Phylogenetic Analyses of the Genus Hymenobacter and Description of Siccationidurans Gen
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Developing a Genetic Manipulation System for the Antarctic Archaeon, Halorubrum Lacusprofundi: Investigating Acetamidase Gene Function
www.nature.com/scientificreports OPEN Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: Received: 27 May 2016 Accepted: 16 September 2016 investigating acetamidase gene Published: 06 October 2016 function Y. Liao1, T. J. Williams1, J. C. Walsh2,3, M. Ji1, A. Poljak4, P. M. G. Curmi2, I. G. Duggin3 & R. Cavicchioli1 No systems have been reported for genetic manipulation of cold-adapted Archaea. Halorubrum lacusprofundi is an important member of Deep Lake, Antarctica (~10% of the population), and is amendable to laboratory cultivation. Here we report the development of a shuttle-vector and targeted gene-knockout system for this species. To investigate the function of acetamidase/formamidase genes, a class of genes not experimentally studied in Archaea, the acetamidase gene, amd3, was disrupted. The wild-type grew on acetamide as a sole source of carbon and nitrogen, but the mutant did not. Acetamidase/formamidase genes were found to form three distinct clades within a broad distribution of Archaea and Bacteria. Genes were present within lineages characterized by aerobic growth in low nutrient environments (e.g. haloarchaea, Starkeya) but absent from lineages containing anaerobes or facultative anaerobes (e.g. methanogens, Epsilonproteobacteria) or parasites of animals and plants (e.g. Chlamydiae). While acetamide is not a well characterized natural substrate, the build-up of plastic pollutants in the environment provides a potential source of introduced acetamide. In view of the extent and pattern of distribution of acetamidase/formamidase sequences within Archaea and Bacteria, we speculate that acetamide from plastics may promote the selection of amd/fmd genes in an increasing number of environmental microorganisms. -
Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341 -
Microbial Diversity of Drilling Fluids from 3000 M Deep Koyna Pilot
Science Reports Sci. Dril., 27, 1–23, 2020 https://doi.org/10.5194/sd-27-1-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Microbial diversity of drilling fluids from 3000 m deep Koyna pilot borehole provides insights into the deep biosphere of continental earth crust Himadri Bose1, Avishek Dutta1, Ajoy Roy2, Abhishek Gupta1, Sourav Mukhopadhyay1, Balaram Mohapatra1, Jayeeta Sarkar1, Sukanta Roy3, Sufia K. Kazy2, and Pinaki Sar1 1Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India 2Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India 3Ministry of Earth Sciences, Borehole Geophysics Research Laboratory, Karad, 415114, Maharashtra, India Correspondence: Pinaki Sar ([email protected], [email protected]) Received: 24 June 2019 – Revised: 25 September 2019 – Accepted: 16 December 2019 – Published: 27 May 2020 Abstract. Scientific deep drilling of the Koyna pilot borehole into the continental crust up to a depth of 3000 m below the surface at the Deccan Traps, India, provided a unique opportunity to explore microbial life within the deep granitic bedrock of the Archaean Eon. Microbial communities of the returned drilling fluid (fluid re- turned to the mud tank from the underground during the drilling operation; designated here as DF) sampled during the drilling operation of the Koyna pilot borehole at a depth range of 1681–2908 metres below the surface (m b.s.) were explored to gain a glimpse of the deep biosphere underneath the continental crust. Change of pH 2− to alkalinity, reduced abundance of Si and Al, but enrichment of Fe, Ca and SO4 in the samples from deeper horizons suggested a gradual infusion of elements or ions from the crystalline bedrock, leading to an observed geochemical shift in the DF. -
Ice-Nucleating Particles Impact the Severity of Precipitations in West Texas
Ice-nucleating particles impact the severity of precipitations in West Texas Hemanth S. K. Vepuri1,*, Cheyanne A. Rodriguez1, Dimitri G. Georgakopoulos4, Dustin Hume2, James Webb2, Greg D. Mayer3, and Naruki Hiranuma1,* 5 1Department of Life, Earth and Environmental Sciences, West Texas A&M University, Canyon, TX, USA 2Office of Information Technology, West Texas A&M University, Canyon, TX, USA 3Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA 4Department of Crop Science, Agricultural University of Athens, Athens, Greece 10 *Corresponding authors: [email protected] and [email protected] Supplemental Information 15 S1. Precipitation and Particulate Matter Properties S1.1 Precipitation Categorization In this study, we have segregated our precipitation samples into four different categories, such as (1) snows, (2) hails/thunderstorms, (3) long-lasted rains, and (4) weak rains. For this categorization, we have considered both our observation-based as well as the disdrometer-assigned National Weather Service (NWS) 20 code. Initially, the precipitation samples had been assigned one of the four categories based on our manual observation. In the next step, we have used each NWS code and its occurrence in each precipitation sample to finalize the precipitation category. During this step, a precipitation sample was categorized into snow, only when we identified a snow type NWS code (Snow: S-, S, S+ and/or Snow Grains: SG). Likewise, a precipitation sample was categorized into hail/thunderstorm, only when the cumulative sum of NWS codes for hail was 25 counted more than five times (i.e., A + SP ≥ 5; where A and SP are the codes for soft hail and hail, respectively). -
Spatial Stratification of Soil Bacterial Populations in Aggregates of Diverse Soils Daniel Mummey 1, William Holben1, Johan Six 2 and Peter Stahl3
Microbial Ecology Spatial Stratification of Soil Bacterial Populations in Aggregates of Diverse Soils Daniel Mummey 1, William Holben1, Johan Six 2 and Peter Stahl3 (1) Division of Biological Sciences, University of Montana, Missoula, MO, USA (2) Department of Plant Sciences, University of California-Davis, Davis, CA, USA (3) Department of Renewable Resources, University of Wyoming, Laramie, WY, USA Received: 23 December 2004 / Accepted: 1 January 2005 / Online publication: 6 April 2006 Abstract influenced by, the environment. Such an understanding can only be attained by analysis at scales relevant to those Most soil microbial community studies to date have at which processes influencing microbial diversity actu- focused on homogenized bulk soil samples. However, it ally operate [29]. However, because of the biotic and is likely that many important microbial processes occur abiotic complexity exhibited by most soils at nearly all in spatially segregated microenvironments in the soil scales, determining soil microbial diversity patterns leading to a microscale biogeography. This study at- remains a formidable challenge for soil microbiologists tempts to localize specific microbial populations to dif- [54]. ferent fractions or compartments within the soil matrix. The vast majority of soil microbial analyses are Microbial populations associated with macroaggregates conducted on bulk soil samples, and often composited and inner- versus total-microaggregates of three diverse bulk soil samples, which averages localized heterogeneity soils were -
Identifying Stress-Tolerance Genes in Hyperarid Desert Soils Using Functional Metagenomics
Identifying stress-tolerance genes in hyperarid desert soils using functional metagenomics by Gideon Jacobus de Jager Submitted in partial fulfilment of the requirements for the degree Magister Scientiae In the Faculty of Natural & Agricultural Sciences Department of Genetics University of Pretoria Pretoria 12 February 2015 Supervisor: Prof. Don A. Cowan Co-supervisor: Dr René Sutherland Declaration I, Gideon Jacobus de Jager declare that the thesis, which I hereby submit for the degree Magister Scientiae at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution. Signature: DdeJager Date: 12 February 2015 ii Dedication This thesis is dedicated to my mom, dad and Mari. Without your support and belief I would not have been able to reach this point. iii Acknowledgements I would like to thank the National Research Foundation (NRF) for providing me with a bursary so I could pursue this degree. The financial assistance of the NRF towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. Prof Don Cowan, thank you for your supervision and guidance during this research project and for always expecting the best from me and believing in my abilities. You are an inspiration in both science and life. Dr René Sutherland, thank you for your hands-on supervision and for your continuing support after your departure, despite having so much else on your plate! Dr Eloy Ferreras and Dr Eldie Berger, thank you for taking over from René as my go-to people when I needed advice about which experimental approaches to use and for your guidance in carrying these out. -
Thalassomonas Agarivorans Sp. Nov., a Marine Agarolytic Bacterium Isolated from Shallow Coastal Water of An-Ping Harbour, Taiwan
International Journal of Systematic and Evolutionary Microbiology (2006), 56, 1245–1250 DOI 10.1099/ijs.0.64130-0 Thalassomonas agarivorans sp. nov., a marine agarolytic bacterium isolated from shallow coastal water of An-Ping Harbour, Taiwan, and emended description of the genus Thalassomonas Wen Dar Jean,1 Wung Yang Shieh2 and Tung Yen Liu2 Correspondence 1Center for General Education, Leader University, No. 188, Sec. 5, An-Chung Rd, Tainan, Wung Yang Shieh Taiwan [email protected] 2Institute of Oceanography, National Taiwan University, PO Box 23-13, Taipei, Taiwan A marine agarolytic bacterium, designated strain TMA1T, was isolated from a seawater sample collected in a shallow-water region of An-Ping Harbour, Taiwan. It was non-fermentative and Gram-negative. Cells grown in broth cultures were straight or curved rods, non-motile and non-flagellated. The isolate required NaCl for growth and exhibited optimal growth at 25 6C and 3 % NaCl. It grew aerobically and was incapable of anaerobic growth by fermenting glucose or other carbohydrates. Predominant cellular fatty acids were C16 : 0 (17?5 %), C17 : 1v8c (12?8 %), C17 : 0 (11?1 %), C15 : 0 iso 2-OH/C16 : 1v7c (8?6 %) and C13 : 0 (7?3 %). The DNA G+C content was 41?0 mol%. Phylogenetic, phenotypic and chemotaxonomic data accumulated in this study revealed that the isolate could be classified in a novel species of the genus Thalassomonas in the family Colwelliaceae. The name Thalassomonas agarivorans sp. nov. is proposed for the novel species, with TMA1T (=BCRC 17492T=JCM 13379T) as the type strain. Alteromonas-like bacteria in the class Gammaproteobacteria however, they are not exclusively autochthonous in the comprise a large group of marine, heterotrophic, polar- marine environment, since some reports have shown that flagellated, Gram-negative rods that are mainly non- they also occur in freshwater, sewage and soil (Agbo & Moss, fermentative aerobes. -
Colonization Patterns of Soil Microbial Communities in the Atacama Desert
Crits-Christoph et al. Microbiome 2013, 1:28 http://www.microbiomejournal.com/content/1/1/28 RESEARCH Open Access Colonization patterns of soil microbial communities in the Atacama Desert Alexander Crits-Christoph1, Courtney K Robinson1, Tyler Barnum1, W Florian Fricke2, Alfonso F Davila3, Bruno Jedynak4, Christopher P McKay3 and Jocelyne DiRuggiero1* Abstract Background: The Atacama Desert is one of the driest deserts in the world and its soil, with extremely low moisture, organic carbon content, and oxidizing conditions, is considered to be at the dry limit for life. Results: Analyses of high throughput DNA sequence data revealed that bacterial communities from six geographic locations in the hyper-arid core and along a North-South moisture gradient were structurally and phylogenetically distinct (ANOVA test for observed operating taxonomic units at 97% similarity (OTU0.03), P <0.001) and that commu- nities from locations in the hyper-arid zone displayed the lowest levels of diversity. We found bacterial taxa similar to those found in other arid soil communities with an abundance of Rubrobacterales, Actinomycetales, Acidimicro- biales, and a number of families from the Thermoleophilia. The extremely low abundance of Firmicutes indicated that most bacteria in the soil were in the form of vegetative cells. Integrating molecular data with climate and soil geo- chemistry, we found that air relative humidity (RH) and soil conductivity significantly correlated with microbial com- munities’ diversity metrics (least squares linear regression for observed OTU0.03 and air RH and soil conductivity, P <0.001; UniFrac PCoA Spearman’s correlation for air RH and soil conductivity, P <0.0001), indicating that water availability and salt content are key factors in shaping the Atacama soil microbiome. -
Pseudidiomarina Taiwanensis Gen. Nov., Sp. Nov., a Marine Bacterium
International Journal of Systematic and Evolutionary Microbiology (2006), 56, 899–905 DOI 10.1099/ijs.0.64048-0 Pseudidiomarina taiwanensis gen. nov., sp. nov., a marine bacterium isolated from shallow coastal water of An-Ping Harbour, Taiwan, and emended description of the family Idiomarinaceae Wen Dar Jean,1 Wung Yang Shieh2 and Hsiu-Hui Chiu2 Correspondence 1Center for General Education, Leader University, No. 188, Sec. 5, An-Chung Rd, Tainan, Wung Yang Shieh Taiwan [email protected] 2Institute of Oceanography, National Taiwan University, PO Box 23-13, Taipei, Taiwan Two strains of heterotrophic, aerobic, marine bacteria, designated strains PIT1T and PIT2, were isolated from sea-water samples collected at the shallow coastal region of An-Ping Harbour, Tainan, Taiwan. Both strains were Gram-negative. Cells grown in broth cultures were straight rods that were non-motile, lacking flagella. Both strains required NaCl for growth and exhibited optimal growth at 30–35 6C, 1–4 % NaCl and pH 8. They grew aerobically and were incapable of anaerobic growth by fermentation of glucose or other carbohydrates. Cellular fatty acids were predominantly iso-branched, with C15 : 0 iso and C17 : 0 iso representing the most abundant components. The DNA G+C contents of strains PIT1T and PIT2 were 49?3 and 48?6 mol%, respectively. Phylogeny based on 16S rRNA gene sequences, together with data from phenotypic and chemotaxonomic characterization, revealed that the two isolates could be assigned to a novel genus in the family Idiomarinaceae, for which the name Pseudidiomarina gen. nov. is proposed. Pseudidiomarina taiwanensis sp. nov. is the type species of the novel genus (type strain PIT1T=BCRC 17465T=JCM 13360T). -
Bacteria Aliidiomarina Taiwanensis Ku31894 on Human Hepatocellular Carcinoma (Hepg2) Cell Line
International Journal of Pharmacy and Biological Sciences ISSN: 2321-3272 (Print), ISSN: 2230-7605 (Online) IJPBS | Volume 8 | Issue 2 | APR-JUN | 2018 | 475-485 Research Article | Biological Sciences | Open Access | MCI Approved| |UGC Approved Journal | ANTIPROLIFERATIVE AND APOPTOTIC POTENTIAL OF MARINE BACTERIA ALIIDIOMARINA TAIWANENSIS KU31894 ON HUMAN HEPATOCELLULAR CARCINOMA (HEPG2) CELL LINE Nithin Thoniparambil Unnikrishnana and Keerthi Thalakattil Raghavana* aSchool of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India -686 560 *Corresponding Author, email id: *Corresponding Author Email: [email protected] ABSTRACT Aim: To determine the antiproliferative and apoptotic effects of marine bacterium, Aliidiomarina taiwanensis KU31894 on human hepatocarcinoma (HepG2) cell lines. Methods: The bacterium was identified by 16S rDNA analysis and the bioactive metabolites were extracted. The cell viability and proliferation were done by trypan blue exclusion and MTT assay against HepG2 cells. The bioassay guided fractionation of the promising extract was performed by silica gel column chromatography. Apoptotic evaluation was done by acridine orange/ethidium bromide staining and confirmed by DNA fragmentation assay. ROS intermediates generation was determined by DCF-DA staining. Results: The bacterium was identified as Aliidiomarina taiwanensis and the sequences were submitted in GenBank under the accession number KU31894. The ethyl acetate extract showed maximum cytotoxicity by trypan blue exclusion method was selected for MTT assay, the IC50 concentration was obtained as 75.02 ± 1.7µg/ml. After the fractionation, the fraction F7 showed significant cytotoxicity by MTT assay with the IC50 concentration of 48.75 ± 1.5µg/ml. The acridine orange /ethidium bromide staining of the IC50 concentration of bio active fraction F7 treated cancer cells exhibited apoptotic characteristics and also showed DNA fragmentation. -
Microbial Community Transcriptomes Reveal Microbes and Metabolic Pathways Associated with Dissolved Organic Matter Turnover in the Sea
Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea Jay McCarrena,b, Jamie W. Beckera,c, Daniel J. Repetac, Yanmei Shia, Curtis R. Younga, Rex R. Malmstroma,d, Sallie W. Chisholma, and Edward F. DeLonga,e,1 Departments of aCivil and Environmental Engineering and eBiological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; cDepartment of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; bSynthetic Genomics, La Jolla, CA 92037; and dJoint Genome Institute, Walnut Creek, CA 94598 This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2008. Contributed by Edward F. DeLong, August 2, 2010 (sent for review July 1, 2010) Marine dissolved organic matter (DOM) contains as much carbon as ventory with net accumulation following the onset of summertime the Earth’s atmosphere, and represents a critical component of the stratification, and net removal following with deep winter mixing. global carbon cycle. To better define microbial processes and activities In addition, multiyear time-series data suggest that surface-water associated with marine DOM cycling, we analyzed genomic and tran- DOM inventories have been increasing over the past 10–20 y (8). scriptional responses of microbial communities to high-molecular- The ecological factors behind these seasonal and decadal DOC weight DOM (HMWDOM) addition. The cell density in the unamended accumulations are largely unknown. Nutrient (N, P) amendments control remained constant, with very few transcript categories exhib- do not appear to result in a drawdown of DOC, and other factors iting significant differences over time. -
Taxonomic Hierarchy of the Phylum Proteobacteria and Korean Indigenous Novel Proteobacteria Species
Journal of Species Research 8(2):197-214, 2019 Taxonomic hierarchy of the phylum Proteobacteria and Korean indigenous novel Proteobacteria species Chi Nam Seong1,*, Mi Sun Kim1, Joo Won Kang1 and Hee-Moon Park2 1Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea 2Department of Microbiology & Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea *Correspondent: [email protected] The taxonomic hierarchy of the phylum Proteobacteria was assessed, after which the isolation and classification state of Proteobacteria species with valid names for Korean indigenous isolates were studied. The hierarchical taxonomic system of the phylum Proteobacteria began in 1809 when the genus Polyangium was first reported and has been generally adopted from 2001 based on the road map of Bergey’s Manual of Systematic Bacteriology. Until February 2018, the phylum Proteobacteria consisted of eight classes, 44 orders, 120 families, and more than 1,000 genera. Proteobacteria species isolated from various environments in Korea have been reported since 1999, and 644 species have been approved as of February 2018. In this study, all novel Proteobacteria species from Korean environments were affiliated with four classes, 25 orders, 65 families, and 261 genera. A total of 304 species belonged to the class Alphaproteobacteria, 257 species to the class Gammaproteobacteria, 82 species to the class Betaproteobacteria, and one species to the class Epsilonproteobacteria. The predominant orders were Rhodobacterales, Sphingomonadales, Burkholderiales, Lysobacterales and Alteromonadales. The most diverse and greatest number of novel Proteobacteria species were isolated from marine environments. Proteobacteria species were isolated from the whole territory of Korea, with especially large numbers from the regions of Chungnam/Daejeon, Gyeonggi/Seoul/Incheon, and Jeonnam/Gwangju.