Residential Demand Response in the Power System

Total Page:16

File Type:pdf, Size:1020Kb

Residential Demand Response in the Power System RESIDENTIAL DEMAND RESPONSE IN THE POWER SYSTEM A thesis submitted to CARDIFF UNIVERSITY for the degree of DOCTOR OF PHILOSOPHY 2015 Silviu Nistor School of Engineering I Declaration This work has not been submitted in substance for any other degree or award at this or any other university or place of learning, nor is being submitted concurrently in candidature for any degree or other award. Signed ………………………………………… (candidate) Date ………………………… This thesis is being submitted in partial fulfillment of the requirements for the degree of …………………………(insert MCh, MD, MPhil, PhD etc, as appropriate) Signed ………………………………………… (candidate) Date ………………………… This thesis is the result of my own independent work/investigation, except where otherwise stated. Other sources are acknowledged by explicit references. The views expressed are my own. Signed ………………………………………… (candidate) Date ………………………… I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter- library loan, and for the title and summary to be made available to outside organisations. Signed ………………………………………… (candidate) Date ………………………… II Abstract Demand response (DR) is able to contribute to the secure and efficient operation of power systems. The implications of adopting the residential DR through smart appliances (SAs) were investigated from the perspective of three actors: customer, distribution network operator, and transmission system operator. The types of SAs considered in the investigation are: washing machines, dish washers and tumble dryers. A mathematical model was developed to describe the operation of SAs including load management features: start delay and cycle interruption. The optimal scheduling of SAs considering user behaviour and multiple-rates electricity tariffs was investigated using the optimisation software CPLEX. Further, the financial benefits for SA users subscribing to multiple-rates electricity tariffs were investigated. The savings are mainly a result of the appliances’ load shifting feature and are sensitive to user settings. The savings averaged at 7% of the household annual electricity bill. For households in the United Kingdom, the SAs had a payback period of less than three years and a net present value of up to £206. Furthermore, the operation of distribution networks with different uptake rates of SAs was investigated. A simulation containing a load modelling method and a network model determines, through time series power flow analysis, the network branch loading and voltage profile. The thermal ratings and voltage limits were exceeded on the LV network due to deterioration in the temporal diversity of the appliance utilisation. A regional controller for SAs was developed which effectively limited the network peak demand and voltage drop. A framework was introduced which enabled transmission system operators to access demand response from SAs in a timeframe suitable for operating reserve. A multiple time-step simulation was developed that assessed the load reduction from a number of households as a response to a reserve instruction. The instruction was modelled as a price increase with a short notification period. It was estimated that up to half of the current operating reserve requirements of Great Britain’s power system can be obtained with 20% uptake of SAs. III Acknowledgements This thesis would not have been possible without the support of a number of individuals who have helped me throughout. To them I wish to offer my sincere gratitude. First, to my supervisors who have truly been my guides in this endeavour: Dr Jianzhong Wu, for his research ideas and general enthusiasm for distribution systems; Dr Janaka Ekanayake, for sharing his knowledge of power systems; and Dr Mahesh Sooriyabandara whose feedback always included the dimension of practicality. Special thanks to Professor Nick Jenkins, for his advice and healthy pragmatism. To my colleagues from the research group, for creating the perfect environment for sharing ideas: Mr George O’Malley for his IT knowledge, Ms Meng Cheng and Mr Lee Thomas for the discussions on the Demand Response topic. Special thanks to Mr Brian Drysdale who offered his invaluable help in proofreading this thesis. To my brother Iulian, who has encouraged me from the beginning. Finally, I wish to thank my wife Adina who has been on my side throughout this journey and with whom I eagerly anticipate the future ones. IV Table of Contents Abstract ...................................................................................................................................... III Acknowledgements .................................................................................................................... IV Table of Contents ....................................................................................................................... V List of Figures ......................................................................................................................... VIII List of Tables .............................................................................................................................. X Abbreviations ............................................................................................................................. XI 1 Introduction ......................................................................................................................... 1 1.1 Research context ........................................................................................................... 2 1.2 Current demand response practices ............................................................................... 4 1.3 Services provided by smart appliances ....................................................................... 10 1.3.1 Peak load shifting ................................................................................................ 11 1.3.2 Balancing services ............................................................................................... 13 1.3.3 Distribution network support............................................................................... 14 1.4 Modelling of smart appliances operation .................................................................... 16 1.4.1 Optimisation ........................................................................................................ 18 1.4.2 Other methods ..................................................................................................... 19 1.5 Research objectives and thesis structure ..................................................................... 21 1.6 Publications and achievements .................................................................................... 24 2 Smart Grid ready appliances ........................................................................................... 25 2.1 Introduction ................................................................................................................. 26 2.2 Load profiles ............................................................................................................... 27 2.3 Load management ....................................................................................................... 32 2.3.1 Smart timing ........................................................................................................ 32 2.3.2 Cycle interruption ................................................................................................ 33 2.4 User dependent parameters ......................................................................................... 34 2.4.1 Activation times .................................................................................................. 34 2.4.2 Maximum delay ................................................................................................... 36 2.5 Shifting algorithm ....................................................................................................... 37 2.5.1 Optimisation ........................................................................................................ 37 2.5.2 Execution of the shifting algorithm ..................................................................... 42 2.6 Model validation ......................................................................................................... 45 2.7 Overview of the simulation environment .................................................................... 48 3 Financial analysis for smart appliances users ................................................................ 50 3.1 Introduction ................................................................................................................. 51 V 3.2 Electricity tariffs .......................................................................................................... 51 3.3 Effects of parameters on household savings ............................................................... 55 3.3.1 Number of residents ............................................................................................ 56 3.3.2 Maximum delay ................................................................................................... 57 3.3.3 Cycle interruption ................................................................................................ 58 3.4 Annual savings for a group of one thousand GB households ..................................... 59 3.4.1 Electricity cost savings .......................................................................................
Recommended publications
  • Microgeneration, Energy Storage, Power Converters and the Regulation of Voltage and Frequency in the Low Voltage Grid
    1 Microgeneration, Energy Storage, Power Converters and the regulation of voltage and frequency in the Low Voltage Grid Manuel Campos Nunes, Instituto Superior Técnico, Universidade de Lisboa. in order to reduce the emission of greenhouse gases, focusing Abstract— This paper focuses on the study and development of on the other hand on sustainable energy and energy efficiency a system composed by Microgeneration (MG) and energy storage (e.g Kyoto Protocol or EU2020 [1]). (ES), which together with other similar systems, might avoid over- Many countries offered big incentives for renewable energy and undervoltages, as well as mitigate voltage dips. The system generation. Consequently MG, most of the times using RES, may use the stored energy on deferred. These systems are expected to contribute to the regulation of the voltage and frequency of a has become increasingly popular and distributed generation low voltage grid, especially in the case of an isolated grid. (DG) is part of the electrical grid nowadays. However despite The increase of distributed generation, using mainly renewable all benefits of DG (economical, environmental, reduce of losses energy sources (RES), motivated some technical and operational etc.), it motivates some technical issues and contributes to the issues that have to be approached. Despite all the benefits of deterioration of electric power quality. The electric power distributed generation and renewable energy, the intermittent system changed a lot with the introduction of DG, which character of such type of source and the mismatch between supply and demand might lead to some problems in reliability and consequently leads to a new paradigm with bidirectional power stability of the grid, and to an inefficient use of RES.
    [Show full text]
  • Diversity Factor Calculation Example
    Diversity Factor Calculation Example Didymous and vulgar Geri underexposes her feints compartmentalizes rightly or tritiate inductively, is Nathanil maroonedbloodstained? Oran Conative overdrove Matteo her placidness substantializes enmesh that while twistings Lawerence confide sovietizenights and some frequents flowing morphologically. philosophically. Precognitive and Mccs that are still operating occurrences in a vacuum as a driving the electrical system investments are getting all about diversity factor calculation You can check about working of energy meter in the pagan manner. Only simple static composite load models are described. What drug the mansion of 1 unit? In an ideal world, estimating your electricity usage would be as easy as looking at an itemized grocery receipt. Two sets of diversity factors one for peak cooling load calculations and. Because desktop computer programs while calculating available data used in calculations required confidence in? If they contribute significantly between different. CUSTOMER CARE UndERSTAnding LOAd FACTOR Austin. Cu or all its ip code allows some examples. This arrangement is convenientfor motor circuits. Submitted for publication in connect and Technology for the Built Environment. Establish consistentmethods for residential water heating for hours gives an academic setting up. When the event of a sale occurs, unit costs will then be matched with revenue and reported on the income statement. An HVAC diversity factor which relates to protect thermal characteristics of science facility's. Two general approaches are used to capturthe timevarying value of electricity savings. Electrical Load Characteristics. Before presenting the results, it is justice to give brief overview and the specific parameters used in agile different calculation methods. Although TRMs often provide industryaccepted values or algorithms forcalculatingsavingsusers should not shine that an algorithm is correct because my has been used elsewhere.
    [Show full text]
  • Q Demand Factor Is Defined As a Object Oriented Design Always Dominates the Structural Design a Maximum Demand X Connected Load
    These are sample MCQs to indicate pattern, may or may not appear in examination G.M. VEDAK INSTITUTE OF TECHNOLOGY Program: Mechanical Engineering Curriculum Scheme: Revised 2016 Examination: Final Year Semester VIII Course Code:MEDLO8041 and Course Name: PPE Time: 1 hour Max. Marks: 50 Q Demand factor is defined as A Object oriented design always dominates the structural design A Maximum demand X Connected load A Maximum demand/ Connected laod A Connected laod/Maximum demand Q Load factor is defined as A Average load/Maximum demand A Average load X Maximum demand A Maximum demand/Average laod A Maximum demand X Connected load Q Diversity factor is always A Equal to unity A More than unity A More than than twenty A Less than unity Q Load factor for heavy industries may be taken as A 10 to 15% A 15 to 40% A 50 to 70% A 70 to 80% Q Which of the following is not suitable to use as peak plant? A Hydroelectric power plant A Gas power plant A Diesel elected plant A Nuclear power plant Q Which of the following power plant cannot be used as base load plant? A Diesel power plant A Hydroelectric power plant A Nuclear power plant A Thermal power plant The system supplying base and peak loads will be more economical if power is supplied by _________ Q A Only gas turbine power plant A Only thermal power plant A Only Diesel power plant A Combined operation of various power plants Q Load factor of power station is generally A Less then unity A Equal to unity A More than unity A More than Ten Q Diversity factor is defined as A Sum of individual maximum demands/Maximum demand of entire group A Maximum demand of entire group/Sum of individual maximum demands A Maximum demand of entire group X Sum of individual maximum demands A Maximum demand of entire group + Sum of individual maximum demands Q In order to have lower cost of electrical energy generation A The load factor and diversity factor should be low.
    [Show full text]
  • Greenwashing Vs. Renewable Energy Generation
    Greenwashing Vs. Renewable energy generation: which energy companies are making a real difference? Tackling the climate crisis requires that we reduce the UK’s carbon footprint. As individuals an important way we can do this is to reduce our energy use. This reduces our carbon footprints. We can also make sure: • All the electricity we use is generated renewably in the UK. • The energy company we give our money to only deals in renewable electricity. • That the company we are with actively supports the development of new additional renewable generation in the UK. 37% of UK electricity now comes from renewable energy, with onshore and offshore wind generation rising by 7% and 20% respectively since 2018. However, we don’t just need to decarbonise 100% of our electricity. If we use electricity for heating and transport, we will need to generate much more electricity – and the less we use, the less we will need to generate. REGOs/GoOs – used to greenwash. This is how it works: • If an energy generator (say a wind or solar farm) generates one megawatt hour of electricity they get a REGO (Renewable Energy Guarantee of Origin). • REGOs are mostly sold separately to the actual energy generated and are extremely cheap – about £1.50 for a typical household’s annual energy use. • This means an energy company can buy a megawatt of non-renewable energy, buy a REGO for one megawatt of renewable energy (which was actually bought by some other company), and then claim their supply is renewable even though they have not supported renewable generation in any way.
    [Show full text]
  • Consumer Experiences of Time of Use Tariffs Report Prepared for Consumer Focus
    Consumer Experiences Of Time of Use Tariffs Report prepared for Consumer Focus Contents Executive Summary ........................................................................ i Introduction .................................................................................... 1 Background ................................................................................................ 1 Time of Use Tariffs ..................................................................................... 1 Research objectives ................................................................................... 2 Methodology............................................................................................... 4 Consumer profile ........................................................................... 7 Type of ToU tariff ....................................................................................... 7 Type of home heating ................................................................................ 8 Home tenure and housing type .................................................................. 9 Social grade ............................................................................................. 10 Household income and sources of income .............................................. 11 Age profile ................................................................................................ 13 Regional distribution ................................................................................. 14 Payment method for electricity
    [Show full text]
  • Energy Prices and Bills - Impacts of Meeting Carbon Budgets | Committee on Climate Change
    Acknowledgements The Committee would like to thank: The team that prepared the analysis for this report: Matthew Bell, Adrian Gault, Taro Hallworth, Mike Hemsley, Eric Ling, Mike Thompson and Emma Vause. Other members of the Secretariat who contributed to this report: Jo Barrett, Amber Dale, Aaron Goater, Jenny Hill, David Joffe, Sarah Livermore, David Parkes and Indra Thillainathan. A number of organisations and individuals for their support, including Ofgem, the Department for Business, Energy and Industrial Strategy and the Environment Agency. A number of stakeholders who engaged with us through bilateral meetings and correspondence, including Cambridge Architectural Research, Citizen’s Advice and Energy Savings Trust. 2 Energy prices and bills - impacts of meeting carbon budgets | Committee on Climate Change Contents The Committee 4-6 ________________________________________________________________ Executive Summary 7-12 ________________________________________________________________ Chapter 1: Household energy bills 13-54 ________________________________________________________________ Chapter 2: Business energy prices and bills 55-87 ________________________________________________________________ Chapter 3: Maintaining UK competitiveness in a low-carbon economy 88-118 Executive Summary 3 The Committee The Rt. Hon John Gummer, Lord Deben, Chairman The Rt. Hon John Gummer, Lord Deben, was the Minister for Agriculture, Fisheries and Food between 1989 and 1993 and the longest serving Secretary of State for the Environment the UK has ever had. His sixteen years of top-level ministerial experience also include Minister for London, Employment Minister and Paymaster General in HM Treasury. He has consistently championed an identity between environmental concerns and business sense. To that end, he set up and now runs Sancroft, a Corporate Responsibility consultancy working with blue-chip companies around the world on environmental, social and ethical issues.
    [Show full text]
  • The Evolution of Electricity Demand and the Role for Demand Side Participation, in Buildings and Transport
    Energy Policy 52 (2013) 85–102 Contents lists available at SciVerse ScienceDirect Energy Policy journal homepage: www.elsevier.com/locate/enpol The evolution of electricity demand and the role for demand side participation, in buildings and transport John Barton a, Sikai Huang b, David Infield b, Matthew Leach c, Damiete Ogunkunle c, Jacopo Torriti d, Murray Thomson a,n a Centre for Renewable Energy Systems Technology, Loughborough University, Loughborough, LE11 3TU, UK b Institute of Energy and Environment, University of Strathclyde, Glasgow, G1 1XW, UK c Centre for Environmental Strategy, University of Surrey, Guildford, GU27XH, UK d School of Construction Management and Engineering, University of Reading, Reading, RG6 6AY, UK HIGHLIGHTS c Evolution of UK electricity demand along 3 potential low carbon Transition Pathways. c Electrification of demand through the uptake of heat pumps and electric vehicles. c Hourly balancing of electricity supply and demand in a low carbon future. c Demand side participation to avoid low capacity factor conventional generation. c Transition Pathways to an 80% reduction in UK operational CO2 emissions by 2050. article info abstract Article history: This paper explores the possible evolution of UK electricity demand as we move along three potential Received 16 November 2011 transition pathways to a low carbon economy in 2050. The shift away from fossil fuels through the Accepted 16 August 2012 electrification of demand is discussed, particularly through the uptake of heat pumps and electric Available online 18 September 2012 vehicles in the domestic and passenger transport sectors. Developments in the way people and Keywords: institutions may use energy along each of the pathways are also considered and provide a rationale for Transition the quantification of future annual electricity demands in various broad sectors.
    [Show full text]
  • Load Survey and Maximum Power Demand of Transformers in Power System Network in Ondo State, Ondo West As a Case Studies
    International Journal of African and Asian Studies - An Open Access International Journal Vol.4 2014 Load Survey and Maximum Power Demand of Transformers in Power System Network in Ondo State, Ondo West as a Case Studies AKINRINMADE AKINKUGBE FEDELIS, IJAROTIMI OLUMIDE Electrical Electronics Engineering Technology Department, Faculty of Engineering, Rufus Giwa Polytechnic, PMB 1019,Owo,Ondo State, Nigeria. [email protected], [email protected] Abstract There are number of matrices used to capture the variability of loads, some of them are mainly used in reference to a single end-user and some of them are mainly used in reference to a substation transformer or a specific factor. This paper will examine data like load density, demand factor, load factor, minimum load demand. The paper will critically look into the number of transformer substation under any of the functioning injection substation. Using the above data, the criteria for the stability of the electricity in the area could be carried out. The paper will reveal, the load density, ranges from 0.0003kvA/m 2 to 0.0329kvA/m 2. The load factor ranges from 58.1% to 91.9% and the demand factor that ranges from 1.1% to 4.0%. Keywords : Load density, Load factor, and Demand factor, Injection Substation, Transformer Substation and Stability. 1. INTRODUTION Most of the Industrial and Residential layout in Ondo State are experiencing power outage. This is as a result of over-loading of a particular Transformer in an injection substation which resulted to load shedding (Usifo and Paul 2006). This paper will define the following information: Load Density, maximum demand, Demand factor, Load factor, and Diversity factors.
    [Show full text]
  • SECONDARY DISTRIBUTION SYSTEM OPTIMIZATION METHODOLOGY and MATLAB PROGRAM a Project Presented to the Faculty of the Department O
    SECONDARY DISTRIBUTION SYSTEM OPTIMIZATION METHODOLOGY AND MATLAB PROGRAM A Project Presented to the faculty of the Department of Electrical and Electronic Engineering California State University, Sacramento Submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in Electrical and Electronic Engineering by Steve Ghadiri Majid Hosseini FALL 2013 © 2013 Steve Ghadiri Majid Hosseini ALL RIGHTS RESERVED ii SECONDARY DISTRIBUTION SYSTEM OPTIMIZATION METHODOLOGY AND MATLAB PROGRAM A Project by Steve Ghadiri Majid Hosseini Approved by: _________________________________, Committee Chair Turan Gönen, Ph.D. _________________________________, Second Reader Salah Yousif, Ph.D. _________________________ Date iii Student: Steve Ghadiri Majid Hosseini I certify that these students have met the requirements for format contained in the University format manual, and that this project is suitable for shelving in the Library and credit is to be awarded for the Project. _________________________________, Graduate Coordinator Preetham B. Kumar, Ph.D. _________________________ Date Department of Electrical and Electronic Engineering iv ACKNOWLEDGMENTS The authors would like to acknowledge Dr. Turan Gonen, Professor of Electrical Engineering at California State University, Sacramento, for his guidance, supervision, patience, and care in recommending and evaluating this project in the area of Power Engineering at California State University, Sacramento. The authors are also appreciative of Dr. Salah Yousif, Professor of Electrical Engineering at California State University, Sacramento, for his excellent instruction in the area of Power Engineering at California State University, Sacramento, as well as being a reader of this project. The author would also like to acknowledge Dr. Preetham Kumar, Graduate Coordinator, and Professor of Electrical Engineering at California State University, Sacramento, for his guidance and direction in completion of this project.
    [Show full text]
  • Chapter 10, Peak Demand and Time-Differentiated Energy
    Chapter 10: Peak Demand and Time-Differentiated Energy Savings Cross-Cutting Protocols Frank Stern, Navigant Consulting Subcontract Report NREL/SR-7A30-53827 April 2013 Chapter 10 – Table of Contents 1 Introduction .............................................................................................................................2 2 Purpose of Peak Demand and Time-differentiated Energy Savings .......................................3 3 Key Concepts ..........................................................................................................................5 4 Methods of Determining Peak Demand and Time-Differentiated Energy Impacts ...............7 4.1 Engineering Algorithms ................................................................................................... 7 4.2 Hourly Building Simulation Modeling ............................................................................ 7 4.3 Billing Data Analysis ....................................................................................................... 8 4.4 Interval Metered Data Analysis ....................................................................................... 8 4.5 End-Use Metered Data Analysis ...................................................................................... 8 4.6 Survey Data on Hours of Use .......................................................................................... 9 4.7 Combined Approaches ..................................................................................................... 9
    [Show full text]
  • Variable Load on Power Stations
    CHAPTER3 Variable Load on Power Stations Introduction he function of a power station is to de- liver power to a large number of consum 3.1 Structure of Electric Power System Ters. However, the power demands of dif- 3.2 Variable Load on Power Station ferent consumers vary in accordance with their activities. The result of this variation in demand 3.3 Load Curves is that load on a power station is never constant, 3.4 Important Terms and Factors rather it varies from time to time. Most of the 3.5 Units Generated per Annum complexities of modern power plant operation 3.6 Load Duration Curve arise from the inherent variability of the load de- manded by the users. Unfortunately, electrical 3.7 Types of Loads power cannot be stored and, therefore, the power 3.8 Typical Demand and Diversity Fac- station must produce power as and when de- tors manded to meet the requirements of the consum- 3.9 Load Curves and Selection of Gener- ers. On one hand, the power engineer would like ating Units that the alternators in the power station should run at their rated capacity for maximum efficiency 3.10 Important Points in the Selection of and on the other hand, the demands of the con- Units sumers have wide variations. This makes the 3.11 Base Load and Peak Load on Power design of a power station highly complex. In this Station chapter, we shall focus our attention on the prob- 3.12 Method of Meeting the Load lems of variable load on power stations.
    [Show full text]
  • Predicting Winning and Losing Businesses When Changing Electricity Tariffs ⇑ Ramon Granell A, Colin J
    Applied Energy 133 (2014) 298–307 Contents lists available at ScienceDirect Applied Energy journal homepage: www.elsevier.com/locate/apenergy Predicting winning and losing businesses when changing electricity tariffs ⇑ Ramon Granell a, Colin J. Axon b,1, David C.H. Wallom a, a Oxford e-Research Centre, University of Oxford, 7 Keble Road, Oxford OX1 3QG, United Kingdom b School of Engineering and Design, Brunel University, Uxbridge, London UB8 3PH, United Kingdom highlights We have used a data set of 12,000 UK businesses representing 44 sectors. We used only 3 features to predict the winners and losers when switching tariffs. Machine learning classifiers need less data than regression models. Prediction accuracies of the winning and losing businesses of 80% were typical. We show how the accuracy varies with the amount of power demand data used. article info abstract Article history: By using smart meters, more data about how businesses use energy is becoming available to energy Received 4 April 2014 retailers (providers). This is enabling innovation in the structure and type of tariffs on offer in the energy Received in revised form 24 July 2014 market. We have applied Artificial Neural Networks, Support Vector Machines, and Naive Bayesian Accepted 25 July 2014 Classifiers to a data set of the electrical power use by 12,000 businesses (in 44 sectors) to investigate Available online 17 August 2014 predicting which businesses will gain or lose by switching between tariffs (a two-classes problem). We have used only three features of each company: their business sector, load profile category, and mean Keywords: power use.
    [Show full text]