Two Rare Mosasaurs from the Maastrichtian of Angola and the Netherlands
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Estimating the Evolutionary Rates in Mosasauroids and Plesiosaurs: Discussion of Niche Occupation in Late Cretaceous Seas
Estimating the evolutionary rates in mosasauroids and plesiosaurs: discussion of niche occupation in Late Cretaceous seas Daniel Madzia1 and Andrea Cau2 1 Department of Evolutionary Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland 2 Independent, Parma, Italy ABSTRACT Observations of temporal overlap of niche occupation among Late Cretaceous marine amniotes suggest that the rise and diversification of mosasauroid squamates might have been influenced by competition with or disappearance of some plesiosaur taxa. We discuss that hypothesis through comparisons of the rates of morphological evolution of mosasauroids throughout their evolutionary history with those inferred for contemporary plesiosaur clades. We used expanded versions of two species- level phylogenetic datasets of both these groups, updated them with stratigraphic information, and analyzed using the Bayesian inference to estimate the rates of divergence for each clade. The oscillations in evolutionary rates of the mosasauroid and plesiosaur lineages that overlapped in time and space were then used as a baseline for discussion and comparisons of traits that can affect the shape of the niche structures of aquatic amniotes, such as tooth morphologies, body size, swimming abilities, metabolism, and reproduction. Only two groups of plesiosaurs are considered to be possible niche competitors of mosasauroids: the brachauchenine pliosaurids and the polycotylid leptocleidians. However, direct evidence for interactions between mosasauroids and plesiosaurs is scarce and limited only to large mosasauroids as the Submitted 31 July 2019 predators/scavengers and polycotylids as their prey. The first mosasauroids differed Accepted 18 March 2020 from contemporary plesiosaurs in certain aspects of all discussed traits and no evidence Published 13 April 2020 suggests that early representatives of Mosasauroidea diversified after competitions with Corresponding author plesiosaurs. -
OFR21 a Guide to Fossil Sharks, Skates, and Rays from The
STATE OF DELAWARE UNIVERSITY OF DELAWARE DELAWARE GEOLOGICAL SURVEY OPEN FILE REPORT No. 21 A GUIDE TO FOSSIL SHARKS J SKATES J AND RAYS FROM THE CHESAPEAKE ANU DELAWARE CANAL AREA) DELAWARE BY EDWARD M. LAUGINIGER AND EUGENE F. HARTSTEIN NEWARK) DELAWARE MAY 1983 Reprinted 6-95 FOREWORD The authors of this paper are serious avocational students of paleontology. We are pleased to present their work on vertebrate fossils found in Delaware, a subject that has not before been adequately investigated. Edward M. Lauginiger of Wilmington, Delaware teaches biology at Academy Park High School in Sharon Hill, Pennsyl vania. He is especially interested in fossils from the Cretaceous. Eugene F. Hartstein, also of Wilmington, is a chemical engineer with a particular interest in echinoderm and vertebrate fossils. Their combined efforts on this study total 13 years. They have pursued the subject in New Jersey, Maryland, and Texas as well as in Delaware. Both authors are members of the Mid-America Paleontology Society, the Delaware Valley Paleontology Society, and the Delaware Mineralogical Society. We believe that Messrs. Lauginiger and Hartstein have made a significant technical contribution that will be of interest to both professional and amateur paleontologists. Robert R. Jordan State Geologist A GUIDE TO FOSSIL SHARKS, SKATES, AND RAYS FROM THE CHESAPEAKE AND DELAWARE CANAL AREA, DELAWARE Edward M. Lauginiger and Eugene F. Hartstein INTRODUCTION In recent years there has been a renewed interest by both amateur and professional paleontologists in the rich upper Cretaceous exposures along the Chesapeake and Delaware Canal, Delaware (Fig. 1). Large quantities of fossil material, mostly clams, oysters, and snails have been collected as a result of this activity. -
Two Rare Mosasaurs from the Maastrichtian of Angola and the Netherlands
Netherlands Journal of Geosciences — Geologie en Mijnbouw | 92 – 1 | 3-10 | 2013 Two rare mosasaurs from the Maastrichtian of Angola and the Netherlands A.S. Schulp1,2,*, M.J. Polcyn3, O. Mateus4,5 & L.L. Jacobs3 1 Natuurhistorisch Museum Maastricht, De Bosquetplein 6-7, 6211 KJ Maastricht, the Netherlands 2 Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands 3 Huffington Department of Earth Sciences, Southern Methodist University, Dallas, TX75275, USA 4 CICEGe, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Monte de Caparica, Portugal 5 Museu da Lourinhã, Rua João Luis de Moura 95, 2530-158 Lourinhã, Portugal * Corresponding author. Email: [email protected] Manuscript received: October 2011, accepted: June 2012 Abstract We report here the addition of two rare mosasaur taxa to the Maastrichtian marine amniote fauna of Angola, both of which are also found in northern Europe. The new specimens include a dentary fragment referable to the large carnivore Prognathodon cf. saturator and an isolated tooth of the small durophage Carinodens belgicus. Both were recovered from Maastrichtian outcrops in southern Angola in 2011. Additionally, a complete posterior mandibular unit of a large mosasaur from the type Maastrichtian of the Netherlands, collected some time prior to 1879 and previously identified as ‘Mosasaurus giganteus’, is described and reassigned here to Prognathodon saturator; historical issues surrounding the taxonomic attribution of this specimen are clarified. The new material extends the known geographic distribution of Prognathodon saturator and Carinodens belgicus. Keywords: Mosasauridae, Prognathodon, Carinodens, Maastrichtian, Angola, the Netherlands Introduction Limburg Province, the Netherlands); the holotype is now housed in the collections of the Natuurhistorisch Museum In recent years our knowledge of the marine reptile fauna of Maastricht (NHMM1998-141). -
A Giant Chelonioid Turtle from the Late Cretaceous of Morocco with a Suction Feeding Apparatus Unique Among Tetrapods
OPEN 3 ACCESS Freely available online © PLOSI o - A Giant Chelonioid Turtle from the Late Cretaceous of Morocco with a Suction Feeding Apparatus Unique among Tetrapods Nathalie Bardet1*, Nour-Eddine Jal ¡I2, France de Lapparent de Broin1, Damien Germain1, Olivier Lambert3, Mbarek Amaghzaz4 1 CNRS UMR 7207, Département Histoire de la Terre, Muséum National d'Histoire Naturelle, Paris, France, 2 Cadi Ayyad University, Faculty of Sciences Semlalia, Department of Earth Sciences, Vertebrate Evolution and Palaeoenvironnements, Marrakech, Morocco, 3 Institut Royal des Sciences Naturelles de Belgique, Département de Paléontologie, Bruxelles, Belgium, 4 Office Chérifien des Phosphates, Centre Minier de Khouribga, Khouribga, Morocco Abstract Background: Secondary adaptation to aquatic life occurred independently in several amnlote lineages, Including reptiles during the Mesozoic and mammals during the Cenozoic. These evolutionary shifts to aquatic environments imply major morphological modifications, especially of the feeding apparatus. Mesozoic (250-65 Myr) marine reptiles, such as ichthyosaurs, plesiosaurs, mosasaurid squamates, crocodiles, and turtles, exhibit a wide range of adaptations to aquatic feeding and a broad overlap of their tooth morphospaces with those of Cenozoic marine mammals. However, despite these multiple feeding behavior convergences, suction feeding, though being a common feeding strategy In aquatic vertebrates and in marine mammals In particular, has been extremely rarely reported for Mesozoic marine reptiles. Principal Findings: A relative of fossil protostegid and dermochelyoid sea turtles,Ocepechelon bouyai gen. et sp. nov. is a new giant chelonioid from the Late Maastrichtian (67 Myr) of Morocco exhibiting remarkable adaptations to marine life (among others, very dorsally and posteriorly located nostrils). The 70-cm-longOcepechelon skull of not only makes it one of the largest marine turtles ever described, but also deviates significantly from typical turtle cranial morphology. -
(Squamata: Mosasauridae) from the Late Cretaceous Of
C. R. Palevol 14 (2015) 483–493 Contents lists available at ScienceDirect Comptes Rendus Palevol www.sci encedirect.com General Palaeontology, Systematics and Evolution (Vertebrate Palaeontology) An halisaurine (Squamata: Mosasauridae) from the Late Cretaceous of Patagonia, with a preserved tympanic disc: Insights into the mosasaur middle ear Un halisauriné (Squamata : Mosasauridae) du Crétacé supérieur de Patagonie, à disque tympanique conservé : un aperc¸ u de l’oreille moyenne des mosasaures a,∗ b Marta S. Fernández , Marianella Talevi a CONICET - División Paleontología Vertebrados, Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina b CONICET - Instituto de Investigación en Paleobiología y Geología, Universidad Nacional de Río Negro, Isidro Lobo y Belgrano, 8332 General Roca, Río Negro, Argentina a b s t r a c t a r t i c l e i n f o Article history: Halisaurinae is a subfamily of enigmatic, small- to medium-sized mosasauroids, which Received 15 September 2014 retain a mosaic of primitive and derived features. The first record of a South American Hal- Accepted after revision 13 May 2015 isaurus with precise stratigraphic information includes a quadrate carrying a tympanic disc together with twelve vertebrae, collected in the Late Maastrichtian of Jagüel Formation Handled by Nathalie Bardet in northern Patagonia (Argentina). The preservation of a tympanic disc allows exploring and discussing the mechanisms of sound transmission in these mosasauroids. The loca- Keywords: tion of the tympanic disc resembles that one formed by the extracolumella of aquatic Halisaurus turtles and at least one extant lizard. Based on morphological comparison of the middle Patagonia ear we discuss previous hypotheses on the modification of the tympanic middle ear system Late Maastrichtian of mosasauroids for underwater hearing, in a manner similar to that observed in aquatic Cretaceous turtles. -
Download Full Article in PDF Format
comptes rendus palevol 2021 20 20 iles — Jean- pt Cl re au d d n e a R s a n g a e i — b i h P p a l a m e a o f b o i o y l h o p g a y r g a o n e d g p o i a l b a o e DIRECTEURS DE LA PUBLICATION / PUBLICATION DIRECTORS : Bruno David, Président du Muséum national d’Histoire naturelle Étienne Ghys, Secrétaire perpétuel de l’Académie des sciences RÉDACTEURS EN CHEF / EDITORS-IN-CHIEF : Michel Laurin (CNRS), Philippe Taquet (Académie des sciences) ASSISTANTE DE RÉDACTION / ASSISTANT EDITOR : Adenise Lopes (Académie des sciences ; [email protected]) MISE EN PAGE / PAGE LAYOUT : Fariza Sissi (Muséum national d’Histoire naturelle ; [email protected]) RÉVISIONS LINGUISTIQUES DES TEXTES ANGLAIS / ENGLISH LANGUAGE REVISIONS : Kevin Padian (University of California at Berkeley) RÉDACTEURS ASSOCIÉS / ASSOCIATE EDITORS : Micropaléontologie/Micropalaeontology Maria Rose Petrizzo (Università di Milano, Milano) Paléobotanique/Palaeobotany Cyrille Prestianni (Royal Belgian Institute of Natural Sciences, Brussels) Métazoaires/Metazoa Annalisa Ferretti (Università di Modena e Reggio Emilia, Modena) Paléoichthyologie/Palaeoichthyology Philippe Janvier (Muséum national d’Histoire naturelle, Académie des sciences, Paris) Amniotes du Mésozoïque/Mesozoic amniotes Hans-Dieter Sues (Smithsonian National Museum of Natural History, Washington) Tortues/Turtles Juliana Sterli (CONICET, Museo Paleontológico Egidio Feruglio, Trelew) Lépidosauromorphes/Lepidosauromorphs Hussam Zaher (Universidade de São Paulo) Oiseaux/Birds Eric Buffetaut (CNRS, École Normale Supérieure, Paris) Paléomammalogie (mammifères de moyenne et grande taille)/Palaeomammalogy (large and mid-sized mammals) Lorenzo Rook* (Università degli Studi di Firenze, Firenze) Paléomammalogie (petits mammifères sauf Euarchontoglires)/Palaeomammalogy (small mammals except for Euarchontoglires) Robert Asher (Cambridge University, Cambridge) Paléomammalogie (Euarchontoglires)/Palaeomammalogy (Euarchontoglires) K. -
The Making of Calibration Sausage Exemplified by Recalibrating the Transcriptomic Timetree of Jawed Vertebrates
bioRxiv preprint doi: https://doi.org/10.1101/2019.12.19.882829; this version posted January 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. The making of calibration sausage exemplified by recalibrating the transcriptomic timetree of jawed vertebrates 1 David Marjanović 2 Department of Evolutionary Morphology, Science Programme “Evolution and Geoprocesses”, 3 Museum für Naturkunde – Leibniz Institute for Evolutionary and Biodiversity Research, Berlin, 4 Germany 5 ORCID: 0000-0001-9720-7726 6 Correspondence: 7 David Marjanović 8 [email protected] 9 Keywords: timetree, calibration, divergence date, Gnathostomata, Vertebrata 10 Abstract 11 Molecular divergence dating has the potential to overcome the incompleteness of the fossil record in 12 inferring when cladogenetic events (splits, divergences) happened, but needs to be calibrated by the 13 fossil record. Ideally but unrealistically, this would require practitioners to be specialists in molecular 14 evolution, in the phylogeny and the fossil record of all sampled taxa, and in the chronostratigraphy of 15 the sites the fossils were found in. Paleontologists have therefore tried to help by publishing 16 compendia of recommended calibrations, and molecular biologists unfamiliar with the fossil record 17 have made heavy use of such works (in addition to using scattered primary sources -
The First Crocodyliforms Remains from La Parrita Locality, Cerro Del Pueblo
Boletín de la Sociedad Geológica Mexicana / 2019 / 727 The first crocodyliforms remains from La Parrita locality, Cerro del Pueblo Formation (Campanian), Coahuila, Mexico Héctor E. Rivera-Sylva, Gerardo Carbot-Chanona, Rafael Vivas-González, Lizbeth Nava-Rodríguez, Fernando Cabral-Valdéz ABSTRACT Héctor E. Rivera-Sylva ABSTRACT RESUMEN Fernando Cabral-Valdéz Departamento de Paleontología, Museo del Desierto, Carlos Abedrop Dávila 3745, 25022, The record of land tetrapods of El registro de tetrápodos terrestres en la Saltillo, Coahuila, Mexico. the Cerro del Pueblo Formation Formación Cerro del Pueblo (Cretácico (Late Cretaceous, Campanian), in Gerardo Carbot-Chanona tardío, Campaniano) en Coahuila, incluye Coahuila, includes turtles, pterosaurs, [email protected] tortugas, pterosaurios, dinosaurios y Museo de Paleontología “Eliseo Palacios Aguil- dinosaurs, and crocodyliforms. This era”, Secretaría de Medio Ambiente e Historia last group is represented only by crocodyliformes. Este último grupo está Natural. Calzada de los hombres ilustres s/n, representado por goniofólididos, eusuquios 29000, Tuxtla Gutiérrez, Chiapas, Mexico. goniopholidids, indeterminate eusu- chians, and Brachychampsa montana. In indeterminados y Brachychampsa montana. Rafael Vivas-González this work we report the first crocodyli- En este trabajo se reportan los primeros Villa Nápoles 6506, Colonia Mirador de las Mitras, 64348, Monterrey, N. L., Mexico. form remains from La Parrita locality, restos de crocodyliformes de la localidad Cerro del Pueblo Formation, based La Parrita, Formación Cerro del Pueblo, Lizbeth Nava-Rodríguez on one isolated tooth, vertebrae, and con base en un diente aislado, vértebras y Facultad de Ingeniería, Universidad Autóno- osteoderms. The association of croc- ma de San Luis Potosí, Dr. Manuel Nava 8, osteodermos. La asociación de crocodyli- Zona Universitaria Poniente, San Luis Potosi, odyliforms, turtles, dinosaurs, and formes, tortugas, dinosaurios y oogonias S.L.P., Mexico. -
Recent Mosasaur Discoveries from New Jersey and Delaware, USA: Stratigraphy, Taphonomy and Implications for Mosasaur Extinction
r fs| Netherlands Journal of Geosciences — Geologie en Mijnbouw | 84 - 3 | 241 - 245 | 2005 Recent mosasaur discoveries from New Jersey and Delaware, USA: stratigraphy, taphonomy and implications for mosasaur extinction W.B. Gallagher1' 1 Bureau of Natural History, New Jersey State Museum, Trenton, NJ 08625-0530, USA. Email: [email protected] 2 Department of Geological Sciences, Rutgers University, Piscataway, NJ 08855, USA. Manuscript received: December 2004; accepted: January 2005 Abstract The Upper Cretaceous deposits of New Jersey and Delaware produced the first mosasaur specimens collected in North America. Recent recovery of mosasaur specimens from streambank exposures and new excavation sites has increased our knowledge of the stratigraphic distribution of these animals in the northern Atlantic coastal plain. Reassessment of the source and age of mosasaur specimens from the Big Brook site and other localities in Monmouth County (NJ) has greatly increased the number of known Campanian mosasaur specimens from this region. Two main taphonomic occurrence modes are noted: 1 - single, worn and broken bones and isolated teeth in mixed faunal deposits probably accumulated due to current action in nearshore environments; 2 - partial skeletons, skulls and single bones in deeper-water settings were the aftermath of biological modification of carcasses and deadfalls. The mosasaurs of the New Egypt Formation represent some of the last (i.e., stratigraphically highest) mosasaur fossils in North America. Mosasaur extinction was due to the collapse of the rich Late Cretaceous marine food web at the K/T boundary. Subsequently in the early Paleocene, with the disappearance of the mosasaurs, crocodilians became the apical predators of the marine environment in this area. -
Cranial Anatomy of a Maastrichtian (Upper Cretaceous) Mosasaur (Squamata, Mosasauridae) from North-East Mexico
Revista Mexicana de Ciencias Geológicas,Cranial anatomy v. 24, núm.of a Maastrichtian 1, 2007, p. 89-103 mosasaur from north-east Mexico 89 Cranial anatomy of a Maastrichtian (Upper Cretaceous) mosasaur (Squamata, Mosasauridae) from north-east Mexico Marie-Céline Buchy1,*, Eberhard Frey2, Wolfgang Stinnesbeck3, and José Guadalupe López-Oliva4 1 Universität Karlsruhe, Geologisches Institut, Postfach 6980, D-76128 Karlsruhe, Germany. Current address: Museo del Desierto, Apartado Postal 307, 25000 Saltillo, Coahuila, Mexico. 2 Geowissenschaftliche Abteilung, Staatliches Museum für Naturkunde, Erbprinzenstrasse 13, D-76133 Karlsruhe, Germany. 3 Universität Karlsruhe, Geologisches Institut, Postfach 6980, D-76128 Karlsruhe, Germany. 4 Universidad Autónoma de Nuevo León, Facultad de Ciencias de la Tierra, Apartado Postal 104, 67700 Linares, N.L., Mexico. * [email protected] ABSTRACT We here describe the first mosasaur from Mexico known by significant cranial remains, from the late Early Maastrichtian Méndez Formation of Nuevo León, north-east Mexico. The specimen comprises a fragmentary skull and parts of the mandibles. Some anatomical features suggest a juvenile animal. The skull possesses a rostral tuberosity on the premaxilla, as well as a combination of features known from different mosasaur genera, like its frontopremaxillary suture situated caudal to the external naris, its prefrontal and postorbitofrontal being in contact lateral to the orbit, associated with the supra- and infrastapedial processes of its quadrate which almost contact one another. Despite being clearly distinct from any hitherto described mosasaur, the affinities of this specimen with other mosasaurs remain obscure, not only because of incompleteness, but also because of the poorly understood biological significance of the characters used for the classification of Mosasauridae. -
And Microwear in Carinodens Belgicus, a Small Mosasaur from the Type Maastrichtian
Netherlands Journal of Geosciences — Geologie en Mijnbouw | 92 – 4 | 267-274 | 2013 Dental macro- and microwear in Carinodens belgicus, a small mosasaur from the type Maastrichtian F.M. Holwerda1,2,*, B.L. Beatty3 & A.S. Schulp4,5,6 1 Bayerische Staatssamlung für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 München, Germany (current address) 2 CICEGe, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-526 Caparica, Portugal 3 Department of Anatomy, New York Institute of Technology, College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY 11568, USA 4 Natuurhistorisch Museum Maastricht, De Bosquetplein 6-7, 6211 KJ Maastricht, the Netherlands 5 Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands 6 Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands * Corresponding author. Email: [email protected] Manuscript received: January 2013, accepted: July 2013 Abstract Teeth of the small durophagous mosasaur Carinodens belgicus are known from Maastrichtian Atlantic-Tethyan deposits worldwide. The peculiar dentition of Carinodens inspired debate and speculation on its dietary niche ever since its first description. In this contribution, we describe the macro- and microwear pattern in five well-preserved isolated teeth, allowing further and independent evaluation of aspects of feeding behaviour and diet. Macroscopically, wear is concentrated on the apex and mesiodistal sides. Microwear was mapped using Scanning Electron Microscopy at several magnifications and can be characterised as scratches and pits. Coarse scratches were found to be the most common and pits were found to be the least common feature. -
Ichnology of Late Cretaceous Echinoids from the Maastrichtian Type Area (The Netherlands, Belgium) - 1
Bulletin of the Mizunami Fossil Museum, no. 34 (2008), p. 73–76, 1 fig. © 2008, Mizunami Fossil Museum Ichnology of Late Cretaceous echinoids from the Maastrichtian type area (The Netherlands, Belgium) - 1. A healed puncture wound in Hemipneustes striatoradiatus (Leske) Stephen K. Donovan,* John W. M. Jagt+, and David N. Lewis# *Department of Geology, Nationaal Natuurhistorisch Museum, Postbus 9517, NL-2300 RA Leiden, The Netherlands <[email protected]> +Natuurhistorisch Museum Maastricht, de Bosquetplein 6-7, NL-6211 KJ Maastricht, The Netherlands <[email protected]> #Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, England <[email protected]> Abstract A test of the holasteroid echinoid Hemipneustes striatoradiatus (Leske) from the upper Maastrichtian (Upper Cretaceous) of quarry ‘t Rooth (Bemelen, southern Limburg, The Netherlands) is perforated by a pit on the mid-line of the adoral surface. This structure is large (maximum width 13.5 mm, depth 5.8 mm), rounded pentagonal in outline, bilaterally symmetrical and irregularly conical with a flat base. It may be an invertebrate trace fossil, although not the boring Oichnus Bromley or an embedment structure, or it may represent a healed puncture wound produced after a failed predatory attack by a marine vertebrate such as a bony fish or a mosasaur. If the latter, the shape of the pit may have been modified by the echinoid healing the wound; alternately, the tooth that caused the wound may have been truncated. Key words: Ichnology, Hemipneustes, predation, Upper Cretaceous, Maastrichtian, The Netherlands. Introduction (NHMM). The holasteroid echinoid Hemipneustes striatoradiatus Material and methods (Leske, 1778) is a large, locally common and striking element of the invertebrate macrofauna of the type Maastrichtian In the type area of the Maastrichtian Stage, Hemipneustes (Upper Cretaceous) of the provinces of Limburg and Liège, striatoradiatus ranges from the middle Lanaye Member (Gulpen The Netherlands and Belgium.