Microbial Populations of Stony Meteorites: Substrate Controls on First Colonizers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spatial Stratification of Soil Bacterial Populations in Aggregates of Diverse Soils Daniel Mummey 1, William Holben1, Johan Six 2 and Peter Stahl3
Microbial Ecology Spatial Stratification of Soil Bacterial Populations in Aggregates of Diverse Soils Daniel Mummey 1, William Holben1, Johan Six 2 and Peter Stahl3 (1) Division of Biological Sciences, University of Montana, Missoula, MO, USA (2) Department of Plant Sciences, University of California-Davis, Davis, CA, USA (3) Department of Renewable Resources, University of Wyoming, Laramie, WY, USA Received: 23 December 2004 / Accepted: 1 January 2005 / Online publication: 6 April 2006 Abstract influenced by, the environment. Such an understanding can only be attained by analysis at scales relevant to those Most soil microbial community studies to date have at which processes influencing microbial diversity actu- focused on homogenized bulk soil samples. However, it ally operate [29]. However, because of the biotic and is likely that many important microbial processes occur abiotic complexity exhibited by most soils at nearly all in spatially segregated microenvironments in the soil scales, determining soil microbial diversity patterns leading to a microscale biogeography. This study at- remains a formidable challenge for soil microbiologists tempts to localize specific microbial populations to dif- [54]. ferent fractions or compartments within the soil matrix. The vast majority of soil microbial analyses are Microbial populations associated with macroaggregates conducted on bulk soil samples, and often composited and inner- versus total-microaggregates of three diverse bulk soil samples, which averages localized heterogeneity soils were -
Phylogenetic Analyses of the Genus Hymenobacter and Description of Siccationidurans Gen
etics & E en vo g lu t lo i y o h n a P r f y Journal of Phylogenetics & Sathyanarayana Reddy, J Phylogen Evolution Biol 2013, 1:4 o B l i a o n l r o DOI: 10.4172/2329-9002.1000122 u g o y J Evolutionary Biology ISSN: 2329-9002 Research Article Open Access Phylogenetic Analyses of the Genus Hymenobacter and Description of Siccationidurans gen. nov., and Parahymenobacter gen. nov Gundlapally Sathyanarayana Reddy* CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad-500 007, India Abstract Phylogenetic analyses of 26 species of the genus Hymenobacter based on the 16S rRNA gene sequences, resulted in polyphyletic clustering with three major groups, arbitrarily named as Clade1, Clade2 and Clade3. Delineation of Clade1 and Clade3 from Clade2 was supported by robust clustering and high bootstrap values of more than 90% and 100% in all the phylogenetic methods. 16S rRNA gene sequence similarity shared by Clade1 and Clade2 was 88 to 93%, Clade1 and Clade3 was 88 to 91% and Clade2 and Clade3 was 89 to 92%. Based on robust phylogenetic clustering, less than 93.0% sequence similarity, unique in silico restriction patterns, presence of distinct signature nucleotides and signature motifs in their 16S rRNA gene sequences, two more genera were carved to accommodate species of Clade1 and Clade3. The name Hymenobacter, sensu stricto, was retained to represent 17 species of Clade2. For members of Clade1 and Clade3, the names Siccationidurans gen. nov. and Parahymenobacter gen. nov. were proposed, respectively, and species belonging to Clade1 and Clade3 were transferred to their respective genera. -
Solirubrobacter Pauli Gen. Nov., Sp. Nov., a Mesophilic Bacterium Within the Rubrobacteridae Related to Common Soil Clones
International Journal of Systematic and Evolutionary Microbiology (2003), 53, 485–490 DOI 10.1099/ijs.0.02438-0 Solirubrobacter pauli gen. nov., sp. nov., a mesophilic bacterium within the Rubrobacteridae related to common soil clones David R. Singleton,1 Michelle A. Furlong,2 Aaron D. Peacock,3 David C. White,3 David C. Coleman4 and William B. Whitman1 Correspondence 1Department of Microbiology, University of Georgia, Athens, GA 30602-2605, USA William B. Whitman 2Department of Natural Sciences, Clayton College and State University, Morrow, [email protected] GA 30260-1250, USA 3Center for Biomarker Analysis, University of Tennessee, Knoxville, TN 37932-2575, USA 4Institute of Ecology, University of Georgia, Athens, GA 30602-2360, USA A novel bacterium, strain B33D1T, isolated from agricultural soil, was characterized taxonomically and phylogenetically. Strain B33D1T was a Gram-positive, aerobic rod of medium length that formed long chains on a common laboratory medium. However, B33D1T grew poorly on the surface of agar plates and was sensitive to desiccation. The optimal growth temperature was 30˚C (range 19–38˚C). The organism grew well on a variety of sugars and was capable of utilizing a few amino acids as sole carbon sources. Phylogenetically, the most closely related described species to strain B33D1T was Rubrobacter xylanophilus, which possessed 86 % 16S rRNA sequence similarity. However, a number of 16S rRNA gene clones derived from soil samples possessed up to 93 % sequence similarity. These results placed strain B33D1T within the subclass Rubrobacteridae of the phylum Actinobacteria. The novel genus and species Solirubrobacter pauli gen. nov., sp. nov. is proposed, with strain B33D1T (=ATCC BAA-492T=DSM 14954T) as the type strain. -
Conexibacter Woesei Type Strain (ID131577T)
Lawrence Berkeley National Laboratory Recent Work Title Complete genome sequence of Conexibacter woesei type strain (ID131577). Permalink https://escholarship.org/uc/item/7k20579b Journal Standards in genomic sciences, 2(2) ISSN 1944-3277 Authors Pukall, Rüdiger Lapidus, Alla Glavina Del Rio, Tijana et al. Publication Date 2010-03-30 DOI 10.4056/sigs.751339 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2010) 2:212-219 DOI:10.4056/sigs.751339 Complete genome sequence of Conexibacter woesei type strain (ID131577T) Rüdiger Pukall1, Alla Lapidus2, Tijana Glavina Del Rio2, Alex Copeland2, Hope Tice2, Jan- Fang Cheng2, Susan Lucas2, Feng Chen2, Matt Nolan2, David Bruce2,3, Lynne Goodwin2,3, Sam Pitluck2, Konstantinos Mavromatis2, Natalia Ivanova2, Galina Ovchinnikova2, Amrita Pati2, Amy Chen4, Krishna Palaniappan4, Miriam Land2,5, Loren Hauser2,5, Yun-Juan Chang2,5, Cynthia D. Jeffries2,5, Patrick Chain2,6, Linda Meincke2,3, David Sims2,3,Thomas Brettin2,3, John C. Detter2,3, Manfred Rohde7, Markus Göker1, Jim Bristow2, Jonathan A. Eisen2,8, Victor Markowitz4, Nikos C. Kyrpides1, Hans-Peter Klenk1*, and Philip Hugenholtz2 1 DSMZ – German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany 2 DOE Joint Genome Institute, Walnut Creek, California, USA 3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 5 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 6 Lawrence Livermore National Laboratory, Livermore, California, USA 7 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 8 University of California Davis Genome Center, Davis, California, USA *Corresponding author: Hans-Peter Klenk Keywords: aerobic, short rods, forest soil, Solirubrobacterales, Conexibacteraceae, GEBA The genus Conexibacter (Monciardini et al. -
A Time Travel Story: Metagenomic Analyses Decipher the Unknown Geographical Shift and the Storage History of Possibly Smuggled Antique Marble Statues
Annals of Microbiology (2019) 69:1001–1021 https://doi.org/10.1007/s13213-019-1446-3 ORIGINAL ARTICLE A time travel story: metagenomic analyses decipher the unknown geographical shift and the storage history of possibly smuggled antique marble statues Guadalupe Piñar1 & Caroline Poyntner1 & Hakim Tafer 1 & Katja Sterflinger1 Received: 3 December 2018 /Accepted: 30 January 2019 /Published online: 23 February 2019 # The Author(s) 2019 Abstract In this study, three possibly smuggled marble statues of an unknown origin, two human torsi (a female and a male) and a small head, were subjected to molecular analyses. The aim was to reconstruct the history of the storage of each single statue, to infer the possible relationship among them, and to elucidate their geographical shift. A genetic strategy, comprising metagenomic analyses of the 16S ribosomal DNA (rDNA) of prokaryotes, 18S rDNA of eukaryotes, as well as internal transcribed spacer regions of fungi, was performed by using the Ion Torrent sequencing platform. Results suggest a possible common history of storage of the two human torsi; their eukaryotic microbiomes showed similarities comprising many soil-inhabiting organisms, which may indicate storage or burial in land of agricultural soil. For the male torso, it was possible to infer the geographical origin, due to the presence of DNA traces of Taiwania, a tree found only in Asia. The small head displayed differences concerning the eukaryotic community, compared with the other two samples, but showed intriguing similarities with the female torso concerning the bacterial community. Both displayed many halotolerant and halophilic bacteria, which may indicate a longer stay in arid and semi-arid surroundings as well as marine environments. -
Distribution and Isolation of Strains Belonging to the Order Solirubrobacterales
The Journal of Antibiotics (2015) 68, 763–766 & 2015 Japan Antibiotics Research Association All rights reserved 0021-8820/15 www.nature.com/ja NOTE Distribution and isolation of strains belonging to the order Solirubrobacterales Tamae Seki1, Atsuko Matsumoto1,2, Satoshi Ōmura1 and Yōko Takahashi1 The Journal of Antibiotics (2015) 68, 763–766; doi:10.1038/ja.2015.67; published online 1 July 2015 The number of prokaryotes on earth is estimated to be in the order of initial denaturation at 95 °C for 1 min, followed by 30 cycles of 1030 cells,1 and it is well known that most microorganisms in the denaturation at 95 °C for 1 min, annealing at 50 °C for 1 min, environment are as-yet-uncultured.2 Many approaches have been tried extension at 72 °C for 1.5 min and an additional extension step at to isolate unknown bacterial strains. Davis et al.3 reported that 72 °C for 2 min. Reaction mixtures (50 μl) containing 0.4 μlofTaq medium choice and incubation time are significant for isolation of polymerase (TaKaRa, Shiga, Japan), 5.0 μl of 10 × Taq buffer, 2.0 μlof rare soil bacteria. Patulibacter minatonensis, belonging to the order dNTP mixtures (2.5 μM), 29.6 μlofdH2O, 4.0 μlofeachprimer(5μM) Solirubrobacterales, was isolated using medium supplemented with and 5.0 μl of DNA were prepared. As a second step, PCR with specific superoxide dismutase and proposed as a novel genus in 2006.4 At that primers (423PF-1012PR) was performed as follows: initial denatura- time, the order Solirubrobacterales5 consisted of only three families, tion at 94 °C for 1 min, followed by 30 cycles of denaturation at 94 °C three genera and three species; Patulibacter minatonensis, Conexibacter for 1 min, annealing at 65 °C for 1 min, extension at 72 °C for 1.5 min woesei6 and Solirubrobacter pauli,7 and presently there are still and an additional extension step at 72 °C for 2 min. -
New Genus-Specific Primers for PCR Identification of Rubrobacter Strains
Antonie van Leeuwenhoek (2019) 112:1863–1874 https://doi.org/10.1007/s10482-019-01314-3 (0123456789().,-volV)( 0123456789().,-volV) ORIGINAL PAPER New genus-specific primers for PCR identification of Rubrobacter strains Jean Franco Castro . Imen Nouioui . Juan A. Asenjo . Barbara Andrews . Alan T. Bull . Michael Goodfellow Received: 15 March 2019 / Accepted: 1 August 2019 / Published online: 12 August 2019 Ó The Author(s) 2019 Abstract A set of oligonucleotide primers, environmental DNA extracted from soil samples Rubro223f and Rubro454r, were found to amplify a taken from two locations in the Atacama Desert. 267 nucleotide sequence of 16S rRNA genes of Sequencing of a DNA library prepared from the bands Rubrobacter type strains. The primers distinguished showed that all of the clones fell within the evolu- members of this genus from other deeply-rooted tionary radiation occupied by the genus Rubrobacter. actinobacterial lineages corresponding to the genera Most of the clones were assigned to two lineages that Conexibacter, Gaiella, Parviterribacter, Patulibacter, were well separated from phyletic lines composed of Solirubrobacter and Thermoleophilum of the class Rubrobacter type strains. It can be concluded that Thermoleophilia. Amplification of DNA bands of primers Rubro223f and Rubro454r are specific for the about 267 nucleotides were generated from genus Rubrobacter and can be used to detect the presence and abundance of members of this genus in the Atacama Desert and other biomes. GenBank accession numbers: MK158160–75 for sequences from Salar de Tara and MK158176–92 for those from Quebrada Nacimiento. Keywords Actinobacteria Á Rubrobacter Á Atacama desert Á Taxonomy Á Genus-specific primers Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10482-019-01314-3) con- tains supplementary material, which is available to authorized users. -
Thermally Enhanced Bioremediation of Petroleum Hydrocarbons
THESIS THERMALLY ENHANCED BIOREMEDIATION OF LNAPL Submitted by Natalie Rae Zeman Department of Civil and Environmental Engineering In partial fulfillment of the requirements For the Degree of Master of Science Colorado State University Fort Collins, Colorado Spring 2013 Master’s Committee: Advisor: Susan K. De Long Co-Advisor: Thomas Sale Mary Stromberger ABSTRACT THERMALLY ENHANCED BIODEGRADATION OF LNAPL Inadvertent releases of petroleum liquids into the environment have led to widespread soil and groundwater contamination. Petroleum liquids, referred to as Light Non-Aqueous Phase Liquid (LNAPL), pose a threat to the environment and human health. The purpose of the research described herein was to evaluate thermally enhanced bioremediation as a sustainable remediation technology for rapid cleanup of LNAPL zones. Thermally enhanced LNAPL attenuation was investigated via a thermal microcosm study that considered six different temperatures: 4°C, 9°C, 22°C, 30°C, 35°C, and 40°C. Microcosms were run for a period of 188 days using soil, water and LNAPL from a decommissioned refinery in Evansville, WY. The soil microcosms simulated anaerobic subsurface conditions where sulfate reduction and methanogenesis were the pathways for biodegradation. To determine the optimal temperature range for thermal stimulation and provide guidance for design of field-scale application, both contaminant degradation and soil microbiology were monitored. CH4 and CO2 generation occurred in microcosms at 22°C, 30°C, 35°C and 40°C but was not observed at 4°C and 9°C. The total volume of biogas generated after 188 days of incubation was 19 times higher in microcosms at 22°C and 30°C compared to the microcosms at 35°C. -
Metagenomic Analyses Decipher the Unknown Geographical Shift and the Storage History of Possibly Smuggled Antique Marble Statues
Annals of Microbiology https://doi.org/10.1007/s13213-019-1446-3 ORIGINAL ARTICLE A time travel story: metagenomic analyses decipher the unknown geographical shift and the storage history of possibly smuggled antique marble statues Guadalupe Piñar1 & Caroline Poyntner1 & Hakim Tafer 1 & Katja Sterflinger1 Received: 3 December 2018 /Accepted: 30 January 2019 # The Author(s) 2019 Abstract In this study, three possibly smuggled marble statues of an unknown origin, two human torsi (a female and a male) and a small head, were subjected to molecular analyses. The aim was to reconstruct the history of the storage of each single statue, to infer the possible relationship among them, and to elucidate their geographical shift. A genetic strategy, comprising metagenomic analyses of the 16S ribosomal DNA (rDNA) of prokaryotes, 18S rDNA of eukaryotes, as well as internal transcribed spacer regions of fungi, was performed by using the Ion Torrent sequencing platform. Results suggest a possible common history of storage of the two human torsi; their eukaryotic microbiomes showed similarities comprising many soil-inhabiting organisms, which may indicate storage or burial in land of agricultural soil. For the male torso, it was possible to infer the geographical origin, due to the presence of DNA traces of Taiwania, a tree found only in Asia. The small head displayed differences concerning the eukaryotic community, compared with the other two samples, but showed intriguing similarities with the female torso concerning the bacterial community. Both displayed many halotolerant and halophilic bacteria, which may indicate a longer stay in arid and semi-arid surroundings as well as marine environments. -
1 CURRICULUM VITAE William B. Whitman Address
CURRICULUM VITAE William B. Whitman Address: Department of Microbiology University of Georgia Athens, Georgia 30602-2605 Phone: 706-542-4219 706-542-2674 (fax) [email protected] (e-mail) Education: Bachelor of Science, 1973, from the Department of Biological Sciences, State University of New York at Stony Brook. Doctor of Philosophy, 1978, from the Department of Microbiology, University of Texas at Austin. Advisor: F. Robert Tabita. Postdoctoral work, Department of Microbiology, University of Illinois, 1978 - 1982. Advisor: Ralph S. Wolfe. Academic Positions: Head, Department of Microbiology, University of Georgia, 2006-2012 Professor of Microbiology, University of Georgia, 1993-present Associate Professor of Microbiology, University of Georgia, 1988-1993 Assistant Professor of Microbiology, University of Georgia, 1982-1988 Graduate Faculty, University of Georgia, 1984-present Joint appointed Department of Biochemistry, University of Georgia, 1986-present Joint appointed Department of Marine Science, University of Georgia, 1993-present Membership in Professional Societies: American Association for the Advancement of Science, 1975-present American Society for Microbiology, 1975-present Southeastern branch, American Society for Microbiology, 1982-present American Society of Biological Chemistry, 1982-1995 American Academy of Microbiology, 1994- present Bergey’s International Society for Microbial Systematics, 2010-present 1 Other Professional Service: Secretary, ICSB Subcommittee on the taxonomy of methanogenic bacteria, 1986-2001 Advisory Board, N.I.H. Stable Isotope Resource at Los Alamos, 1988-1995 Editorial Board, Journal of Bacteriology, 1989-1994 Panel Member, NSF program in Cellular Biochemistry, 1992-1994 Associate Editor, International Journal of Systematic Bacteriology, 1995-2001 Co-chair (with A. Klein) of Gordon Research Conference on Archaea: Ecology, Metabolism and Molecular Biology; Plymouth State, Colorado, 1996 Panel Member, DOE Energy Biosciences, 1998 Co-organizer (with D. -
New Genus-Specific Primers for PCR Identification of Rubrobacter
Antonie van Leeuwenhoek https://doi.org/10.1007/s10482-019-01314-3 (0123456789().,-volV)( 0123456789().,-volV) ORIGINAL PAPER New genus-specific primers for PCR identification of Rubrobacter strains Jean Franco Castro . Imen Nouioui . Juan A. Asenjo . Barbara Andrews . Alan T. Bull . Michael Goodfellow Received: 15 March 2019 / Accepted: 1 August 2019 Ó The Author(s) 2019 Abstract A set of oligonucleotide primers, environmental DNA extracted from soil samples Rubro223f and Rubro454r, were found to amplify a taken from two locations in the Atacama Desert. 267 nucleotide sequence of 16S rRNA genes of Sequencing of a DNA library prepared from the bands Rubrobacter type strains. The primers distinguished showed that all of the clones fell within the evolu- members of this genus from other deeply-rooted tionary radiation occupied by the genus Rubrobacter. actinobacterial lineages corresponding to the genera Most of the clones were assigned to two lineages that Conexibacter, Gaiella, Parviterribacter, Patulibacter, were well separated from phyletic lines composed of Solirubrobacter and Thermoleophilum of the class Rubrobacter type strains. It can be concluded that Thermoleophilia. Amplification of DNA bands of primers Rubro223f and Rubro454r are specific for the about 267 nucleotides were generated from genus Rubrobacter and can be used to detect the presence and abundance of members of this genus in the Atacama Desert and other biomes. GenBank accession numbers: MK158160–75 for sequences from Salar de Tara and MK158176–92 for those from Quebrada Nacimiento. Keywords Actinobacteria Á Rubrobacter Á Atacama desert Á Taxonomy Á Genus-specific primers Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10482-019-01314-3) con- tains supplementary material, which is available to authorized users. -
1 CURRICULUM VITAE William B. Whitman Address
CURRICULUM VITAE William B. Whitman Address: Department of Microbiology University of Georgia Athens, Georgia 30602-2605 Phone: 706-542-4219 706-542-2674 (fax) [email protected] (e-mail) Education: Bachelor of Science, 1973, from the Department of Biological Sciences, State University of New York at Stony Brook. Doctor of Philosophy, 1978, from the Department of Microbiology, University of Texas at Austin. Advisor: F. Robert Tabita. Postdoctoral work, Department of Microbiology, University of Illinois, 1978 - 1982. Advisor: Ralph S. Wolfe. Academic Positions: Emeritus Professor of Microbiology, University of Georgia, 2019-present Distinguished Research Professor of Microbiology, University of Georgia, 2011-2019 Head, Department of Microbiology, University of Georgia, 2006-2012 Professor of Microbiology, University of Georgia, 1993-present Associate Professor of Microbiology, University of Georgia, 1988-1993 Assistant Professor of Microbiology, University of Georgia, 1982-1988 Graduate Faculty, University of Georgia, 1984-present Joint appointed Department of Biochemistry, University of Georgia, 1986-present Joint appointed Department of Marine Science, University of Georgia, 1993-present Adjunct Professor of Key Laboratory of Development and Application of Rural Renewable Energy, Chengdu China, 2018-2021 Membership in Professional Societies: American Association for the Advancement of Science, 1975-present American Society for Microbiology, 1975-present Southeastern branch, American Society for Microbiology, 1982-present American Society