Hesperia Ottoe W.H
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Self-Repair and Self-Cleaning of the Lepidopteran Proboscis
Clemson University TigerPrints All Dissertations Dissertations 8-2019 Self-Repair and Self-Cleaning of the Lepidopteran Proboscis Suellen Floyd Pometto Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Pometto, Suellen Floyd, "Self-Repair and Self-Cleaning of the Lepidopteran Proboscis" (2019). All Dissertations. 2452. https://tigerprints.clemson.edu/all_dissertations/2452 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. SELF-REPAIR AND SELF-CLEANING OF THE LEPIDOPTERAN PROBOSCIS A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy ENTOMOLOGY by Suellen Floyd Pometto August 2019 Accepted by: Dr. Peter H. Adler, Major Advisor and Committee Co-Chair Dr. Eric Benson, Committee Co-Chair Dr. Richard Blob Dr. Patrick Gerard i ABSTRACT The proboscis of butterflies and moths is a key innovation contributing to the high diversity of the order Lepidoptera. In addition to taking nectar from angiosperm sources, many species take up fluids from overripe or sound fruit, plant sap, animal dung, and moist soil. The proboscis is assembled after eclosion of the adult from the pupa by linking together two elongate galeae to form one tube with a single food canal. How do lepidopterans maintain the integrity and function of the proboscis while foraging from various substrates? The research questions included whether lepidopteran species are capable of total self- repair, how widespread the capability of self-repair is within the order, and whether the repaired proboscis is functional. -
Pollinator Butterfly Habitat
The ecology and conservation of grassland butterflies in the central U.S. Dr. Ray Moranz Moranz Biological Consulting 4514 North Davis Court Stillwater, Oklahoma 74075 Outline of the Presentation, Part I • Basic butterfly biology • Butterflies as pollinators • Rare butterflies of Kansas Outline of the Presentation, Part 2 • Effects of fire and grazing on grassland butterflies • Resources to learn more about butterflies • 15 common KS butterflies Life Cycle of a Painted Lady, Vanessa cardui Egg Larva Adult Chrysalis Some butterflies migrate The Monarch is the best-known migratory butterfly Knife River Indian Villages National Historic Site, North Dakota Fall migratory pathways of the Monarch The Painted Lady is another migrant Kirtland Air Force Base, New Mexico Other butterflies are non- migratory Such as this regal fritillary, seen in Anderson County, Kansas Implications of migratory status -migratory butterflies aren’t vulnerable to prescribed burns in winter and early spring (they haven’t arrived yet) -full-year resident butterflies ARE vulnerable to winter and spring fires -migratory butterflies may need lots of nectar sources on their flyway to fuel their flight Most butterfly caterpillars are host plant specialists Implications of host plant specialization • If you have the host plant, you probably have the butterfly • If you plant their host, the butterfly may follow • If you and your neighbors lack the host plants, you are unlikely to see the butterflies except during migration Butterflies as pollinators • Bees pollinate more plant -
Mardon Skipper Site Management Plans
Mardon Skipper (Polites mardon) Site Management Plans Gifford Pinchot National Forest Service Cowlitz Valley Ranger District Prepared by John Jakubowski North Zone Wildlife Biologist Reviewed by Rich Hatfield, The Xerces Society for Invertebrate Conservation October 2, 2015 Cowlitz Valley Ranger District Mardon Skipper Sites Group Meadow Longitude Latitude Area (acres) Elevation (ft.) Midway Midway 121 32.0 46 21.2 8 4,313 Midway PCT 121 31.1 46 21.1 2 4,530 Midway 115 Spur 121 30.9 46 21.0 3 4,494 Midway Grapefern 121 30.9 46 21.5 3 4,722 Midway 7A North 121 31.4 46 21.5 2 4,657 Midway 7A South 121 31.5 46 21.4 2 4,625 Midway 7A 121 31.1 46 21.4 7 4,676 Muddy Muddy 121 32.2 46.18.5 4 4,450 Muddy Lupine 121 31.8 46 18.7 3 4,398 Spring Cr Spring Cr. 121 33.5 46 20.4 unknown 3,900 Goal of the Management Plans Maintain and improve grassland/forb habitat at known occupancy meadow sites to ensure continued occupancy by mardon skipper butterfly as well as other important pollinator species such as western bumble bee. 1 Introduction On the Gifford Pinchot National Forest (GPNF), mardon skippers were first detected on the Mt. Adams Ranger District (MTA) in 2000 and on Cowlitz Valley Ranger District (CVRD) in 2002. Mardon skippers are known to inhabit ten, upland dry grassy meadows on the CVRD. Portions of the meadows are mesic and are unsuitable mardon skipper habitat. -
Empire State Native Pollinator Survey Study Plan
Empire State Native Pollinator Survey Study Plan i Empire State Native Pollinator Survey Study Plan June 2017 Matthew D. Schlesinger Erin L. White Jeffrey D. Corser Please cite this report as follows: Schlesinger, M.D., E.L. White, and J.D. Corser. 2017. Empire State Native pollinator survey study plan. New York Natural Heritage Program, SUNY College of Environmental Science and Forestry, Albany, NY. Cover photos: Sanderson Bumble Bee (Bombus sandersoni) and flower longhorn (Clytus ruricola) by Larry Master, www.masterimages.org; Azalea sphinx moth (Darapsa choerilus) and Syrphus fly by Stephen Diehl and Vici Zaremba. ii Contents Introduction ........................................................................................................................................................ 1 Background: Rising Buzz and a Swarm of Pollinator Plans .................................................................... 1 Advisors and Taxonomic Experts .............................................................................................................. 1 Goal of the Survey ........................................................................................................................................ 2 General Sampling Design ............................................................................................................................. 2 The Role of Citizen Science ......................................................................................................................... 2 Focal Taxa .......................................................................................................................................................... -
Two New Records for the Appalachian Grizzled Skipper (Pyrgus Wyandot)
Banisteria, Number 24, 2004 © 2004 by the Virginia Natural History Society Status of the Appalachian Grizzled Skipper (Pyrgus centaureae wyandot) in Virginia Anne C. Chazal, Steven M. Roble, Christopher S. Hobson, and Katharine L. Derge1 Virginia Department of Conservation and Recreation Division of Natural Heritage 217 Governor Street Richmond, Virginia 23219 ABSTRACT The Appalachian grizzled skipper (Pyrgus centaureae wyandot) was documented historically (primarily from shale barren habitats) in 11 counties in Virginia. Between 1992 and 2002, staff of the Virginia Department of Conservation and Recreation, Division of Natural Heritage, conducted 175 surveys for P. c. wyandot at 75 sites in 12 counties. The species was observed at only six sites during these surveys, representing two new county records. All observations since 1992 combined account for <80 individuals. Due to forest succession and threats from gypsy moth control measures, all recent sites for P. c. wyandot in Virginia may be degrading in overall habitat quality. Key words: Lepidoptera, Pyrgus centaureae wyandot, conservation, shale barrens, Virginia. INTRODUCTION wyandot) in Virginia. Parshall (2002) provides a comprehensive review of the nomenclature and The Appalachian grizzled skipper (Pyrgus taxonomy of P. c. wyandot. Most authors classify this centaureae wyandot) has a rather fragmented range, skipper as a subspecies of the Holarctic Pyrgus occurring in northern Michigan as well as portions of centaureae (e.g., Opler & Krizek, 1984; Iftner et al., Ohio, Pennsylvania, Maryland, West Virginia, and 1992; Shuey, 1994; Allen, 1997; Opler, 1998; Virginia; isolated historical records are known from Glassberg, 1999; Parshall, 2002), although some Kentucky, New York, New Jersey, North Carolina, and lepidopterists treat it as a full species (Shapiro, 1974; the District of Columbia (Opler, 1998; NatureServe, Schweitzer, 1989; Gochfeld & Burger, 1997). -
Grizzled Skipper
Species: Grizzled Skipper (Pyrgus wyandot) Global Rank: G1G2Q State Rank: S1 State Wildlife Action Plan: Immediate Concern Responsibility Species Climate Change Vulnerability: Highly Vulnerable Confidence: Very High Note: This assessment is expected to be similar for other butterflies of specialized or moderately specialized forest clearing habitats, with specific food plants, habitats exposed to gypsy moth spray; and lacking a fire resistant dormant stage (larval and/or pupal). Some examples: - Frosted Elfin (Callophrys irus); Global Rank G3, State Rank S2; Caterpillar hostplant Wild Indigo (Baptisia tinctoria); Habitat typically grassy (Andropogon spp.) openings in oak habitats on sandy rocky soils; sometimes found in disturbed areas with hostplant such as powerline right-of-ways. - Persius Duskywing (Erynnis persius); Global Rank G5T1T3, State Rank S1; Caterpillar hostplant Wild Indigo (Baptisia tinctoria); Habitats include pitch pine- scrub oak barrens, scrubby ridgetops, or powerline right-of-ways within such settings with sandy-gravelly soils. - Northern Metalmark (Calephelis borealis), Global Rank G3G4, State Rank S2; Caterpillar hostplant Round-leaved Ragwort (Senecio obovatus); Habitats are openings within forested or wooded areas such as natural outcrops, shale or limestone barrens, glades or powerline right-of-ways. Habitat (adapted from NatureServe 2008 and Schweitzer 1989): The Grizzled Skipper butterfly is an Appalachian Mountain habitat specialist that requires shale barren habitats with abundant exposed crumbly rock or soil. Shale barrens are semi-open shale slopes with sparse herbaceous vegetation and tend to be surrounded by scrubby oak or oak-hickory woodlands, often with a component of Virginia Pine (Pinus virginiana). A natural area which meets the habitat requirements should maintain itself as a shale barren. -
A Revision of the New World Plant-Mining Moths of the Family
Smithsonian Institution Scholarly Press SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 625 A Revision of the New World Plant-Mining Moths of the Family (Lepidoptera: Nepticuloidea) Donald R. Davis and Jonas R. Stonis SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, com- mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions in History and Technology Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions from the United States National Herbarium Smithsonian Contributions in Visual and Material Culture Smithsonian Contributions to Zoology In these series, the Institution pubHshes small papers and full-scale monographs that report the research and collections of its various museums and bureaus. The Contributions Series are distributed by mailing lists to Ubraries, universities, and similar institutions through- out the world. Manuscripts submitted for series publication are received by the Smith- sonian Institution Scholarly Press from authors with direct affiliation with the various Smithsonian museums or bureaus and are subject to peer review and review for compliance with manuscript preparation guidelines. -
New Looks at and for Onespa, Buzyges, and Librita (Lepidoptera: Hesperiidae: Hesperiinae), with New Combinations and Descriptions of a New Genus and Six New Species
INSECTA MUNDI A Journal of World Insect Systematics 0089 New looks at and for Onespa, Buzyges, and Librita (Lepidoptera: Hesperiidae: Hesperiinae), with new combinations and descriptions of a new genus and six new species George T. Austin and Andrew D. Warren McGuire Center for Lepidoptera and Biodiversity Florida Museum of Natural History University of Florida, P.O. Box 112710 Gainesville, Florida 32611 USA Date of Issue: July 24, 2009 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL George T. Austin and Andrew D. Warren New looks at and for Onespa, Buzyges, and Librita (Lepidoptera: Hesperiidae: Hesperiinae), with new combinations and descriptions of a new genus and six new species Insecta Mundi 0089: 1-55 Published in 2009 by Center for Systematic Entomology, Inc. P. O. Box 141874 Gainesville, FL 32614-1874 U. S. A. http://www.centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non-marine arthropod taxon. Manuscripts considered for publication include, but are not limited to, systematic or taxonomic studies, revisions, nomenclatural changes, faunal studies, book reviews, phylo- genetic analyses, biological or behavioral studies, etc. Insecta Mundi is widely distributed, and refer- enced or abstracted by several sources including the Zoological Record, CAB Abstracts, etc. As of 2007, Insecta Mundi is published irregularly throughout the year, not as quarterly issues. As manuscripts are completed they are published and given an individual number. Manuscripts must be peer reviewed prior to submission, after which they are again reviewed by the editorial board to insure quality. One author of each submitted manuscript must be a current member of the Center for System- atic Entomology. -
References Cited in Dakota Skipper and Poweshiek Skipperling Proposed Listing Rule
References Cited in Dakota skipper and Poweshiek skipperling proposed listing rule Bahm, M. A., T. G. Barnes, and K. C. Jensen. 2011. Restoring Native Plant Communities in Smooth Brome (Bromus inermis)– Dominated Grasslands. Invasive Plant Science and Management 4:239-250. Belcher, J. W. and S. D. Wilson. 1989. Leafy Spurge and the Species Composition of a Mixed- Grass Prairie. Journal of Range Management 42:172-175. Bess, J. A. 1988. An insect survey of eight fens in southern Michigan., Michigan Natural Features Inventory, Lansing, MI. Beyers, B. 2012. Killer in a Bottle? Household insecticides may play a role in declining bee populations. University of Minnesota. Blatchley, W. S. 1891. A catalogue of the butterflies known to occur in Indiana. Annual Report of the Indiana State Geologist 17:365-408. Boettcher, J. F., T. B. Bragg, and D. M. Sutherland. 1993. Floristic Diversity in Ten Tallgrass Prairie Remnants of Eastern Nebraska. Transactions of the Nebraska Academy of Sciences and Affiliated Societies. http://digitalcommons.unl.edu/tnas/116 XX:33-40. Borkin, S. S. 1995. 1994 Ecological Studies of the Poweshiek Skipper (Oarisma poweshiek) in Wisconsin. Milwaukee Public Museum, Milwaukee, WI. Borkin, S. S. 2000. Proposal for outplanting on a state natural area., Milwaukee Public Museum, Milwaukee, WI. Borkin, S. S. 1995. 1994 Ecological Studies of the Poweshiek Skipper (Oarisma poweshiek) in Wisconsin. Milwaukee Public Museum, Milwaukee, WI. Borkin, S. 1996. Ecological studies of the Poweshiek skipper (Oarisma poweshiek) in Wisconsin -1995 Season Summary. Milwaukee Public Museum, Milwaukee, WI. Bragg, T. B. 1995. The physical environment of Great Plains grasslands. Pages 11-37 in K. -
"Evolutionary Responses to Climate Change". In: Encyclopedia of Life
Evolutionary Responses to Advanced article Climate Change Article Contents . Introduction David K Skelly, Yale University, New Haven, Connecticut, USA . Observed Genetic Changes . Adaptations to Climate Change L Kealoha Freidenburg, Yale University, New Haven, Connecticut, USA . Changes in Selection Pressures . Rate of Evolution versus Rate of Climate Change . Extinction Risks . Future Prospects Online posting date: 15th September 2010 Biological responses to contemporary climate change are Everything from heat tolerance, body shape and size, and abundantly documented. We know that many species are water use physiology of plants is strongly related to the cli- shifting their geographic range and altering traits, mate conditions within a species range. From these obser- including the timing of critical life history events such as vations, a natural assumption would be that a great deal of research on the role of contemporary climate change in birth, flowering and diapause. We also know from com- driving evolutionary responses has taken place. Although parative studies of species found across the earth that a there has been an increasing amount of research very strong relationship exists between a species trait and the recently, in fact there is relatively little known about the links climatic conditions in which it is found. Together, these between contemporary climate change and evolution. The observations suggest that ongoing climate change may reasons for this are not hard to determine. There is abundant lead to evolutionary responses. Where examined, evo- documentation of biological responses to climate change lutionary responses have been uncovered in most cases. (Parmesan, 2006). Species distributions are moving pole- The effort needed to disentangle these genetic contri- ward, the timing of life history events are shifting to reflect butions to responses is substantial and so examples are lengthened growing seasons and traits such as body size are few. -
Native Grasses Benefit Butterflies and Moths Diane M
AFNR HORTICULTURAL SCIENCE Native Grasses Benefit Butterflies and Moths Diane M. Narem and Mary H. Meyer more than three plant families (Bernays & NATIVE GRASSES AND LEPIDOPTERA Graham 1988). Native grasses are low maintenance, drought Studies in agricultural and urban landscapes tolerant plants that provide benefits to the have shown that patches with greater landscape, including minimizing soil erosion richness of native species had higher and increasing organic matter. Native grasses richness and abundance of butterflies (Ries also provide food and shelter for numerous et al. 2001; Collinge et al. 2003) and butterfly species of butterfly and moth larvae. These and moth larvae (Burghardt et al. 2008). caterpillars use the grasses in a variety of ways. Some species feed on them by boring into the stem, mining the inside of a leaf, or IMPORTANCE OF LEPIDOPTERA building a shelter using grass leaves and silk. Lepidoptera are an important part of the ecosystem: They are an important food source for rodents, bats, birds (particularly young birds), spiders and other insects They are pollinators of wild ecosystems. Terms: Lepidoptera - Order of insects that includes moths and butterflies Dakota skipper shelter in prairie dropseed plant literature review – a scholarly paper that IMPORTANT OF NATIVE PLANTS summarizes the current knowledge of a particular topic. Native plant species support more native graminoid – herbaceous plant with a grass-like Lepidoptera species as host and food plants morphology, includes grasses, sedges, and rushes than exotic plant species. This is partially due to the host-specificity of many species richness - the number of different species Lepidoptera that have evolved to feed on represented in an ecological community, certain species, genus, or families of plants. -
Ottoe Skipper (Hesperia Ottoe) in Canada
Species at Risk Act Recovery Strategy Series Recovery Strategy for the Ottoe Skipper (Hesperia ottoe) in Canada Ottoe Skipper ©R. R. Dana 2010 About the Species at Risk Act Recovery Strategy Series What is the Species at Risk Act (SARA)? SARA is the Act developed by the federal government as a key contribution to the common national effort to protect and conserve species at risk in Canada. SARA came into force in 2003, and one of its purposes is “to provide for the recovery of wildlife species that are extirpated, endangered or threatened as a result of human activity.” What is recovery? In the context of species at risk conservation, recovery is the process by which the decline of an endangered, threatened, or extirpated species is arrested or reversed, and threats are removed or reduced to improve the likelihood of the species’ persistence in the wild. A species will be considered recovered when its long-term persistence in the wild has been secured. What is a recovery strategy? A recovery strategy is a planning document that identifies what needs to be done to arrest or reverse the decline of a species. It sets goals and objectives and identifies the main areas of activities to be undertaken. Detailed planning is done at the action plan stage. Recovery strategy development is a commitment of all provinces and territories and of three federal agencies — Environment Canada, Parks Canada Agency, and Fisheries and Oceans Canada — under the Accord for the Protection of Species at Risk. Sections 37–46 of SARA (www.sararegistry.gc.ca/approach/act/default_e.cfm) outline both the required content and the process for developing recovery strategies published in this series.