Spatial Stratification of Soil Bacterial Populations in Aggregates of Diverse Soils Daniel Mummey 1, William Holben1, Johan Six 2 and Peter Stahl3

Total Page:16

File Type:pdf, Size:1020Kb

Spatial Stratification of Soil Bacterial Populations in Aggregates of Diverse Soils Daniel Mummey 1, William Holben1, Johan Six 2 and Peter Stahl3 Microbial Ecology Spatial Stratification of Soil Bacterial Populations in Aggregates of Diverse Soils Daniel Mummey 1, William Holben1, Johan Six 2 and Peter Stahl3 (1) Division of Biological Sciences, University of Montana, Missoula, MO, USA (2) Department of Plant Sciences, University of California-Davis, Davis, CA, USA (3) Department of Renewable Resources, University of Wyoming, Laramie, WY, USA Received: 23 December 2004 / Accepted: 1 January 2005 / Online publication: 6 April 2006 Abstract influenced by, the environment. Such an understanding can only be attained by analysis at scales relevant to those Most soil microbial community studies to date have at which processes influencing microbial diversity actu- focused on homogenized bulk soil samples. However, it ally operate [29]. However, because of the biotic and is likely that many important microbial processes occur abiotic complexity exhibited by most soils at nearly all in spatially segregated microenvironments in the soil scales, determining soil microbial diversity patterns leading to a microscale biogeography. This study at- remains a formidable challenge for soil microbiologists tempts to localize specific microbial populations to dif- [54]. ferent fractions or compartments within the soil matrix. The vast majority of soil microbial analyses are Microbial populations associated with macroaggregates conducted on bulk soil samples, and often composited and inner- versus total-microaggregates of three diverse bulk soil samples, which averages localized heterogeneity soils were characterized using culture-independent, mo- and provides little insight into the spatial origins of lecular methods. Despite their relative paucity in most detected strains. Moreover, as several studies indicate surveys of soil diversity, representatives of Gemmatimo- that molecular approaches tend to be biased toward the nadetes and Actinobacteria subdivision Rubrobacteridae more abundant organisms at the time of sampling [5, 20, were found to be highly abundant in inner-microag- 41], stratified sampling strategies, which restrict sample gregates of most soils analyzed. By contrast, clones af- area to definable habitats, may increase numbers of filiated with Acidobacteria were found to be relatively detectable organisms in a given habitat [14], and increase enriched in libraries derived from macroaggregate frac- the power of detecting differences by decreasing variabil- tions of nearly all soils, but poorly represented in inner- ity within a given sample [25]. Such approaches should microaggregate fractions. Based upon analysis of 16S also provide insights into the controlling factors and rRNA, active community members within microag- functions in different segments of the soil microbial gregates of a Georgian Ultisol were comprised largely of community. Increased understanding of relationships Gemmatimonadetes and Rubrobacteridae, while within between microbial community composition and soil microaggregates of a Nebraska Mollisol, Rubrobacteridae microhabitats may facilitate the integration of biotic data and Alphaproteobacteria were the predominant active with the copious soil physical and chemical information bacterial lineages. This work suggests that microaggre- available in the literature, potentially providing for better gates represent a unique microenvironment that selects understanding of soil functioning. for specific microbial lineages across disparate soils. Soil consists of a complex physical framework that largely determines solute, substrate, and energy flows. Introduction Therefore, soil provides a heterogeneous habitat for microorganisms characterized by different substrate, Understanding soil microbial diversity and the environ- nutrient, water, and oxygen concentrations, as well as mental processes it controls requires an in-depth under- pH and the size of pores available for microbial habitation standing of how microbial diversity influences, and is [13, 17, 18, 42]. These structural aggregates are classified hierarchically in terms of size and relative stability [40, Correspondence to: Daniel Mummey; E-mail: [email protected] 55]. Macroaggregates (diameter 9 250 mm) are formed 404 DOI: 10.1007/s00248-006-9020-5 & Volume 51, 404–411 (2006) & * Springer Science+Business Media, Inc. 2006 D. MUMMEY ET AL.: STRATIFICATION OF SOIL BACTERIAL POPULATIONS IN AGGREGATES OF DIVERSE SOILS 405 by temporary associations of microaggregates, minerals, compare whole and inner microaggregate communities and particulate organic matter, predominantly through across the five soils; and (3) determine relationships be- enmeshment by fungal hyphae and plant roots [39]. tween organismal presence and activity for inner-micro- Water-stable microaggregates (diameter G 250 mm), aggregate communities based on phylogenetic analysis of generally the most stable soil secondary structures, both 16S rRNA (rRNA) and 16S rRNA genes (rDNA). typically form within macroaggregates through micro- bially mediated processes [39, 51] and are largely Materials and Methods dependent upon persistent organic binding agents for structural stability [55]. Because soil structure is a Sites and Soils dominant factor controlling microbial diversity and processes [59], analysis at the aggregate and subaggregate Georgia. Soil samples were collected from no-tillage levels will be required to elucidate the principle biotic agricultural plots at the Horseshoe Bend Long Term and abiotic controls on soil microbial diversity. Environmental Research site (HSB) near Athens, GA A number of studies have reported contrasting (33-540N, 83-240W). The site has been under continuous distributions of microbial biomass, specific species or summer grain crops (Sorghum bicolor or Glycine max) populations, and functional attributes in different aggre- and winter crops (Secale cerale or Trifolium incarnatum) gate size classes [4, 6, 15, 28, 56]. A number of authors since 1978. Soil at the site is a fine loamy, siliceous, have suggested partitioning soil microorganisms into thermic Rhodic Kanhapludult. Annual precipitation (125 inner- and outer-aggregate fractions based on soil micro- cm) is relatively evenly distributed throughout the year. site physicochemical differences and presumed microbial Management history and site characteristics are described functional differences [3, 16, 17], and a number of in detail by Hendrix [19]. microscopy, molecular, and cultivation-based studies have explored microbial community structure in inner Nebraska. This site is located at on the High Plains and outer macroaggregates [7, 17, 18, 37, 44, 45, 57]. Agricultural Laboratory (HPAL), 8.3 km north of Sidney, However, despite the fundamental importance of micro- NE (41-140N, 103-000W). Soil samples were collected aggregates to soil structure and function, including the from long-term, no-tillage plots under a wheat–fallow sequestration of organic matter [22, 52], microbial com- cropping system. Soil at the site is classified as a fine silty, munity structure within this size class has received very mixed mesic Pachic Haplustoll. Average annual little study, particularly with regard to the outer- and precipitation (38 cm) predominantly (75%) occurs inner-aggregate distribution of microbial populations. between April and August. Management history and site Although habitats existing within microaggregates characteristics are described by Lyon et al. [30]. offer relatively stable water availability and protection against predation, they are typically described as oligo- Montana. Soil samples were collected from a gently trophic environments, containing limited amounts of sloping undisturbed grassland site (MGS) 10 km north of biologically recalcitrant organic matter having much Missoula, MT (46-4500000N, 114-0703000W). The site has a slower turnover rates than are observed for soil as a semiarid climate, receiving on average 34–42 cm whole [53]. Inner-microaggregate organisms, principally precipitation per year. Soil at the site is classified as a bacteria and archaea, would be expected, due to pore size cobbly loam Argixeroll. constraints, to largely escape predation by soil fauna [57, Soil samples from all sites were collected to a depth of 58] and perhaps exposure to fungal antibiotics. Due to 10 cm and placed on ice in sterile plastic bags in the field. pore size and diffusion constraints, inner-microaggregate All samples were frozen within 6 h of collection and stored organisms might also be expected to be of smaller size at _20-C prior to fractionation and nucleic acid isolation. and have slower turnover rates than their outer-aggregate or macropore counterparts [24]. Soil Fractionation. Field-moist soils were immersed in A previous study [36] provided evidence for spatial deionized H2O on top of three-tiered, nested sieves of stratification of bacterial division- and subdivision-level progressively finer mesh (2000, 250, and 53 mm). After an lineages within soil microaggregates of two different soils, initial hydration period (5 min), large macroaggregates an Aridisol and a mine spoil (Entisol). The present study were gently pressed through the 2000-mm sieve while expands on that work to examine whether similar spatial gently raising and lowering the sieves. The 2000-mm sieve stratification is observable across a broad range of was then removed, and the two remaining nested sieves geographically separated soil types, differing greatly in slowly raised and lowered (3 cm) to separate stable climate and soil forming factor influences. To accom- microaggregates from
Recommended publications
  • Phylogenetic Analyses of the Genus Hymenobacter and Description of Siccationidurans Gen
    etics & E en vo g lu t lo i y o h n a P r f y Journal of Phylogenetics & Sathyanarayana Reddy, J Phylogen Evolution Biol 2013, 1:4 o B l i a o n l r o DOI: 10.4172/2329-9002.1000122 u g o y J Evolutionary Biology ISSN: 2329-9002 Research Article Open Access Phylogenetic Analyses of the Genus Hymenobacter and Description of Siccationidurans gen. nov., and Parahymenobacter gen. nov Gundlapally Sathyanarayana Reddy* CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad-500 007, India Abstract Phylogenetic analyses of 26 species of the genus Hymenobacter based on the 16S rRNA gene sequences, resulted in polyphyletic clustering with three major groups, arbitrarily named as Clade1, Clade2 and Clade3. Delineation of Clade1 and Clade3 from Clade2 was supported by robust clustering and high bootstrap values of more than 90% and 100% in all the phylogenetic methods. 16S rRNA gene sequence similarity shared by Clade1 and Clade2 was 88 to 93%, Clade1 and Clade3 was 88 to 91% and Clade2 and Clade3 was 89 to 92%. Based on robust phylogenetic clustering, less than 93.0% sequence similarity, unique in silico restriction patterns, presence of distinct signature nucleotides and signature motifs in their 16S rRNA gene sequences, two more genera were carved to accommodate species of Clade1 and Clade3. The name Hymenobacter, sensu stricto, was retained to represent 17 species of Clade2. For members of Clade1 and Clade3, the names Siccationidurans gen. nov. and Parahymenobacter gen. nov. were proposed, respectively, and species belonging to Clade1 and Clade3 were transferred to their respective genera.
    [Show full text]
  • Solirubrobacter Pauli Gen. Nov., Sp. Nov., a Mesophilic Bacterium Within the Rubrobacteridae Related to Common Soil Clones
    International Journal of Systematic and Evolutionary Microbiology (2003), 53, 485–490 DOI 10.1099/ijs.0.02438-0 Solirubrobacter pauli gen. nov., sp. nov., a mesophilic bacterium within the Rubrobacteridae related to common soil clones David R. Singleton,1 Michelle A. Furlong,2 Aaron D. Peacock,3 David C. White,3 David C. Coleman4 and William B. Whitman1 Correspondence 1Department of Microbiology, University of Georgia, Athens, GA 30602-2605, USA William B. Whitman 2Department of Natural Sciences, Clayton College and State University, Morrow, [email protected] GA 30260-1250, USA 3Center for Biomarker Analysis, University of Tennessee, Knoxville, TN 37932-2575, USA 4Institute of Ecology, University of Georgia, Athens, GA 30602-2360, USA A novel bacterium, strain B33D1T, isolated from agricultural soil, was characterized taxonomically and phylogenetically. Strain B33D1T was a Gram-positive, aerobic rod of medium length that formed long chains on a common laboratory medium. However, B33D1T grew poorly on the surface of agar plates and was sensitive to desiccation. The optimal growth temperature was 30˚C (range 19–38˚C). The organism grew well on a variety of sugars and was capable of utilizing a few amino acids as sole carbon sources. Phylogenetically, the most closely related described species to strain B33D1T was Rubrobacter xylanophilus, which possessed 86 % 16S rRNA sequence similarity. However, a number of 16S rRNA gene clones derived from soil samples possessed up to 93 % sequence similarity. These results placed strain B33D1T within the subclass Rubrobacteridae of the phylum Actinobacteria. The novel genus and species Solirubrobacter pauli gen. nov., sp. nov. is proposed, with strain B33D1T (=ATCC BAA-492T=DSM 14954T) as the type strain.
    [Show full text]
  • Conexibacter Woesei Type Strain (ID131577T)
    Lawrence Berkeley National Laboratory Recent Work Title Complete genome sequence of Conexibacter woesei type strain (ID131577). Permalink https://escholarship.org/uc/item/7k20579b Journal Standards in genomic sciences, 2(2) ISSN 1944-3277 Authors Pukall, Rüdiger Lapidus, Alla Glavina Del Rio, Tijana et al. Publication Date 2010-03-30 DOI 10.4056/sigs.751339 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2010) 2:212-219 DOI:10.4056/sigs.751339 Complete genome sequence of Conexibacter woesei type strain (ID131577T) Rüdiger Pukall1, Alla Lapidus2, Tijana Glavina Del Rio2, Alex Copeland2, Hope Tice2, Jan- Fang Cheng2, Susan Lucas2, Feng Chen2, Matt Nolan2, David Bruce2,3, Lynne Goodwin2,3, Sam Pitluck2, Konstantinos Mavromatis2, Natalia Ivanova2, Galina Ovchinnikova2, Amrita Pati2, Amy Chen4, Krishna Palaniappan4, Miriam Land2,5, Loren Hauser2,5, Yun-Juan Chang2,5, Cynthia D. Jeffries2,5, Patrick Chain2,6, Linda Meincke2,3, David Sims2,3,Thomas Brettin2,3, John C. Detter2,3, Manfred Rohde7, Markus Göker1, Jim Bristow2, Jonathan A. Eisen2,8, Victor Markowitz4, Nikos C. Kyrpides1, Hans-Peter Klenk1*, and Philip Hugenholtz2 1 DSMZ – German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 2 DOE Joint Genome Institute, Walnut Creek, California, USA 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 5 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 6 Lawrence Livermore National Laboratory, Livermore, California, USA 7 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 8 University of California Davis Genome Center, Davis, California, USA *Corresponding author: Hans-Peter Klenk Keywords: aerobic, short rods, forest soil, Solirubrobacterales, Conexibacteraceae, GEBA The genus Conexibacter (Monciardini et al.
    [Show full text]
  • A Time Travel Story: Metagenomic Analyses Decipher the Unknown Geographical Shift and the Storage History of Possibly Smuggled Antique Marble Statues
    Annals of Microbiology (2019) 69:1001–1021 https://doi.org/10.1007/s13213-019-1446-3 ORIGINAL ARTICLE A time travel story: metagenomic analyses decipher the unknown geographical shift and the storage history of possibly smuggled antique marble statues Guadalupe Piñar1 & Caroline Poyntner1 & Hakim Tafer 1 & Katja Sterflinger1 Received: 3 December 2018 /Accepted: 30 January 2019 /Published online: 23 February 2019 # The Author(s) 2019 Abstract In this study, three possibly smuggled marble statues of an unknown origin, two human torsi (a female and a male) and a small head, were subjected to molecular analyses. The aim was to reconstruct the history of the storage of each single statue, to infer the possible relationship among them, and to elucidate their geographical shift. A genetic strategy, comprising metagenomic analyses of the 16S ribosomal DNA (rDNA) of prokaryotes, 18S rDNA of eukaryotes, as well as internal transcribed spacer regions of fungi, was performed by using the Ion Torrent sequencing platform. Results suggest a possible common history of storage of the two human torsi; their eukaryotic microbiomes showed similarities comprising many soil-inhabiting organisms, which may indicate storage or burial in land of agricultural soil. For the male torso, it was possible to infer the geographical origin, due to the presence of DNA traces of Taiwania, a tree found only in Asia. The small head displayed differences concerning the eukaryotic community, compared with the other two samples, but showed intriguing similarities with the female torso concerning the bacterial community. Both displayed many halotolerant and halophilic bacteria, which may indicate a longer stay in arid and semi-arid surroundings as well as marine environments.
    [Show full text]
  • Distribution and Isolation of Strains Belonging to the Order Solirubrobacterales
    The Journal of Antibiotics (2015) 68, 763–766 & 2015 Japan Antibiotics Research Association All rights reserved 0021-8820/15 www.nature.com/ja NOTE Distribution and isolation of strains belonging to the order Solirubrobacterales Tamae Seki1, Atsuko Matsumoto1,2, Satoshi Ōmura1 and Yōko Takahashi1 The Journal of Antibiotics (2015) 68, 763–766; doi:10.1038/ja.2015.67; published online 1 July 2015 The number of prokaryotes on earth is estimated to be in the order of initial denaturation at 95 °C for 1 min, followed by 30 cycles of 1030 cells,1 and it is well known that most microorganisms in the denaturation at 95 °C for 1 min, annealing at 50 °C for 1 min, environment are as-yet-uncultured.2 Many approaches have been tried extension at 72 °C for 1.5 min and an additional extension step at to isolate unknown bacterial strains. Davis et al.3 reported that 72 °C for 2 min. Reaction mixtures (50 μl) containing 0.4 μlofTaq medium choice and incubation time are significant for isolation of polymerase (TaKaRa, Shiga, Japan), 5.0 μl of 10 × Taq buffer, 2.0 μlof rare soil bacteria. Patulibacter minatonensis, belonging to the order dNTP mixtures (2.5 μM), 29.6 μlofdH2O, 4.0 μlofeachprimer(5μM) Solirubrobacterales, was isolated using medium supplemented with and 5.0 μl of DNA were prepared. As a second step, PCR with specific superoxide dismutase and proposed as a novel genus in 2006.4 At that primers (423PF-1012PR) was performed as follows: initial denatura- time, the order Solirubrobacterales5 consisted of only three families, tion at 94 °C for 1 min, followed by 30 cycles of denaturation at 94 °C three genera and three species; Patulibacter minatonensis, Conexibacter for 1 min, annealing at 65 °C for 1 min, extension at 72 °C for 1.5 min woesei6 and Solirubrobacter pauli,7 and presently there are still and an additional extension step at 72 °C for 2 min.
    [Show full text]
  • Microbial Populations of Stony Meteorites: Substrate Controls on First Colonizers
    fmicb-08-01227 June 30, 2017 Time: 15:51 # 1 ORIGINAL RESEARCH published: 30 June 2017 doi: 10.3389/fmicb.2017.01227 Microbial Populations of Stony Meteorites: Substrate Controls on First Colonizers Alastair W. Tait1*, Emma J. Gagen2, Siobhan A. Wilson1, Andrew G. Tomkins1 and Gordon Southam2 1 School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC, Australia, 2 School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, QLD, Australia Finding fresh, sterilized rocks provides ecologists with a clean slate to test ideas about first colonization and the evolution of soils de novo. Lava has been used previously in first colonizer studies due to the sterilizing heat required for its formation. However, fresh lava typically falls upon older volcanic successions of similar chemistry and modal mineral abundance. Given enough time, this results in the development of similar microbial communities in the newly erupted lava due to a lack of contrast between the new and old substrates. Meteorites, which are sterile when they fall to Earth, provide such contrast Edited by: because their reduced and mafic chemistry commonly differs to the surfaces on which Robert Duran, they land; thus allowing investigation of how community membership and structure University of Pau and Pays de l’Adour, France respond to this new substrate over time. We conducted 16S rRNA gene analysis on Reviewed by: meteorites and soil from the Nullarbor Plain, Australia. We found that the meteorites Angel Valverde, have low species richness and evenness compared to soil sampled from directly University of Pretoria, South Africa Xiaoben Jiang, beneath each meteorite.
    [Show full text]
  • New Genus-Specific Primers for PCR Identification of Rubrobacter Strains
    Antonie van Leeuwenhoek (2019) 112:1863–1874 https://doi.org/10.1007/s10482-019-01314-3 (0123456789().,-volV)( 0123456789().,-volV) ORIGINAL PAPER New genus-specific primers for PCR identification of Rubrobacter strains Jean Franco Castro . Imen Nouioui . Juan A. Asenjo . Barbara Andrews . Alan T. Bull . Michael Goodfellow Received: 15 March 2019 / Accepted: 1 August 2019 / Published online: 12 August 2019 Ó The Author(s) 2019 Abstract A set of oligonucleotide primers, environmental DNA extracted from soil samples Rubro223f and Rubro454r, were found to amplify a taken from two locations in the Atacama Desert. 267 nucleotide sequence of 16S rRNA genes of Sequencing of a DNA library prepared from the bands Rubrobacter type strains. The primers distinguished showed that all of the clones fell within the evolu- members of this genus from other deeply-rooted tionary radiation occupied by the genus Rubrobacter. actinobacterial lineages corresponding to the genera Most of the clones were assigned to two lineages that Conexibacter, Gaiella, Parviterribacter, Patulibacter, were well separated from phyletic lines composed of Solirubrobacter and Thermoleophilum of the class Rubrobacter type strains. It can be concluded that Thermoleophilia. Amplification of DNA bands of primers Rubro223f and Rubro454r are specific for the about 267 nucleotides were generated from genus Rubrobacter and can be used to detect the presence and abundance of members of this genus in the Atacama Desert and other biomes. GenBank accession numbers: MK158160–75 for sequences from Salar de Tara and MK158176–92 for those from Quebrada Nacimiento. Keywords Actinobacteria Á Rubrobacter Á Atacama desert Á Taxonomy Á Genus-specific primers Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10482-019-01314-3) con- tains supplementary material, which is available to authorized users.
    [Show full text]
  • Thermally Enhanced Bioremediation of Petroleum Hydrocarbons
    THESIS THERMALLY ENHANCED BIOREMEDIATION OF LNAPL Submitted by Natalie Rae Zeman Department of Civil and Environmental Engineering In partial fulfillment of the requirements For the Degree of Master of Science Colorado State University Fort Collins, Colorado Spring 2013 Master’s Committee: Advisor: Susan K. De Long Co-Advisor: Thomas Sale Mary Stromberger ABSTRACT THERMALLY ENHANCED BIODEGRADATION OF LNAPL Inadvertent releases of petroleum liquids into the environment have led to widespread soil and groundwater contamination. Petroleum liquids, referred to as Light Non-Aqueous Phase Liquid (LNAPL), pose a threat to the environment and human health. The purpose of the research described herein was to evaluate thermally enhanced bioremediation as a sustainable remediation technology for rapid cleanup of LNAPL zones. Thermally enhanced LNAPL attenuation was investigated via a thermal microcosm study that considered six different temperatures: 4°C, 9°C, 22°C, 30°C, 35°C, and 40°C. Microcosms were run for a period of 188 days using soil, water and LNAPL from a decommissioned refinery in Evansville, WY. The soil microcosms simulated anaerobic subsurface conditions where sulfate reduction and methanogenesis were the pathways for biodegradation. To determine the optimal temperature range for thermal stimulation and provide guidance for design of field-scale application, both contaminant degradation and soil microbiology were monitored. CH4 and CO2 generation occurred in microcosms at 22°C, 30°C, 35°C and 40°C but was not observed at 4°C and 9°C. The total volume of biogas generated after 188 days of incubation was 19 times higher in microcosms at 22°C and 30°C compared to the microcosms at 35°C.
    [Show full text]
  • Metagenomic Analyses Decipher the Unknown Geographical Shift and the Storage History of Possibly Smuggled Antique Marble Statues
    Annals of Microbiology https://doi.org/10.1007/s13213-019-1446-3 ORIGINAL ARTICLE A time travel story: metagenomic analyses decipher the unknown geographical shift and the storage history of possibly smuggled antique marble statues Guadalupe Piñar1 & Caroline Poyntner1 & Hakim Tafer 1 & Katja Sterflinger1 Received: 3 December 2018 /Accepted: 30 January 2019 # The Author(s) 2019 Abstract In this study, three possibly smuggled marble statues of an unknown origin, two human torsi (a female and a male) and a small head, were subjected to molecular analyses. The aim was to reconstruct the history of the storage of each single statue, to infer the possible relationship among them, and to elucidate their geographical shift. A genetic strategy, comprising metagenomic analyses of the 16S ribosomal DNA (rDNA) of prokaryotes, 18S rDNA of eukaryotes, as well as internal transcribed spacer regions of fungi, was performed by using the Ion Torrent sequencing platform. Results suggest a possible common history of storage of the two human torsi; their eukaryotic microbiomes showed similarities comprising many soil-inhabiting organisms, which may indicate storage or burial in land of agricultural soil. For the male torso, it was possible to infer the geographical origin, due to the presence of DNA traces of Taiwania, a tree found only in Asia. The small head displayed differences concerning the eukaryotic community, compared with the other two samples, but showed intriguing similarities with the female torso concerning the bacterial community. Both displayed many halotolerant and halophilic bacteria, which may indicate a longer stay in arid and semi-arid surroundings as well as marine environments.
    [Show full text]
  • 1 CURRICULUM VITAE William B. Whitman Address
    CURRICULUM VITAE William B. Whitman Address: Department of Microbiology University of Georgia Athens, Georgia 30602-2605 Phone: 706-542-4219 706-542-2674 (fax) [email protected] (e-mail) Education: Bachelor of Science, 1973, from the Department of Biological Sciences, State University of New York at Stony Brook. Doctor of Philosophy, 1978, from the Department of Microbiology, University of Texas at Austin. Advisor: F. Robert Tabita. Postdoctoral work, Department of Microbiology, University of Illinois, 1978 - 1982. Advisor: Ralph S. Wolfe. Academic Positions: Head, Department of Microbiology, University of Georgia, 2006-2012 Professor of Microbiology, University of Georgia, 1993-present Associate Professor of Microbiology, University of Georgia, 1988-1993 Assistant Professor of Microbiology, University of Georgia, 1982-1988 Graduate Faculty, University of Georgia, 1984-present Joint appointed Department of Biochemistry, University of Georgia, 1986-present Joint appointed Department of Marine Science, University of Georgia, 1993-present Membership in Professional Societies: American Association for the Advancement of Science, 1975-present American Society for Microbiology, 1975-present Southeastern branch, American Society for Microbiology, 1982-present American Society of Biological Chemistry, 1982-1995 American Academy of Microbiology, 1994- present Bergey’s International Society for Microbial Systematics, 2010-present 1 Other Professional Service: Secretary, ICSB Subcommittee on the taxonomy of methanogenic bacteria, 1986-2001 Advisory Board, N.I.H. Stable Isotope Resource at Los Alamos, 1988-1995 Editorial Board, Journal of Bacteriology, 1989-1994 Panel Member, NSF program in Cellular Biochemistry, 1992-1994 Associate Editor, International Journal of Systematic Bacteriology, 1995-2001 Co-chair (with A. Klein) of Gordon Research Conference on Archaea: Ecology, Metabolism and Molecular Biology; Plymouth State, Colorado, 1996 Panel Member, DOE Energy Biosciences, 1998 Co-organizer (with D.
    [Show full text]
  • New Genus-Specific Primers for PCR Identification of Rubrobacter
    Antonie van Leeuwenhoek https://doi.org/10.1007/s10482-019-01314-3 (0123456789().,-volV)( 0123456789().,-volV) ORIGINAL PAPER New genus-specific primers for PCR identification of Rubrobacter strains Jean Franco Castro . Imen Nouioui . Juan A. Asenjo . Barbara Andrews . Alan T. Bull . Michael Goodfellow Received: 15 March 2019 / Accepted: 1 August 2019 Ó The Author(s) 2019 Abstract A set of oligonucleotide primers, environmental DNA extracted from soil samples Rubro223f and Rubro454r, were found to amplify a taken from two locations in the Atacama Desert. 267 nucleotide sequence of 16S rRNA genes of Sequencing of a DNA library prepared from the bands Rubrobacter type strains. The primers distinguished showed that all of the clones fell within the evolu- members of this genus from other deeply-rooted tionary radiation occupied by the genus Rubrobacter. actinobacterial lineages corresponding to the genera Most of the clones were assigned to two lineages that Conexibacter, Gaiella, Parviterribacter, Patulibacter, were well separated from phyletic lines composed of Solirubrobacter and Thermoleophilum of the class Rubrobacter type strains. It can be concluded that Thermoleophilia. Amplification of DNA bands of primers Rubro223f and Rubro454r are specific for the about 267 nucleotides were generated from genus Rubrobacter and can be used to detect the presence and abundance of members of this genus in the Atacama Desert and other biomes. GenBank accession numbers: MK158160–75 for sequences from Salar de Tara and MK158176–92 for those from Quebrada Nacimiento. Keywords Actinobacteria Á Rubrobacter Á Atacama desert Á Taxonomy Á Genus-specific primers Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10482-019-01314-3) con- tains supplementary material, which is available to authorized users.
    [Show full text]
  • 1 CURRICULUM VITAE William B. Whitman Address
    CURRICULUM VITAE William B. Whitman Address: Department of Microbiology University of Georgia Athens, Georgia 30602-2605 Phone: 706-542-4219 706-542-2674 (fax) [email protected] (e-mail) Education: Bachelor of Science, 1973, from the Department of Biological Sciences, State University of New York at Stony Brook. Doctor of Philosophy, 1978, from the Department of Microbiology, University of Texas at Austin. Advisor: F. Robert Tabita. Postdoctoral work, Department of Microbiology, University of Illinois, 1978 - 1982. Advisor: Ralph S. Wolfe. Academic Positions: Emeritus Professor of Microbiology, University of Georgia, 2019-present Distinguished Research Professor of Microbiology, University of Georgia, 2011-2019 Head, Department of Microbiology, University of Georgia, 2006-2012 Professor of Microbiology, University of Georgia, 1993-present Associate Professor of Microbiology, University of Georgia, 1988-1993 Assistant Professor of Microbiology, University of Georgia, 1982-1988 Graduate Faculty, University of Georgia, 1984-present Joint appointed Department of Biochemistry, University of Georgia, 1986-present Joint appointed Department of Marine Science, University of Georgia, 1993-present Adjunct Professor of Key Laboratory of Development and Application of Rural Renewable Energy, Chengdu China, 2018-2021 Membership in Professional Societies: American Association for the Advancement of Science, 1975-present American Society for Microbiology, 1975-present Southeastern branch, American Society for Microbiology, 1982-present American Society
    [Show full text]