The First Crocodyliforms Remains from La Parrita Locality, Cerro Del Pueblo

Total Page:16

File Type:pdf, Size:1020Kb

The First Crocodyliforms Remains from La Parrita Locality, Cerro Del Pueblo Boletín de la Sociedad Geológica Mexicana / 2019 / 727 The first crocodyliforms remains from La Parrita locality, Cerro del Pueblo Formation (Campanian), Coahuila, Mexico Héctor E. Rivera-Sylva, Gerardo Carbot-Chanona, Rafael Vivas-González, Lizbeth Nava-Rodríguez, Fernando Cabral-Valdéz ABSTRACT Héctor E. Rivera-Sylva ABSTRACT RESUMEN Fernando Cabral-Valdéz Departamento de Paleontología, Museo del Desierto, Carlos Abedrop Dávila 3745, 25022, The record of land tetrapods of El registro de tetrápodos terrestres en la Saltillo, Coahuila, Mexico. the Cerro del Pueblo Formation Formación Cerro del Pueblo (Cretácico (Late Cretaceous, Campanian), in Gerardo Carbot-Chanona tardío, Campaniano) en Coahuila, incluye Coahuila, includes turtles, pterosaurs, [email protected] tortugas, pterosaurios, dinosaurios y Museo de Paleontología “Eliseo Palacios Aguil- dinosaurs, and crocodyliforms. This era”, Secretaría de Medio Ambiente e Historia last group is represented only by crocodyliformes. Este último grupo está Natural. Calzada de los hombres ilustres s/n, representado por goniofólididos, eusuquios 29000, Tuxtla Gutiérrez, Chiapas, Mexico. goniopholidids, indeterminate eusu- chians, and Brachychampsa montana. In indeterminados y Brachychampsa montana. Rafael Vivas-González this work we report the first crocodyli- En este trabajo se reportan los primeros Villa Nápoles 6506, Colonia Mirador de las Mitras, 64348, Monterrey, N. L., Mexico. form remains from La Parrita locality, restos de crocodyliformes de la localidad Cerro del Pueblo Formation, based La Parrita, Formación Cerro del Pueblo, Lizbeth Nava-Rodríguez on one isolated tooth, vertebrae, and con base en un diente aislado, vértebras y Facultad de Ingeniería, Universidad Autóno- osteoderms. The association of croc- ma de San Luis Potosí, Dr. Manuel Nava 8, osteodermos. La asociación de crocodyli- Zona Universitaria Poniente, San Luis Potosi, odyliforms, turtles, dinosaurs, and formes, tortugas, dinosaurios y oogonias S.L.P., Mexico. charophyte oogonia provide evidence for stagnant to fluvial environments de cariofitas, proporcionan evidencia de on a delta plain with tropical climate ambientes fluviales en una llanura deltaica for the Cerro del Pueblo Formation de tipo tropical para la Formación Cerro during the Late Cretaceous. del Pueblo durante el Cretácico tardío. Keywords: Crocodyliforms, Palabras clave: Crocodyli- Globidonta, Late Cretaceous, formes, Globidonta, Cretácico Coahuila, Mexico. tardío, Coahuila, México. BOL. SOC. GEOL. MEX. 2019 VOL. 71 NO. 3 P. 727 ‒ 739 http://dx.doi.org/10.18268/BSGM2019v71n3a6 Manuscript received: January 5, 2018. Corrected manuscript received: April 10, 2018. Manuscript accepted: April 21, 2018. Crocodyliforms remains from La Parrita, Coahuila 728 / Boletín de la Sociedad Geológica Mexicana / 2019 1. Introduction mondi et al., 2015; Hastings et al., 2016), but Globidonta is explicitly a stem-based group, and The fossil record of land vertebrates from the Alligatoridae is node-based (Brochu, 1999). Fur- Cerro del Pueblo Formation in Coahuila includes thermore, some Late Cretaceous North American INTRODUCTION / GEOLOGICAL SETTING AND PALEOENVIRONMENT turtles, squamates, crocodyliforms, pterosaurs, and globidontans were excluded from Alligatoridae in dinosaurs. The turtle record includes a pleurodire earlier analyses (e.g., Brochu, 2004; Martin and with similarities to Chedighaii, the paracryptodires Lauprasert, 2010), such as Stangerochampsa mccabei Compsemys and Neurankylus, the cheloniid Mexiche- from the Early Maastrichtian Horseshoe Canyon lys coahuilaensis, the kinosternid Hoplochelys, the Formation, southern Alberta (Wu et al., 1996); trionychid Adocus, and indeterminate chelydrid, Albertochampsa langstoni from the middle Campan- kinosternoid, and trionychid remains (Brink- ian Dinosaur Park Formation of southern Alberta man, 2014). The only squamate is “Coniophis” (Erickson, 1972), and Brachychampsa reported sp., a taxon based on vertebrae collected near from several sites of early Campanian through Rincon Colorado (Aguillon-Martinez, 2010). late Maastrichtian age throughout western North Pterosaurs are represented by one indeterminate America (Gilmore, 1911; Carpenter and Lindsay, ornithocheiroid (Frey and Stinnesbeck, 2014). 1980; Bryant, 1989; Norell et al., 1994; Williamson, The dinosaur record comprises the hadrosaurids 1996; Sullivan and Lucas, 2003; Monroy Mújica, Velafrons coahuilensis and Latirhinus uistlani, the cera- 2009; Aguillon-Martinez, 2010; Irmis et al., 2013). topsian Coahuilaceratops magnacuerna, ankylosaurids, Two species of Brachychampsa are recognized: B. the dromeosaurids Tröodon and Saurornitholestes, the sealeyi from the Campanian De-Na-Zin Member problematic coelurosaur Richardoestesia, tyranno- of the Kirtland Formation, San Juan Basin, New saurids, and ornithomimosaurs (Rivera-Sylva and Mexico (Williamson, 1996); and the type species, Carpenter, 2014a, 2014b). Records of crocodyli- B. montana from the Hell Creek Formation of forms in the Cerro del Pueblo Formation include Montana (Gilmore, 1911; Bryant, 1989; Norell et indeterminate eusuchian and goniopholidid mate- al., 1994) and possibly elsewhere in western North rial (Rodríguez-de la Rosa and Cevallos-Ferriz, America. 1998), along with a skull table, two frontal bones, Institutional abbreviations: CPC, Colección Pale- isolated teeth, and isolated osteoderms that Agu- ontológica de Coahuila (Paleontological Collec- illon-Martinez (2010) referred to the globidontan tion of Coahuila), Museo del Desierto (MUDE), alligatoroid Brachychampsa montana. Saltillo, Coahuila, Mexico. The material described in the present work comes from the La Parrita locality, located 54 km to the west of Saltillo (Figure 1), and includes fragments 2. Geological setting and of a maxilla and lower jaw, vertebrae, osteoderms, paleoenvironment and one bulbous tooth. The morphology of the tooth allows the classification as Globidonta, and The locality of La Parrita is part of the Cerro del thus is the second record of this clade of croco- Pueblo Formation, which is the oldest geologic dyliforms in the Cerro del Pueblo Formation, formation from the Difunta Group (Figure 2A). Coahuila. The rest of the material can only be The Cerro del Pueblo Formation is dated between assigned as Eusuchia. 71 and 72.5 million years old (Obradovich, 1993; Globidonta is an alligatoroid clade characterized, Eberth et al., 2004), which indicates Campanian at least ancestrally, by the presence of bulbous age. The Cerro del Pueblo Formation was depos- posterior teeth. Its content in recent phylogenetic ited under marginal marine and shallow marine analyses is redundant with that of Alligatoridae conditions, which were influenced by sea-level (e.g., Brochu, 2011; Skutchas et al., 2014; Salas-Gis- oscillations and storm events (Eberth et al., 2004). Crocodyliforms remains from La Parrita, Coahuila Boletín de la Sociedad Geológica Mexicana / 2019 / 729 GEOLOGICAL SETTING AND PALEOENVIRONMENT Figure 1 Location of the La Parrita locality (red star), Cerro del Pueblo Formation, Coahuila state. The facies suggest deltaic systems with shallow Above the base follows a 0.30 m layer consisting flow channels, oxbow or residual lakes, bays and of exfoliated siltstones with a high concentra- lagoons, coastal swamps, and wetlands with exu- tion of oysters of diverse size, which indicate a berant vegetation (McBride, 1974; Hill, 1988). brackish environment. According to Stinnesbeck The stratigraphic sequence that outcrop in La and Frey (2014), the Cerro del Pueblo Formation Parrita locality is composed of alternating layers sandstone and siltstone deposits are character- of sandstone, siltstone and shale (Figure 2B). At istic of brackish conditions, indicated by oyster the base, it is comprised of 0.20 m of ochre-gray banks and abundant non-ostrean bivalves and shales with greenish tonalities. Marine taxa such gastropods. Above the siltstone lies a 0.90 m as the ammonite Sphenodiscus and some isolated, hard, massive, coarse-grained sandstone layer weathered dinosaur bones are associated with with high concentrations of gastropods at the this layer. According to Eberth et al. (2004: 350- top, which indicates marine costal environments 352, fig.5), Sphenodiscus is present in facies 1 cor- (Vivas-González, 2013). A grit layer continues responding to the Parras Shale, which means this by 1 m above, with a 0.40 m thick concentration first layer is the base in which Cerro del Pueblo of gastropods lies above the grit. The next layer Formation is supported (Vivas-González, 2013). consists of 10 m of ochre-gray shale characterized Crocodyliforms remains from La Parrita, Coahuila 730 / Boletín de la Sociedad Geológica Mexicana / 2019 GEOLOGICAL SETTING AND PALEOENVIRONMENT Figure 2 Stratigraphic chart showing the age and divisions of the Difunta Group with the stratigraphic position of the Cerro del Pueblo Formation (A), and local stratigraphy of La Parrita locality (B), showing the sequence of alternant strata (sandstone, siltstone, and shale). A large diversity of vertebrate and invertebrate fossils occurs in the second layer of shale (from the bottom). by fossil diversity: the marine gastropods Cerithium grained sandstones (Vivas-González, 2013). The nodosa and Lissapiopsis sp. are common, as well as following 0.60 m are composed of shale, then oysters (Flamingostrea sp.). These mollusks represent 0.20 m of fractured sandstones. Above the frac- the most common invertebrates in this shale layer tured sandstone layer lie 32 m of
Recommended publications
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • Forgotten Crocodile from the Kirtland Formation, San Juan Basin, New
    posed that the narial cavities of Para- Wima1l- saurolophuswere vocal resonating chambers' Goniopholiskirtlandicus Apparently included with this material shippedto Wiman was a partial skull that lromthe Wiman describedas a new speciesof croc- forgottencrocodile odile, Goniopholis kirtlandicus. Wiman publisheda descriptionof G. kirtlandicusin Basin, 1932in the Bulletin of the GeologicalInstitute KirtlandFormation, San Juan of IJppsala. Notice of this specieshas not appearedin any Americanpublication. Klilin NewMexico (1955)presented a descriptionand illustration of the speciesin French, but essentially repeatedWiman (1932). byDonald L. Wolberg, Vertebrate Paleontologist, NewMexico Bureau of lVlinesand Mineral Resources, Socorro, NIM Localityinformation for Crocodilian bone, armor, and teeth are Goni o p holi s kir t landicus common in Late Cretaceous and Early Ter- The skeletalmaterial referred to Gonio- tiary deposits of the San Juan Basin and pholis kirtlandicus includesmost of the right elsewhere.In the Fruitland and Kirtland For- side of a skull, a squamosalfragment, and a mations of the San Juan Basin, Late Creta- portion of dorsal plate. The referral of the ceous crocodiles were important carnivores of dorsalplate probably represents an interpreta- the reconstructed stream and stream-bank tion of the proximity of the material when community (Wolberg, 1980). In the Kirtland found. Figs. I and 2, taken from Wiman Formation, a mesosuchian crocodile, Gonio- (1932),illustrate this material. pholis kirtlandicus, discovered by Charles H. Wiman(1932, p. 181)recorded the follow- Sternbergin the early 1920'sand not described ing locality data, provided by Sternberg: until 1932 by Carl Wiman, has been all but of Crocodile.Kirtland shalesa 100feet ignored since its description and referral. "Skull below the Ojo Alamo Sandstonein the blue Specimensreferred to other crocodilian genera cley.
    [Show full text]
  • The Making of Calibration Sausage Exemplified by Recalibrating the Transcriptomic Timetree of Jawed Vertebrates
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.19.882829; this version posted January 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. The making of calibration sausage exemplified by recalibrating the transcriptomic timetree of jawed vertebrates 1 David Marjanović 2 Department of Evolutionary Morphology, Science Programme “Evolution and Geoprocesses”, 3 Museum für Naturkunde – Leibniz Institute for Evolutionary and Biodiversity Research, Berlin, 4 Germany 5 ORCID: 0000-0001-9720-7726 6 Correspondence: 7 David Marjanović 8 [email protected] 9 Keywords: timetree, calibration, divergence date, Gnathostomata, Vertebrata 10 Abstract 11 Molecular divergence dating has the potential to overcome the incompleteness of the fossil record in 12 inferring when cladogenetic events (splits, divergences) happened, but needs to be calibrated by the 13 fossil record. Ideally but unrealistically, this would require practitioners to be specialists in molecular 14 evolution, in the phylogeny and the fossil record of all sampled taxa, and in the chronostratigraphy of 15 the sites the fossils were found in. Paleontologists have therefore tried to help by publishing 16 compendia of recommended calibrations, and molecular biologists unfamiliar with the fossil record 17 have made heavy use of such works (in addition to using scattered primary sources
    [Show full text]
  • Phylogenetic Taphonomy: a Statistical and Phylogenetic
    Drumheller and Brochu | 1 1 PHYLOGENETIC TAPHONOMY: A STATISTICAL AND PHYLOGENETIC 2 APPROACH FOR EXPLORING TAPHONOMIC PATTERNS IN THE FOSSIL 3 RECORD USING CROCODYLIANS 4 STEPHANIE K. DRUMHELLER1, CHRISTOPHER A. BROCHU2 5 1. Department of Earth and Planetary Sciences, The University of Tennessee, Knoxville, 6 Tennessee, 37996, U.S.A. 7 2. Department of Earth and Environmental Sciences, The University of Iowa, Iowa City, Iowa, 8 52242, U.S.A. 9 email: [email protected] 10 RRH: CROCODYLIAN BITE MARKS IN PHYLOGENETIC CONTEXT 11 LRH: DRUMHELLER AND BROCHU Drumheller and Brochu | 2 12 ABSTRACT 13 Actualistic observations form the basis of many taphonomic studies in paleontology. 14However, surveys limited by environment or taxon may not be applicable far beyond the bounds 15of the initial observations. Even when multiple studies exploring the potential variety within a 16taphonomic process exist, quantitative methods for comparing these datasets in order to identify 17larger scale patterns have been understudied. This research uses modern bite marks collected 18from 21 of the 23 generally recognized species of extant Crocodylia to explore statistical and 19phylogenetic methods of synthesizing taphonomic datasets. Bite marks were identified, and 20specimens were then coded for presence or absence of different mark morphotypes. Attempts to 21find statistical correlation between trace types, marking animal vital statistics, and sample 22collection protocol were unsuccessful. Mapping bite mark character states on a eusuchian 23phylogeny successfully predicted the presence of known diagnostic, bisected marks in extinct 24taxa. Predictions for clades that may have created multiple subscores, striated marks, and 25extensive crushing were also generated. Inclusion of fossil bite marks which have been positively 26associated with extinct species allow this method to be projected beyond the crown group.
    [Show full text]
  • O Regist Regi Tro Fós Esta Istro De Sil De C Ado Da a E
    UNIVERSIDADE FEDERAL DO RIO GRANDE DOO SUL INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS O REGISTRO FÓSSIL DE CROCODILIANOS NA AMÉRICA DO SUL: ESTADO DA ARTE, ANÁLISE CRÍTICAA E REGISTRO DE NOVOS MATERIAIS PARA O CENOZOICO DANIEL COSTA FORTIER Porto Alegre – 2011 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS O REGISTRO FÓSSIL DE CROCODILIANOS NA AMÉRICA DO SUL: ESTADO DA ARTE, ANÁLISE CRÍTICA E REGISTRO DE NOVOS MATERIAIS PARA O CENOZOICO DANIEL COSTA FORTIER Orientador: Dr. Cesar Leandro Schultz BANCA EXAMINADORA Profa. Dra. Annie Schmalz Hsiou – Departamento de Biologia, FFCLRP, USP Prof. Dr. Douglas Riff Gonçalves – Instituto de Biologia, UFU Profa. Dra. Marina Benton Soares – Depto. de Paleontologia e Estratigrafia, UFRGS Tese de Doutorado apresentada ao Programa de Pós-Graduação em Geociências como requisito parcial para a obtenção do Título de Doutor em Ciências. Porto Alegre – 2011 Fortier, Daniel Costa O Registro Fóssil de Crocodilianos na América Do Sul: Estado da Arte, Análise Crítica e Registro de Novos Materiais para o Cenozoico. / Daniel Costa Fortier. - Porto Alegre: IGEO/UFRGS, 2011. [360 f.] il. Tese (doutorado). - Universidade Federal do Rio Grande do Sul. Instituto de Geociências. Programa de Pós-Graduação em Geociências. Porto Alegre, RS - BR, 2011. 1. Crocodilianos. 2. Fósseis. 3. Cenozoico. 4. América do Sul. 5. Brasil. 6. Venezuela. I. Título. _____________________________ Catalogação na Publicação Biblioteca Geociências - UFRGS Luciane Scoto da Silva CRB 10/1833 ii Dedico este trabalho aos meus pais, André e Susana, aos meus irmãos, Cláudio, Diana e Sérgio, aos meus sobrinhos, Caio, Júlia, Letícia e e Luíza, à minha esposa Ana Emília, e aos crocodilianos, fósseis ou viventes, que tanto me fascinam.
    [Show full text]
  • Phylogenetic Analysis of a New Morphological Dataset Elucidates the Evolutionary History of Crocodylia and Resolves the Long-Standing Gharial Problem
    Phylogenetic analysis of a new morphological dataset elucidates the evolutionary history of Crocodylia and resolves the long-standing gharial problem Jonathan P. Rio1 and Philip D. Mannion2* 1Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK 2Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK *Corresponding author (email address: [email protected]) ABSTRACT First appearing in the latest Cretaceous, Crocodylia is a clade of mostly semi-aquatic, predatory reptiles, defined by the last common ancestor of extant alligators, caimans, crocodiles, and gharials. Despite large strides in resolving extant and fossil crocodylian interrelationships over the last three decades, several outstanding problems persist in crocodylian systematics. Most notably, there has been persistent discordance between morphological and molecular datasets surrounding the affinities of the extant gharials, Gavialis gangeticus and Tomistoma schlegelii. Whereas molecular data consistently support a sister relationship between the extant gharials, which appear to be more closely related to crocodylids than to alligatorids, morphological data indicate that Gavialis is the sister taxon to all other extant crocodylians. Here we present a new morphological dataset for Crocodylia, based on a critical reappraisal of published crocodylian character data matrices and extensive first-hand observations of a global sample of crocodylians. This comprises the most taxonomically comprehensive crocodylian dataset to date (144 OTUs scored for 330 characters) and includes a new, illustrated character list with modifications to the construction and scoring of characters, and 46 novel characters. Under a maximum parsimony framework, our analyses robustly recover Gavialis as more closely related to Tomistoma than to other extant crocodylians for the first time based on morphology alone.
    [Show full text]
  • Or This Publication At
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/337022896 A new alligatoroid from the Eocene of Vietnam highlights an extinct Asian clade independent from extant Alligator sinensis Article in PeerJ · November 2019 DOI: 10.7717/peerj.7562 CITATIONS READS 0 100 4 authors: Tobias Massonne Davit Vasilyan University of Tuebingen JURASSICA Museum 1 PUBLICATION 0 CITATIONS 47 PUBLICATIONS 208 CITATIONS SEE PROFILE SEE PROFILE Márton Rabi Madelaine Böhme Università degli Studi di Torino & University of Tuebingen University of Tuebingen 71 PUBLICATIONS 511 CITATIONS 179 PUBLICATIONS 2,777 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Miocene hominids from Europe View project Thalattosuchia View project All content following this page was uploaded by Tobias Massonne on 05 November 2019. The user has requested enhancement of the downloaded file. A new alligatoroid from the Eocene of Vietnam highlights an extinct Asian clade independent from extant Alligator sinensis Tobias Massonne1,2, Davit Vasilyan3,4, Márton Rabi1,5,* and Madelaine Böhme1,2,* 1 Department of Geosciences, Eberhard-Karls-Universität Tübingen, Tübingen, Germany 2 Senckenberg Center for Human Evolution and Palaeoecology, Tuebingen, Germany 3 JURASSICA Museum, Porrentruy, Switzerland 4 Department of Geosciences, University of Fribourg, Fribourg, Switzerland 5 Central Natural Science Collections, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany * shared last authors ABSTRACT During systematic paleontological surveys in the Na Duong Basin in North Vietnam between 2009 and 2012, well-preserved fossilized cranial and postcranial remains belonging to at least 29 individuals of a middle to late Eocene (late Bartonian to Priabonian age (39–35 Ma)) alligatoroid were collected.
    [Show full text]
  • View of the Choristodera
    “It is the struggle itself that is most important. We must strive to be more than we are. It does not matter that we will not reach our ultimate goal. The effort itself yields its own reward." - Gene Roddenberry University of Alberta The jaw adductor muscles in Champsosaurus and their implications for feeding mechanics by Michael Spencer Brian James A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Systematics and Evolution Biological Sciences ©Michael Spencer Brian James Fall 2010 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Examining Committee Philip J. Currie, Biological Sciences Michael W. Caldwell, Biological Sciences Richard C. Fox, Biological Sciences John Acorn, Renewable Resources Abstract The jaw musculature of Champsosaurus has been enigmatic since the taxon was first described. The extant phylogenetic bracketing method is used to determine the morphology of the jaw adductor musculature. Rotational mathematics is used to calculate the muscle forces, torques, angular accelerations, and angular velocities generated by the jaw muscles.
    [Show full text]
  • CROCODYLIDAE Crocodylus Rhombifer
    n REPTILIA: CROCODILIA: CROCODYLIDAE Catalogue of American Amphibians and Reptiles. Crocidilrts rhornbifer: Velasco 1893:80. Spelling error. Crocodrilus rhombifer: Velasco 1895:37. Spelling error. Ross, F.D. 1998. Crocodylus rliombifer. Crocodiltrs rliombifenrs: Reese 1915:2. Spelling error. Crocodylus rhombifer: Stejneger 19 17:289. First use of present Crocodylus rhombifer (Cuvier) combination. Cuban Crocodile Crocodylus antillensis Varona 1966:27, figs. 9-1 I. Type local- ity, Pleistocene deposits at Cueva Lamas, near Santa Fe, La Crocodilrrs rhombifer Cuvier 1807:s 1. Distribution of the spe- Habana Province, Cuba. Holotype (posterior skull fragment), cies was first associated with Cuba by DumCril and Bibron Institute Biologia Cuba, IB I0 I, collected by Oscar Arredondo (1836), who also described the species from life in diagnos- (OA 368). Paratypes include maxillary, premaxillary, and tic detail. The type locality was restricted to Cuba by Schmidt squamosal bones. Synonymy is by Varona (1966). (1924). Two known syntypes, one at I'AcadCmie des Sci- Crocodylus rhontbifera: Das 1994:200. Spelling error. ences, Paris, and the other in the MusCum National de'Histoire Naturelle, Paris (MNHNP),are both currently unlocated (see CONTENT. Crocodylus rhombifpr is a monotypic species Remarks). No lectotype has been designated. including Pleistocene fossils. Wild hybrids are suspected. For croc rhombifer: Cuvier 18 17:2 1 (in a footnote). a discussion of captive hybridization between C. rhombifer and Crocodilus @laniro.stris)Graves 18 19:348. Type locality: "Af- several other species of Crocod.ylus, see Comments. rica" (in error). The type specimen, in the Museum of Bor- deaux, was formerly in the private collection of the Count of DEFINITION and DIAGNOSIS.
    [Show full text]
  • Leidyosuchus (Crocodylia: Alligatoroidea) from the Upper Cretaceous Kaiparowits Formation (Late Campanian) of Utah, USA
    PaleoBios 30(3):72–88, January 31, 2014 © 2014 University of California Museum of Paleontology Leidyosuchus (Crocodylia: Alligatoroidea) from the Upper Cretaceous Kaiparowits Formation (late Campanian) of Utah, USA ANDREW A. FARKE,1* MADISON M. HENN,2 SAMUEL J. WOODWARD,2 and HEENDONG A. XU2 1Raymond M. Alf Museum of Paleontology, 1175 West Baseline Road, Claremont, CA 91711 USA; email: afarke@ webb.org. 2The Webb Schools, 1175 West Baseline Road, Claremont, CA 91711 USA Several crocodyliform lineages inhabited the Western Interior Basin of North America during the late Campanian (Late Cretaceous), with alligatoroids in the Kaiparowits Formation of southern Utah exhibiting exceptional diversity within this setting. A partial skeleton of a previously unknown alligatoroid taxon from the Kaiparowits Formation may represent the fifth alligatoroid and sixth crocodyliform lineage from this unit. The fossil includes the lower jaws, numerous osteoderms, vertebrae, ribs, and a humerus. The lower jaw is generally long and slender, and the dentary features 22 alveoli with conical, non-globidont teeth. The splenial contributes to the posterior quarter of the mandibu- lar symphysis, which extends posteriorly to the level of alveolus 8, and the dorsal process of the surangular is forked around the terminal alveolus. Dorsal midline osteoderms are square. This combination of character states identifies the Kaiparowits taxon as the sister taxon of the early alligatoroid Leidyosuchus canadensis from the Late Cretaceous of Alberta, the first verified report of theLeidyosuchus (sensu stricto) lineage from the southern Western Interior Basin. This phylogenetic placement is consistent with at least occasional faunal exchanges between northern and southern parts of the Western Interior Basin during the late Campanian, as noted for other reptile clades.
    [Show full text]
  • Two Rare Mosasaurs from the Maastrichtian of Angola and the Netherlands
    Netherlands Journal of Geosciences — Geologie en Mijnbouw | 92 – 1 | 3-10 | 2013 Two rare mosasaurs from the Maastrichtian of Angola and the Netherlands A.S. Schulp1,2,*, M.J. Polcyn3, O. Mateus4,5 & L.L. Jacobs3 1 Natuurhistorisch Museum Maastricht, De Bosquetplein 6-7, 6211 KJ Maastricht, the Netherlands 2 Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands 3 Huffington Department of Earth Sciences, Southern Methodist University, Dallas, TX75275, USA 4 CICEGe, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Monte de Caparica, Portugal 5 Museu da Lourinhã, Rua João Luis de Moura 95, 2530-158 Lourinhã, Portugal * Corresponding author. Email: [email protected] Manuscript received: October 2011, accepted: June 2012 Abstract We report here the addition of two rare mosasaur taxa to the Maastrichtian marine amniote fauna of Angola, both of which are also found in northern Europe. The new specimens include a dentary fragment referable to the large carnivore Prognathodon cf. saturator and an isolated tooth of the small durophage Carinodens belgicus. Both were recovered from Maastrichtian outcrops in southern Angola in 2011. Additionally, a complete posterior mandibular unit of a large mosasaur from the type Maastrichtian of the Netherlands, collected some time prior to 1879 and previously identified as ‘Mosasaurus giganteus’, is described and reassigned here to Prognathodon saturator; historical issues surrounding the taxonomic attribution of this specimen are clarified. The new material extends the known geographic distribution of Prognathodon saturator and Carinodens belgicus. Keywords: Mosasauridae, Prognathodon, Carinodens, Maastrichtian, Angola, the Netherlands Introduction Limburg Province, the Netherlands); the holotype is now housed in the collections of the Natuurhistorisch Museum In recent years our knowledge of the marine reptile fauna of Maastricht (NHMM1998-141).
    [Show full text]
  • Genus/Species Skull Ht Lt Wt Time Range Adzhosuchus U.Jurassic Mongolia A. Fuscus U.Jurassic Mongolia Aegyptosuchus U.Cretaceous Egypt A
    Genus/Species Skull Ht Lt Wt Time Range Adzhosuchus U.Jurassic Mongolia A. fuscus U.Jurassic Mongolia Aegyptosuchus U.Cretaceous Egypt A. peyeri Cenomanian Egypt Aelodon see Aeolodon Aeollodon see Aeolodon Aeolodon U.Jurassic Germany A. priscus 16 cm 1.2 m? Kimmeridgian Germany Aggiosaurus U.Jurassic France A. nicaeensis U.Jurassic France Aigialosuchus U.Cretaceous Sweden A. villandensis Campanian Sweden Akanthosuchus Paleocene W USA A. langstoni Torrejonian New Mexico(US) Akantosuchus see Akanthosuchus A. langstoni see Akanthosuchus langstoni Albertochampsa 20 cm 1.6 m? U.Cretaceous Canada A. langstoni 20 cm 1.6 m? Campanian Alberta(Cnda) Aligator see Alligator Alligator 5.8 m Oligocene-Recent N America,China A. ameghinoi A. australis see Proalligator paranensis? A. cuvieri see Alligator mississippiensis A. darwini see Diplocynodon darwini A. gaudryi see Arambourgia gaudryi A. hantoniensis see Diplocynodon hantoniensis A. helois see Alligator mississippiensis A. heterodon see Crocodylus heterodon & Allognathosuchus heterodon A. lacordairei see Crocodylus acutus A. lucius see Alligator mississippiensis A. lutescens see Caiman lutescens A. mcgrewi 2 m Barstovian Nebraska(US) A. mefferdi Clarendonian Nebraska(US) A. mississipiensis living American Alligator M.Miocene-Recent Florida,Nebraska,Missouri,Georgia(US) A. olseni 25 cm 2.5 m? Hemingfordian Florida(US) A. parahybensis Pliocene Sao Paulo(Brazil) A. prenasalis 76 cm Chadronian S Dakota(US) A. sp. Arikareean Texas(US) A. sp. Barstovian Texas(US) A. sp. Duchesnean Texas(US) A. sp. Miocene Nebraska(US) A. styriacus see Crocodylus styriacus A. thompsoni(thomsoni) 36 cm 2.15 m Barstovian Nebraska(US) A. visheri 2 m Chadronian S Dakota(US) Alligatorellus 30 cm U.Jurassic Germany A.
    [Show full text]