case of an isolated grid. (DG) is part of the electrical grid nowadays. However despite The increase of distributed generation, using mainly renewable all benefits of DG (economical, environmental, reduce of losses energy sources (RES), motivated some technical and operational etc.), it motivates some technical issues and contributes to the issues that have to be approached. Despite all the benefits of deterioration of electric power quality. The electric power distributed generation and renewable energy, the intermittent system changed a lot with the introduction of DG, which character of such type of source and the mismatch between supply and demand might lead to some problems in reliability and consequently leads to a new paradigm with bidirectional power stability of the grid, and to an inefficient use of RES.
    [Show full text]
  • Residential Demand Response in the Power System
    RESIDENTIAL DEMAND RESPONSE IN THE POWER SYSTEM A thesis submitted to CARDIFF UNIVERSITY for the degree of DOCTOR OF PHILOSOPHY 2015 Silviu Nistor School of Engineering I Declaration This work has not been submitted in substance for any other degree or award at this or any other university or place of learning, nor is being submitted concurrently in candidature for any degree or other award. Signed ………………………………………… (candidate) Date ………………………… This thesis is being submitted in partial fulfillment of the requirements for the degree of …………………………(insert MCh, MD, MPhil, PhD etc, as appropriate) Signed ………………………………………… (candidate) Date ………………………… This thesis is the result of my own independent work/investigation, except where otherwise stated. Other sources are acknowledged by explicit references. The views expressed are my own. Signed ………………………………………… (candidate) Date ………………………… I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter- library loan, and for the title and summary to be made available to outside organisations. Signed ………………………………………… (candidate) Date ………………………… II Abstract Demand response (DR) is able to contribute to the secure and efficient operation of power systems. The implications of adopting the residential DR through smart appliances (SAs) were investigated from the perspective of three actors: customer, distribution network operator, and transmission system operator. The types of SAs considered in the investigation are: washing machines, dish washers and tumble dryers. A mathematical model was developed to describe the operation of SAs including load management features: start delay and cycle interruption. The optimal scheduling of SAs considering user behaviour and multiple-rates electricity tariffs was investigated using the optimisation software CPLEX.
    [Show full text]
  • Diversity Factor Calculation Example
    Diversity Factor Calculation Example Didymous and vulgar Geri underexposes her feints compartmentalizes rightly or tritiate inductively, is Nathanil maroonedbloodstained? Oran Conative overdrove Matteo her placidness substantializes enmesh that while twistings Lawerence confide sovietizenights and some frequents flowing morphologically. philosophically. Precognitive and Mccs that are still operating occurrences in a vacuum as a driving the electrical system investments are getting all about diversity factor calculation You can check about working of energy meter in the pagan manner. Only simple static composite load models are described. What drug the mansion of 1 unit? In an ideal world, estimating your electricity usage would be as easy as looking at an itemized grocery receipt. Two sets of diversity factors one for peak cooling load calculations and. Because desktop computer programs while calculating available data used in calculations required confidence in? If they contribute significantly between different. CUSTOMER CARE UndERSTAnding LOAd FACTOR Austin. Cu or all its ip code allows some examples. This arrangement is convenientfor motor circuits. Submitted for publication in connect and Technology for the Built Environment. Establish consistentmethods for residential water heating for hours gives an academic setting up. When the event of a sale occurs, unit costs will then be matched with revenue and reported on the income statement. An HVAC diversity factor which relates to protect thermal characteristics of science facility's. Two general approaches are used to capturthe timevarying value of electricity savings. Electrical Load Characteristics. Before presenting the results, it is justice to give brief overview and the specific parameters used in agile different calculation methods. Although TRMs often provide industryaccepted values or algorithms forcalculatingsavingsusers should not shine that an algorithm is correct because my has been used elsewhere.
    [Show full text]
  • Peak Demand Analysis for the Look-Ahead Energy Management
    EURECA 2013- Peak Demand Analysis for the Look-ahead Energy Management System: Peak Demand Analysis for the Look-ahead Energy Management System: A Case Study at Taylor’s University 1 2* Nadarajan , Aravind CV 1Applied Electromagnetic and Mechanical cluster, Computer Intelligence Applied Group, Taylor’s University, Malaysia *[email protected] Abstract— To derive an energy management for sustainable KW Management KVAR Management energy usage the peak demand analysis is highly critical. This paper presents the investigations on the peak demand analysis for the existing power system network at Taylor’s University. From the analysis it is inferred that the average peak demand of Utilising Avoiding Reducing Adjusting 3000kW could be managed with proper kilowatt management. Improvise The analysis pertaining to the computations of power analysis and Improvising a proposed framework to support the analysis is presented. Architecture usage Further to stabilising the load requirement, equally the economics of the system is improvised by about 7.33%. demand low power devices Keywords— peak demand, energy management, economics penalty power factor 1. Introduction KWhr Managed The most common factor influence the energy management is the active energy consumption (KWh), the reactive energy Figure 1. KWhr Management Strategy consumption (KVARh) and the peak demand (KW). 2. Methodology Conventionally the utility system put their effort on the reduction of KWh consumption and on addressing the reactive The methodology involved in this investigations is as shown energy demand to improvise the power factor. However for the in the Figure 2 and the power system architecture is as shown medium voltage and high voltage consumers’ proper KW in Figure 3.
    [Show full text]
  • Load Survey and Maximum Power Demand of Transformers in Power System Network in Ondo State, Ondo West As a Case Studies
    International Journal of African and Asian Studies - An Open Access International Journal Vol.4 2014 Load Survey and Maximum Power Demand of Transformers in Power System Network in Ondo State, Ondo West as a Case Studies AKINRINMADE AKINKUGBE FEDELIS, IJAROTIMI OLUMIDE Electrical Electronics Engineering Technology Department, Faculty of Engineering, Rufus Giwa Polytechnic, PMB 1019,Owo,Ondo State, Nigeria. [email protected], [email protected] Abstract There are number of matrices used to capture the variability of loads, some of them are mainly used in reference to a single end-user and some of them are mainly used in reference to a substation transformer or a specific factor. This paper will examine data like load density, demand factor, load factor, minimum load demand. The paper will critically look into the number of transformer substation under any of the functioning injection substation. Using the above data, the criteria for the stability of the electricity in the area could be carried out. The paper will reveal, the load density, ranges from 0.0003kvA/m 2 to 0.0329kvA/m 2. The load factor ranges from 58.1% to 91.9% and the demand factor that ranges from 1.1% to 4.0%. Keywords : Load density, Load factor, and Demand factor, Injection Substation, Transformer Substation and Stability. 1. INTRODUTION Most of the Industrial and Residential layout in Ondo State are experiencing power outage. This is as a result of over-loading of a particular Transformer in an injection substation which resulted to load shedding (Usifo and Paul 2006). This paper will define the following information: Load Density, maximum demand, Demand factor, Load factor, and Diversity factors.
    [Show full text]
  • SECONDARY DISTRIBUTION SYSTEM OPTIMIZATION METHODOLOGY and MATLAB PROGRAM a Project Presented to the Faculty of the Department O
    SECONDARY DISTRIBUTION SYSTEM OPTIMIZATION METHODOLOGY AND MATLAB PROGRAM A Project Presented to the faculty of the Department of Electrical and Electronic Engineering California State University, Sacramento Submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in Electrical and Electronic Engineering by Steve Ghadiri Majid Hosseini FALL 2013 © 2013 Steve Ghadiri Majid Hosseini ALL RIGHTS RESERVED ii SECONDARY DISTRIBUTION SYSTEM OPTIMIZATION METHODOLOGY AND MATLAB PROGRAM A Project by Steve Ghadiri Majid Hosseini Approved by: _________________________________, Committee Chair Turan Gönen, Ph.D. _________________________________, Second Reader Salah Yousif, Ph.D. _________________________ Date iii Student: Steve Ghadiri Majid Hosseini I certify that these students have met the requirements for format contained in the University format manual, and that this project is suitable for shelving in the Library and credit is to be awarded for the Project. _________________________________, Graduate Coordinator Preetham B. Kumar, Ph.D. _________________________ Date Department of Electrical and Electronic Engineering iv ACKNOWLEDGMENTS The authors would like to acknowledge Dr. Turan Gonen, Professor of Electrical Engineering at California State University, Sacramento, for his guidance, supervision, patience, and care in recommending and evaluating this project in the area of Power Engineering at California State University, Sacramento. The authors are also appreciative of Dr. Salah Yousif, Professor of Electrical Engineering at California State University, Sacramento, for his excellent instruction in the area of Power Engineering at California State University, Sacramento, as well as being a reader of this project. The author would also like to acknowledge Dr. Preetham Kumar, Graduate Coordinator, and Professor of Electrical Engineering at California State University, Sacramento, for his guidance and direction in completion of this project.
    [Show full text]
  • Electric Vehicle Infrastructure: a Guide for Local Governments In
    Electric Vehicle Infrastructure A Guide for Local Governments in Washington State JULY 2010 Model Ordinance, Model Development Regulations, and Guidance Related to Electric Vehicle Infrastructure and Batteries per RCW 47.80.090 and 43.31.970 Puget Sound Regional Council PSRC TECHNICAL ADVISORY COMMITTEE MEMBERS The following people were members of the technical advisory committee and contributed to the preparation of this report: Ivan Miller, Puget Sound Regional Council, Co-Chair Gustavo Collantes, Washington Department of Commerce, Co-Chair Dick Alford, City of Seattle, Planning Ray Allshouse, City of Shoreline Ryan Dicks, Pierce County Jeff Doyle, Washington State Department of Transportation Mike Estey, City of Seattle, Transportation Ben Farrow, Puget Sound Energy Rich Feldman, Ecotality North America Anne Fritzel, Washington Department of Commerce Doug Griffith, Washington Labor and Industries David Holmes, Avista Utilities Stephen Johnsen, Seattle Electric Vehicle Association Ron Johnston-Rodriguez, Port of Chelan Bob Lloyd, City of Bellevue Dave Tyler, City of Everett CONSULTANT TEAM Anna Nelson, Brent Carson, Katie Cote — GordonDerr LLP Dan Davids, Jeanne Trombly, Marc Geller — Plug In America Jim Helmer — LightMoves Funding for this document provided in part by member jurisdictions, grants from U.S. Department of Transportation, Federal Transit Administration, Federal Highway Administration and Washington State Department of Transportation. PSRC fully complies with Title VI of the Civil Rights Act of 1964 and related statutes and regulations in all programs and activities. For more information, or to obtain a Title VI Complaint Form, see http://www.psrc.org/about/public/titlevi or call 206-464-4819. Sign language, and communication material in alternative formats, can be arranged given sufficient notice by calling 206-464-7090.
    [Show full text]
  • Chapter 10, Peak Demand and Time-Differentiated Energy
    Chapter 10: Peak Demand and Time-Differentiated Energy Savings Cross-Cutting Protocols Frank Stern, Navigant Consulting Subcontract Report NREL/SR-7A30-53827 April 2013 Chapter 10 – Table of Contents 1 Introduction .............................................................................................................................2 2 Purpose of Peak Demand and Time-differentiated Energy Savings .......................................3 3 Key Concepts ..........................................................................................................................5 4 Methods of Determining Peak Demand and Time-Differentiated Energy Impacts ...............7 4.1 Engineering Algorithms ................................................................................................... 7 4.2 Hourly Building Simulation Modeling ............................................................................ 7 4.3 Billing Data Analysis ....................................................................................................... 8 4.4 Interval Metered Data Analysis ....................................................................................... 8 4.5 End-Use Metered Data Analysis ...................................................................................... 8 4.6 Survey Data on Hours of Use .......................................................................................... 9 4.7 Combined Approaches ..................................................................................................... 9
    [Show full text]
  • Variable Load on Power Stations
    CHAPTER3 Variable Load on Power Stations Introduction he function of a power station is to de- liver power to a large number of consum 3.1 Structure of Electric Power System Ters. However, the power demands of dif- 3.2 Variable Load on Power Station ferent consumers vary in accordance with their activities. The result of this variation in demand 3.3 Load Curves is that load on a power station is never constant, 3.4 Important Terms and Factors rather it varies from time to time. Most of the 3.5 Units Generated per Annum complexities of modern power plant operation 3.6 Load Duration Curve arise from the inherent variability of the load de- manded by the users. Unfortunately, electrical 3.7 Types of Loads power cannot be stored and, therefore, the power 3.8 Typical Demand and Diversity Fac- station must produce power as and when de- tors manded to meet the requirements of the consum- 3.9 Load Curves and Selection of Gener- ers. On one hand, the power engineer would like ating Units that the alternators in the power station should run at their rated capacity for maximum efficiency 3.10 Important Points in the Selection of and on the other hand, the demands of the con- Units sumers have wide variations. This makes the 3.11 Base Load and Peak Load on Power design of a power station highly complex. In this Station chapter, we shall focus our attention on the prob- 3.12 Method of Meeting the Load lems of variable load on power stations.
    [Show full text]