Petrographic, X-ray diffraction, and electron spin resonance analysis of deformed calcite: Meteor Crater, Arizona Item Type Article; text Authors Burt, J. B.; Pope, M. C.; Watkinson, A. J. Citation Burt, J. B., Pope, M. C., & Watkinson, A. J. (2005). Petrographic, Xray diffraction, and electron spin resonance analysis of deformed calcite: Meteor Crater, Arizona. Meteoritics & Planetary Science, 40(2), 297-306. DOI 10.1111/j.1945-5100.2005.tb00381.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 05/10/2021 06:22:06 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/655967 Meteoritics & Planetary Science 40, Nr 2, 297–306 (2005) Abstract available online at http://meteoritics.org Petrographic, X-ray diffraction, and electron spin resonance analysis of deformed calcite: Meteor Crater, Arizona Jason B. BURT,1†* Mike C. POPE,1 and A. John WATKINSON1 1Department of Geological Sciences, Washington State University, Pullman, Washington 99164, USA †Present address: Department of Geosciences, Virginia Polytechnic and State University, Blacksburg, Virginia 24061, USA *Corresponding author. E-mail:
[email protected] (Received 9 June 2003; revision accepted 16 December 2004) Abstract–Calcite crystals within the Kaibab limestone in Meteor Crater, Arizona, are examined to understand how calcite is deformed during a meteorite impact. The Kaibab limestone is a silty fine- grained and fossiliferous dolomudstone and the calcite crystals occur as replaced evaporite nodules with impact-induced twinning. Twinning in the calcite is variable with deformational regimes based on abundances of crystals with twins and twin densities within crystals.