Relationships Among Airborne Microbial Communities, Urban Land Uses and Vegetation Cover: Implications for Urban Planning and Human Health

Total Page:16

File Type:pdf, Size:1020Kb

Relationships Among Airborne Microbial Communities, Urban Land Uses and Vegetation Cover: Implications for Urban Planning and Human Health RELATIONSHIPS AMONG AIRBORNE MICROBIAL COMMUNITIES, URBAN LAND USES AND VEGETATION COVER: IMPLICATIONS FOR URBAN PLANNING AND HUMAN HEALTH by GWYNHWYFER MHUIREACH A DISSERTATION Presented to the Department of Landscape Architecture and the Graduate School of the University of Oregon in partial fulfillment of the requirements for the degree of Doctor of Philosophy June 2018 DISSERTATION APPROVAL PAGE Student: Gwynhwyfer Mhuireach Title: Relationships Among Airborne Microbial Communities, Urban Land Uses and Vegetation Cover: Implications for Urban Planning and Human Health This dissertation has been accepted and approved in partial fulfillment of the requirements for the Doctor of Philosophy degree in the Department of Landscape Architecture by: Bart R. Johnson Chairperson Jessica L. Green Core Member Roxi Thoren Core Member Deb Johnson-Shelton Core Member G.Z. Brown Institutional Representative and Sara D. Hodges Interim Vice Provost and Dean of the Graduate School Original approval signatures are on file with the University of Oregon Graduate School. Degree awarded June 2018 ii © 2018 Gwynhwyfer Mhuireach This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs (United States) License. iii DISSERTATION ABSTRACT Gwynhwyfer Mhuireach Doctor of Philosophy Department of Landscape Architecture June 2018 Title: Relationships Among Airborne Microbial Communities, Urban Land Uses and Vegetation Cover: Implications for Urban Planning and Human Health Variation in exposure to environmental microbial communities has been implicated in the etiology of allergies, asthma and other chronic and immune disorders. In particular, preliminary research suggests that exposure to a high diversity of microbes during early life, for example through living in highly vegetated environments like farms or forests, may have specific health benefits, including immune system development and stimulation. In the face of rapidly growing cities and potential reductions in urban greenspace, it is vital to clarify our understanding of the relationship between vegetation and microbial communities so that we can better design cities that support human health. To explore whether and how urban airborne bacterial communities vary with the amount and structural diversity of nearby vegetation, I used passive air sampling and culture-independent microbial DNA sequencing combined with more traditional landscape architecture tools, including geographic information systems (GIS) and remote sensing data. The results indicated that locations with little vegetation (i.e., paved parking lots) were marked by significantly different bacterial composition from areas that were heavily vegetated (parks and forests). These differences were largely driven by taxonomic groups and indicator species that were enriched at certain sites. My work also shows that regional agricultural activities during the summer may have a substantial effect on airborne bacterial communities in the Eugene-Springfield metropolitan area (Oregon), specifically through elevated abundance of Sphingomonas faeni, a taxon previously isolated from hay dust. The second part of my work focused on building a conceptual bridge between scientific findings and potential design principles that can be tested in practical application. I performed iv a narrative review of vegetation-health, vegetation-microbe, and microbe-health relationships, which formed the foundation of a framework to translate scientific findings into design-relevant concepts. Strengthening this linkage between science and design will help ensure that research questions are relevant to design practice and that new scientific knowledge is accessible to designers. This dissertation includes previously published and unpublished co-authored material. v Curriculum Vitae NAME OF AUTHOR: Gwynhwyfer Mhuireach GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED: University of Oregon, Eugene, Oregon University of Washington, Seattle, Washington DEGREES AWARDED: Doctor of Philosophy, Landscape Architecture, 2018, University of Oregon Master of Science, Architecture, 2012, University of Oregon. Bachelor of Science, Biology (Ecology, Evolution and Conservation Track), 1999, University of Washington. AREAS OF SPECIAL INTEREST: Microbial Ecology Environmental Health PROFESSIONAL EXPERIENCE: Graduate Teaching Fellowship, Department of Landscape Architecture, 2012 - 2017. Graduate Research Fellowship, Energy Studies in Buildings Laboratory, 2012 - 2017. GRANTS, AWARDS, AND HONORS: University of Oregon Dissertation Research Fellowship, 2017 Travel grant, Department of Defense Microbiome Symposium, US Air Force Academy, Colorado Springs, CO, 2017. Travel grant, National Academies of Science, 3rd Meeting of Microbiomes of the Built Environment Committee, Irvine, CA, 2016. National Academies Fellow, graduated from National Academies Summer Institute on Undergraduate Education, Eugene, OR June 2015. EPA Science To Achieve Results (STAR) Fellowship, 2014. Invited participant, Evolution of Built Environment Microbiome Working Group, National Evolutionary Synthesis Center, Raleigh, NC, 2013. vi Donna V. Sundberg Scholarship in Architecture, 2011. PUBLICATIONS: Mhuireach, G., Johnson, B. R., Altrichter, A. E., Ladau, J., Meadow, J. F., Pollard, K. S., & Green, J. L. (2016). Urban greenness influences airborne bacterial community composition. Sci Total Environ, 571, 680–687. Brown, G.Z., Kline, J., Mhuireach, G., Northcutt, D. and Stenson, J., (2016). Making microbiology of the built environment relevant to design. Microbiome, 4(1), p.1. Martin, L. J., Adams, R. I., Bateman, A., Bik, H. M., Hawks, J., Mhuireach, G., … Dunn, R. R. (2015). Evolution of the indoor biome. Trends in Ecology & Evolution, 30(4), 223–232. Kembel, S. W., Meadow, J. F., O’Connor, T. K., Mhuireach, G., Northcutt, D., Kline, J., … Green, J. L. (2014). Architectural Design Drives the Biogeography of Indoor Bacterial Communities. PLOS ONE, 9(1), e87093. Meadow, J. F., Altrichter, A. E., Kembel, S. W., Kline, J., Mhuireach, G., Moriyama, M., … Bohannan, B. J. M. (2013). Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source. Indoor Air, 24(1), 41–48. Mhuireach, G., Bohannan, B. J. M., Brown, G. Z., Green, J. L., Jones, E., Kembel, S. W., … Womack, A. M. (2012). The relationship between ventilation energy use and indoor microbial communities. In Proceedings of the 10th International Conference on Healthy Buildings. Brisbane, Australia. vii Acknowledgments I profoundly and sincerely appreciate the assistance of Professor Bart Johnson, without whose penetrating insight and sustained enthusiasm this project would never have been completed. Doctor Jessica Green, my co-advisor, deserves special thanks for her extraordinary wisdom and for always having my best interests in mind. I am deeply grateful to Professor Roxi Thoren for her wonderful advice and genuine interest in designing urban landscapes for microbes. I would like to recognize Doctor Deborah Johnson-Shelton, my friend and collaborator, with whom I look forward to many new research endeavors. Professor G.Z. Brown, my long-time mentor, started me on this path and has been a guiding light throughout my graduate career; I appreciate and honor him more than I can express. I wish to thank all of the members, past and present, of the Biology and Built Environment (BioBE) Center and the larger international community of researchers studying microbiology of the built environment, who almost feel like family after working together and meeting at conferences for so many years. In particular, I am grateful to James Meadow, Joshua Ladau, Adam Altrichter, Clarisse Betancourt-Román, for their assistance with the microbiology aspects of my project and their patience in teaching me DNA processing and bioinformatics skills. My heartfelt thanks also goes out to all of the Energy Studies in Buildings staff and researchers, with whom I’ve shared many wonderful (and some stressful) times throughout my graduate career. I am deeply beholden to Kevin Van Den Wymelenberg, Director of ESBL and Co-Director of BioBE, for continuing to consider me part of the team and offer support during the final stages of my PhD. I also gratefully acknowledge the assistance of numerous volunteers in collecting microbial samples, as well as the public and private landowners, including the City of Eugene Parks and Open Space and Willamalane Park and Recreation District, who permitted the collection of samples on their land. My research was supported by the Department of Landscape Architecture at the University of Oregon, by the Biology and Built Environment Center, which was funded through generous grants from the Alfred P. Sloan Foundation, and by a Science to Achieve Results (STAR) viii Fellowship, #91769501-0, from the US Environmental Protection Agency. ix To Lyric and Cadence, who have coped with my graduate studies throughout their early years. All my love. x Table OF Contents Chapter Page I. INTRODUCTION ......................................................................................................................1 II. URBAN GREENNESS INFLUENCES AIRBORNE BACTERIAL COMMUNITY COMPOSITION .........................................................................................8 1. Introduction ..................................................................................................................................8 2. Materials & Methods ..............................................................................................................
Recommended publications
  • Characterization of the Aerobic Anoxygenic Phototrophic Bacterium Sphingomonas Sp
    microorganisms Article Characterization of the Aerobic Anoxygenic Phototrophic Bacterium Sphingomonas sp. AAP5 Karel Kopejtka 1 , Yonghui Zeng 1,2, David Kaftan 1,3 , Vadim Selyanin 1, Zdenko Gardian 3,4 , Jürgen Tomasch 5,† , Ruben Sommaruga 6 and Michal Koblížek 1,* 1 Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 81 Tˇreboˇn,Czech Republic; [email protected] (K.K.); [email protected] (Y.Z.); [email protected] (D.K.); [email protected] (V.S.) 2 Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark 3 Faculty of Science, University of South Bohemia, 370 05 Ceskˇ é Budˇejovice,Czech Republic; [email protected] 4 Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 Ceskˇ é Budˇejovice,Czech Republic 5 Research Group Microbial Communication, Technical University of Braunschweig, 38106 Braunschweig, Germany; [email protected] 6 Laboratory of Aquatic Photobiology and Plankton Ecology, Department of Ecology, University of Innsbruck, 6020 Innsbruck, Austria; [email protected] * Correspondence: [email protected] † Present Address: Department of Molecular Bacteriology, Helmholtz-Centre for Infection Research, 38106 Braunschweig, Germany. Abstract: An aerobic, yellow-pigmented, bacteriochlorophyll a-producing strain, designated AAP5 Citation: Kopejtka, K.; Zeng, Y.; (=DSM 111157=CCUG 74776), was isolated from the alpine lake Gossenköllesee located in the Ty- Kaftan, D.; Selyanin, V.; Gardian, Z.; rolean Alps, Austria. Here, we report its description and polyphasic characterization. Phylogenetic Tomasch, J.; Sommaruga, R.; Koblížek, analysis of the 16S rRNA gene showed that strain AAP5 belongs to the bacterial genus Sphingomonas M. Characterization of the Aerobic and has the highest pairwise 16S rRNA gene sequence similarity with Sphingomonas glacialis (98.3%), Anoxygenic Phototrophic Bacterium Sphingomonas psychrolutea (96.8%), and Sphingomonas melonis (96.5%).
    [Show full text]
  • Metaproteogenomic Insights Beyond Bacterial Response to Naphthalene
    ORIGINAL ARTICLE ISME Journal – Original article Metaproteogenomic insights beyond bacterial response to 5 naphthalene exposure and bio-stimulation María-Eugenia Guazzaroni, Florian-Alexander Herbst, Iván Lores, Javier Tamames, Ana Isabel Peláez, Nieves López-Cortés, María Alcaide, Mercedes V. del Pozo, José María Vieites, Martin von Bergen, José Luis R. Gallego, Rafael Bargiela, Arantxa López-López, Dietmar H. Pieper, Ramón Rosselló-Móra, Jesús Sánchez, Jana Seifert and Manuel Ferrer 10 Supporting Online Material includes Text (Supporting Materials and Methods) Tables S1 to S9 Figures S1 to S7 1 SUPPORTING TEXT Supporting Materials and Methods Soil characterisation Soil pH was measured in a suspension of soil and water (1:2.5) with a glass electrode, and 5 electrical conductivity was measured in the same extract (diluted 1:5). Primary soil characteristics were determined using standard techniques, such as dichromate oxidation (organic matter content), the Kjeldahl method (nitrogen content), the Olsen method (phosphorus content) and a Bernard calcimeter (carbonate content). The Bouyoucos Densimetry method was used to establish textural data. Exchangeable cations (Ca, Mg, K and 10 Na) extracted with 1 M NH 4Cl and exchangeable aluminium extracted with 1 M KCl were determined using atomic absorption/emission spectrophotometry with an AA200 PerkinElmer analyser. The effective cation exchange capacity (ECEC) was calculated as the sum of the values of the last two measurements (sum of the exchangeable cations and the exchangeable Al). Analyses were performed immediately after sampling. 15 Hydrocarbon analysis Extraction (5 g of sample N and Nbs) was performed with dichloromethane:acetone (1:1) using a Soxtherm extraction apparatus (Gerhardt GmbH & Co.
    [Show full text]
  • Developing a Genetic Manipulation System for the Antarctic Archaeon, Halorubrum Lacusprofundi: Investigating Acetamidase Gene Function
    www.nature.com/scientificreports OPEN Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: Received: 27 May 2016 Accepted: 16 September 2016 investigating acetamidase gene Published: 06 October 2016 function Y. Liao1, T. J. Williams1, J. C. Walsh2,3, M. Ji1, A. Poljak4, P. M. G. Curmi2, I. G. Duggin3 & R. Cavicchioli1 No systems have been reported for genetic manipulation of cold-adapted Archaea. Halorubrum lacusprofundi is an important member of Deep Lake, Antarctica (~10% of the population), and is amendable to laboratory cultivation. Here we report the development of a shuttle-vector and targeted gene-knockout system for this species. To investigate the function of acetamidase/formamidase genes, a class of genes not experimentally studied in Archaea, the acetamidase gene, amd3, was disrupted. The wild-type grew on acetamide as a sole source of carbon and nitrogen, but the mutant did not. Acetamidase/formamidase genes were found to form three distinct clades within a broad distribution of Archaea and Bacteria. Genes were present within lineages characterized by aerobic growth in low nutrient environments (e.g. haloarchaea, Starkeya) but absent from lineages containing anaerobes or facultative anaerobes (e.g. methanogens, Epsilonproteobacteria) or parasites of animals and plants (e.g. Chlamydiae). While acetamide is not a well characterized natural substrate, the build-up of plastic pollutants in the environment provides a potential source of introduced acetamide. In view of the extent and pattern of distribution of acetamidase/formamidase sequences within Archaea and Bacteria, we speculate that acetamide from plastics may promote the selection of amd/fmd genes in an increasing number of environmental microorganisms.
    [Show full text]
  • Reconstructing the Origin of Oxygenic Photosynthesis: Do Assembly and Photoactivation Recapitulate Evolution?
    HYPOTHESIS AND THEORY published: 02 March 2016 doi: 10.3389/fpls.2016.00257 Reconstructing the Origin of Oxygenic Photosynthesis: Do Assembly and Photoactivation Recapitulate Evolution? Tanai Cardona * Department of Life Sciences, Imperial College London, London, UK Due to the great abundance of genomes and protein structures that today span a broad diversity of organisms, now more than ever before, it is possible to reconstruct the molecular evolution of protein complexes at an incredible level of detail. Here, I recount the story of oxygenic photosynthesis or how an ancestral reaction center was transformed into a sophisticated photochemical machine capable of water oxidation. First, I review the evolution of all reaction center proteins in order to highlight that Photosystem II and Photosystem I, today only found in the phylum Cyanobacteria, branched out very early in the history of photosynthesis. Therefore, it is very unlikely that they were acquired via horizontal gene transfer from any of the described phyla of Edited by: anoxygenic phototrophic bacteria. Second, I present a new evolutionary scenario for the Julian Eaton-Rye, origin of the CP43 and CP47 antenna of Photosystem II. I suggest that the antenna University of Otago, New Zealand proteins originated from the remodeling of an entire Type I reaction center protein and Reviewed by: Anthony William Larkum, not from the partial gene duplication of a Type I reaction center gene. Third, I highlight University of Technology, Sydney, how Photosystem II and Photosystem I reaction center proteins interact with small Australia Martin Hohmann-Marriott, peripheral subunits in remarkably similar patterns and hypothesize that some of this Norwegian University of Science and complexity may be traced back to the most ancestral reaction center.
    [Show full text]
  • Midas 4: a Global Catalogue of Full-Length 16S Rrna Gene
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.06.451231; this version posted July 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. MiDAS ‌ 4: ‌ A ‌ global ‌ catalogue‌ of ‌ full-length ‌ 16S ‌ rRNA‌ gene ‌ sequences ‌ and‌ ‌ taxonomy for‌ studies ‌ of‌ bacterial‌ communities‌ in‌ wastewater‌ treatment‌ plants‌ Authors: Morten Simonsen Dueholm, Marta Nierychlo, Kasper Skytte Andersen, Vibeke ‌ Rudkjøbing, Simon Knutsson, the MiDAS Global Consortium, Mads Albertsen, and Per ‌ Halkjær Nielsen* Affiliation: Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark. *Correspondence to: Per Halkjær Nielsen, Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, ‌ 9220 Aalborg, Denmark; Phone: +45 9940 8503; Fax: Not available; E-mail: [email protected] Running title: Global microbiota of wastewater treatment plants ‌ 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.06.451231; this version posted July 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Biological wastewater treatment and an increased focus on resource recovery is ‌ fundamental for environmental protection, human health, and sustainable development. Microbial communities are responsible for these processes, but our knowledge of their diversity and function is still poor, partly due to the ‌lack of ‌good reference databases and comprehensive global studies.
    [Show full text]
  • Molecular Identification and Physiological Characterization of Halophilic and Alkaliphilic Bacteria Belonging to the Genus Halomonas
    Molecular Identification and Physiological Characterization of Halophilic and Alkaliphilic Bacteria Belonging to the Genus Halomonas By Abdolkader Abosamaha Mohammed (BSc, Agricultural Sciences, Sebha University, Libya) (MSc, Environmental Engineering, University of Newcastle Upon Tyne, Uk) A Thesis Submitted for Degree of Doctor of Philosophy Department of Molecular Biology and Biotechnology The University of Sheffield 2013 Abstract Alkaline saline lakes are unusual extreme environments formed in closed drainage basins. Qabar - oun and Um - Alma lakes are alkaline saline lakes in the Libyan Sahara. There were only a few reports (Ajali et al., 1984) on their microbial diversity before the current work was undertaken. Five Gram-negative bacterial strains, belonging to the family of Halomonadaceae, were isolated from the lakes by subjecting the isolates to high salinity medium, and identified using 16S rRNA gene sequencing as Halomonas pacifica, Halomonas sp, Halomonas salifodinae, Halomonas elongata and Halomonas campisalis. Two of the Halomonas species isolated (H. pacifica and H. campisalis) were chosen for further study on the basis of novelty (H. pacifica) and on dual stress tolerance (high pH and high salinity) shown by H. campisalis. Both species showed optimum growth at 0.5 M NaCl, but H. campisalis alone was able to grow in the absence of NaCl. H. pacifica grew better than H. campisalis at high salinities in excess of 1 M NaCl and was clearly a moderately halophile. H. pacifica showed optimum growth at pH 7 to 8, but in contrast H. campisalis could grow well at pH values up to 10. 13C - NMR spectroscopy was used to determine and identify the compatible solutes accumulated by H.
    [Show full text]
  • Tratamiento Biológico Aerobio Para Aguas Residuales Con Elevada Conductividad Y Concentración De Fenoles
    PROGRAMA DE DOCTORADO EN INGENIERÍA Y PRODUCCIÓN INDUSTRIAL Tratamiento biológico aerobio para aguas residuales con elevada conductividad y concentración de fenoles TESIS DOCTORAL Presentada por: Eva Ferrer Polonio Dirigida por: Dr. José Antonio Mendoza Roca Dra. Alicia Iborra Clar Valencia Mayo 2017 AGRADECIMIENTOS La sabiduría popular, a la cual recurro muchas veces, dice: “Es de bien nacido ser agradecido”… pues sigamos su consejo, aquí van los míos. En primer lugar quiero agradecer a mis directores la confianza depositada en mí y a Depuración de Aguas del Mediterráneo, especialmente a Laura Pastor y Silvia Doñate, la dedicación e ilusión puestas en el proyecto. Durante el desarrollo de esta Tesis Doctoral he tenido la inmensa suerte de contar con un grupo de personas de las que he aprendido muchísimo y que de forma desinteresada han colaborado en este trabajo, enriqueciéndolo enormemente. Gracias al Dr. Jaime Primo Millo, del Instituto Agroforestal Mediterráneo de la Universitat Politècnica de València, por el asesoramiento recibido y por permitirme utilizar los equipos de cromatografía de sus instalaciones. También quiero dar un agradecimiento especial a una de las personas de su equipo de investigación, ya que sin su ayuda, tiempo y enseñanzas en los primeros análisis realizados con esta técnica, no me hubiera sido posible llevar a cabo esta tarea con tanta facilidad…gracias Dra. Nuria Cabedo Escrig. Otra de las personas con las que he tenido la suerte de colaborar ha sido la Dra. Blanca Pérez Úz, del Departamento de Microbiología III de la Facultad de Ciencias Biológicas de la Universidad Complutense de Madrid. Blanca, aunque no nos conocemos personalmente, tu profesionalidad y dedicación han permitido superar las barreras de la distancia…gracias.
    [Show full text]
  • Dissertationstefanschauer.Pdf (11.35Mb)
    Institut für Biologie Biofilmbildung bei Pflanzen-assoziierten Bakterien der Gattung Methylobacterium und molekulargenetisch-physiologische Charakterisierung eines neuen Marchantia-Isolats (Mtb. sp. JT1) Inaugural‐Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt im Fachbereich Naturwissenschaften der Universität Kassel von Dipl.‐Biol. Stefan Schauer Dekan: Prof. Dr. F. Herberg Gutachter: 1. Prof. Dr. U. Kutschera 2. Prof. Dr. H. Follmann eingereicht: 12. Januar 2009 Datum der Disputation: 6. Februar 2009 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis............................................................................................................... 2 Abkürzungsverzeichnis..................................................................................................... 7 1 Einleitung................................................................................................................... 10 1.1 Biofilme .............................................................................................................. 10 1.1.1 Vorteile von Biofilmen ............................................................................. 11 1.1.2 Matrixkomponenten bakterieller Biofilme............................................ 11 1.1.3 Biofilme auf Pflanzenoberflächen .......................................................... 12 1.2 Die Gattung Methylobacterium......................................................................... 13 1.2.1 Assoziation
    [Show full text]
  • Community Structure and Function of High-Temperature Chlorophototrophic Microbial Mats Inhabiting Diverse Geothermal Environments
    ORIGINAL RESEARCH ARTICLE published: 03 June 2013 doi: 10.3389/fmicb.2013.00106 Community structure and function of high-temperature chlorophototrophic microbial mats inhabiting diverse geothermal environments Christian G. Klatt 1,2†,William P.Inskeep 1,2*, Markus J. Herrgard 3, Zackary J. Jay 1,2, Douglas B. Rusch4, Susannah G.Tringe 5, M. Niki Parenteau 6,7, David M. Ward 1,2, Sarah M. Boomer 8, Donald A. Bryant 9,10 and Scott R. Miller 11 1 Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA 2 Thermal Biology Institute, Montana State University, Bozeman, MT, USA 3 Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark 4 Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA 5 Department of Energy Joint Genome Institute, Walnut Creek, CA, USA 6 Search for Extraterrestrial Intelligence Institute, Mountain View, CA, USA 7 National Aeronautics and Space Administration Ames Research Center, Mountain View, CA, USA 8 Western Oregon University, Monmouth, OR, USA 9 Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 10 Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA 11 Department of Biological Sciences, University of Montana, Missoula, MT, USA Edited by: Six phototrophic microbial mat communities from different geothermal springs (YNP) were Martin G. Klotz, University of North studied using metagenome sequencing and geochemical analyses. The primary goals of Carolina at Charlotte, USA this work were to determine differences in community composition of high-temperature Reviewed by: Andreas Teske, University of North phototrophic mats distributed across theYellowstone geothermal ecosystem, and to iden- Carolina at Chapel Hill, USA tify metabolic attributes of predominant organisms present in these communities that may Jesse Dillon, California State correlate with environmental attributes important in niche differentiation.
    [Show full text]
  • Supplementary Material 16S Rrna Clone Library
    Kip et al. Biogeosciences (bg-2011-334) Supplementary Material 16S rRNA clone library To investigate the total bacterial community a clone library based on the 16S rRNA gene was performed of the pool Sphagnum mosses from Andorra peat, next to S. magellanicum some S. falcatulum was present in this pool and both these species were analysed. Both 16S clone libraries showed the presence of Alphaproteobacteria (17%), Verrucomicrobia (13%) and Gammaproteobacteria (2%) and since the distribution of bacterial genera among the two species was comparable an average was made. In total a 180 clones were sequenced and analyzed for the phylogenetic trees see Fig. A1 and A2 The 16S clone libraries showed a very diverse set of bacteria to be present inside or on Sphagnum mosses. Compared to other studies the microbial community in Sphagnum peat soils (Dedysh et al., 2006; Kulichevskaya et al., 2007a; Opelt and Berg, 2004) is comparable to the microbial community found here, inside and attached on the Sphagnum mosses of the Patagonian peatlands. Most of the clones showed sequence similarity to isolates or environmental samples originating from peat ecosystems, of which most of them originate from Siberian acidic peat bogs. This indicated that similar bacterial communities can be found in peatlands in the Northern and Southern hemisphere implying there is no big geographical difference in microbial diversity in peat bogs. Four out of five classes of Proteobacteria were present in the 16S rRNA clone library; Alfa-, Beta-, Gamma and Deltaproteobacteria. 42 % of the clones belonging to the Alphaproteobacteria showed a 96-97% to Acidophaera rubrifaciens, a member of the Rhodospirullales an acidophilic bacteriochlorophyll-producing bacterium isolated from acidic hotsprings and mine drainage (Hiraishi et al., 2000).
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Candidatus Amarolinea and Candidatus Microthrix Are Mainly Responsible for filamentous Bulking in Danish Municipal Wastewater Treatment Plants
    This may be the author’s version of a work that was submitted/accepted for publication in the following source: Nierychlo, Marta, McIlroy, Simon J, Kucheryavskiy, Sergey, Jiang, Chen- jing, Ziegler, Anja S, Kondrotaite, Zivile, Stokholm-Bjerregaard, Mikkel, & Nielsen, Per Halkjær (2020) Candidatus Amarolinea and Candidatus Microthrix are mainly responsible for filamentous bulking in Danish municipal wastewater treatment plants. Frontiers in Microbiology, 11, Article number: 1214. This file was downloaded from: https://eprints.qut.edu.au/205774/ c The Author(s) 2020 This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the docu- ment is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recog- nise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to [email protected] License: Creative Commons: Attribution 4.0 Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.3389/fmicb.2020.01214 fmicb-11-01214 June 5, 2020 Time: 19:43 # 1 ORIGINAL RESEARCH published: 09 June 2020 doi: 10.3389/fmicb.2020.01214 Candidatus Amarolinea and Candidatus Microthrix Are Mainly Responsible for Filamentous Bulking in Danish Municipal Wastewater Treatment Plants Marta Nierychlo1, Simon J.
    [Show full text]