Impact Origin of the Calvin 28 Cryptoexplosive Disturbance, Cass

Total Page:16

File Type:pdf, Size:1020Kb

Impact Origin of the Calvin 28 Cryptoexplosive Disturbance, Cass Contents Acknowledgements .........................................................2 Introduction......................................................................3 Method of Study...............................................................4 Geologic Setting ..............................................................5 Stratigraphy......................................................................6 Lake Superior Group......................................................6 Munising Formation ................................................. 6 Trempealeau Formation .......................................... 7 Prairie du Chien Group ..................................................7 St. Peter Sandstone ................................................ 8 Black River Group ..........................................................8 Trenton Group................................................................8 Richmond Group ............................................................8 Utica Shale .............................................................. 8 Cataract Group...............................................................9 Structural Characteristics...............................................9 Rim Zone........................................................................9 Annular Depression......................................................10 Central Uplift.................................................................10 Microbreccia.................................................................10 Shock-Metamorphic Effects .........................................11 Iridium Analysis ............................................................12 Energy Requirement ....................................................12 Impact Origin of the Calvin 28 Age of the Structure ......................................................12 Cryptoexplosive Disturbance, Cass County, Michigan Evaluation of Possible Origins.....................................13 Volcanic Origins ...........................................................13 by Randall L. Milstein Energy Considerations .......................................... 13 Report of Investigation 28 Maars and Diatremes ............................................ 14 Calderas ................................................................ 15 Michigan Department of Natural Resources Intrusive Origins ...........................................................15 Geological Survey Division Diapiric Origins.............................................................15 1988 Solution Subsidence ....................................................16 REPRODUCTION of Geological Survey Division publications in whole Impact Origins ..............................................................16 or in part may be done and is encouraged if proper credit is given to Impact Structures .................................................. 16 the Michigan Department of Natural Resources, Geological Survey Division and where appropriate, the author. Summary......................................................................18 The author holds the registered copyright on the original form of this Conclusion .....................................................................19 work which was completed as partial requirements for a Master of Arts degree at the University of Northern Colorado. Report of Investigation 28 – Page 1 of 22 stages of this study. Bruce Bohor, United States Figures Geological Survey, provided additional sample 1 - Location of study area, Calvin 28 cryptoexplosive inspection for shock metamorphic features. The author disturbance, Cass County, Michigan. ...............................3 is grateful to Ronald J. DeHaas, President of Michigan 2 - Traverse Limestone structure contour map and line of Petroleum Geologists, Incorporated, for his many and geologic cross-section, Calvin 28 cryptoexplosive invaluable consultations about the structural nature of disturbance.......................................................................4 the study area. Special appreciation is extended to Kenneth D. Hopkins, K. Lee Shropshire, William D. 3 - The Michigan Basin and surrounding geologic structures ...6 Nesse, William H. Hoyt, and Richard D. Dietz, University 4 - Stratigraphic succession in Cass County, Michigan............6 of Northern Colorado for their critical review of this study. A very special thanks is extended to Lynda K. Jones for 5 - Generalized geologic cross-section and profile of Traverse Limestone tops, Calvin 28 cryptoexplosive disturbance. ..7 typing and preparation of the manuscript, and Tyrone Black for computer type setting and presentation. 6 - Bedrock Geology of Cass County, Michigan. ......................9 7 - Photographs illustrating microscopic breccia from the Calvin 28 cryptoexplosive disturbance: Lawson #1, 1016.5-1018 ABSTRACT m. ...................................................................................11 The Calvin 28 cryptoexplosive disturbance is an isolated, 8 - Location of selected Midwestern cryptoexplosive nearly circular subsurface structure of Late Ordovician disturbances. ..................................................................15 age in southwestern Michigan. The structure which is 9 - The Calvin 28 cryptoexplosive disturbance compared with defined by 107 test wells, is about 7.24 km in diameter stratigraphic uplift/diameter relationships for terrestrial and consists of a central dome, an annular depression impact structures ............................................................17 and an encircling anticlinal rim. Seismic and 10 - Photographs illustrating structural similarities between geophysical well log data confirm an intricate system of impact craters on other planets and the Calvin 28 faults and structural derangement exists within the cryptoexplosive disturbance. ..........................................18 structure. Deformation decreases with depth and distance from the structure. U.S.G.S. topographic maps and aerial imagery show the structure is reflected as a Tables surface topographic rise controlling local drainage. 1 - Comparative features of selected Midwestern Igneous or diapiric intrusion and solution collapse are cryptoexplosive disturbances. ........................................16 rejected as possible origins for the Calvin 28 structure on the basis of stratigraphic, structural and geophysical 2 - Classification of meteorite and astrobleme craters............17 evidence. A volcanic origin is rejected due to an absence of igneous material. Although shock- metamorphic features are unidentified, microbreccia ACKNOWLEDGMENTS occurs in deep wells that penetrate the structure. The author wishes to express his gratitude to the staff of Morphology and structural parameters suggest an the Michigan Geological Survey, and especially the impact origin. members of the Subsurface and Petroleum Geology Unit, for their help in data acquisition, many questions and helpful suggestions. Access to Devonian cores and unpublished gravity and magnetic data was made available by William B. Harrison, Western Michigan University. Review of proprietary seismic data was made possible with the kind permission of Robert Mannes, Mannes Oil Company and Alvin R. Hosking, Hosking Geophysical Corporation. Analysis and comparison of this data was done with the help of Steven Schaefer, Hosking Geophysical Corporation. Two separate neutron activation analyses for iridium were conducted by Mark Mitchell and Bruce Wilkerson, Division of Engineering Research, Michigan State University and Charles J. Orth, Los Alamos National Laboratory. Jerry Cowen, Department of Physics, Michigan State University, reviewed for accuracy the mathematical procedures used in the study, R. A. F. Grieve, Geological Survey of Canada, Mark J. Cintala, Lyndon B. Johnson Space Center and Frances B. Waranius, Lunar and Planetary Institute provided beneficial information and suggestions during the early Report of Investigation 28 – Page 2 of 22 1968a). None of the individual features listed can be INTRODUCTION relied on as an unfailing diagnostic tool in the eophysical data, geologic mapping, and the identification of a cryptoexplosive disturbance. Gextensive drilling of oil and gas test wells have The author has chosen to identify the Calvin Township delineated a subsurface structure in Calvin Township, structure as Calvin 28. The choice is based on the Cass County, Michigan, centered 1.4 km southwest of location of the first deep test well which identified the the village of Calvin Center (Figure 1 and Figure 2). The disturbance, the central positioning of the structure structure consists of a central domal uplift bounded by beneath Section 28 of Calvin Township and the name of an annular depression and an encircling anticline. The the most productive of three oil fields associated with the overall structure has a diameter of 7.24 km. feature. An exploratory well drilled through the central uplift The main purpose of this study is to provide a possible penetrated roughly 485 m of regional, although thinned, explanation for the origin of the Calvin 28 Paleozoic strata down to the Late Ordovician cryptoexplosive disturbance. Structure contour maps, Cincinnatian Series. Instead of encountering the Middle stratigraphic cross-sections, geophysical data, structural and Lower Ordovician stratigraphic sequence, the well comparisons, petrographic analyses, neutron-activation bore entered into a shortened section of the Lower analyses and
Recommended publications
  • 3-D Seismic Characterization of a Cryptoexplosion Structure
    Cryptoexplosion structure 3-D seismic characterization of a eryptoexplosion structure J. Helen Isaac and Robert R. Stewart ABSTRACT Three-quarters of a circular structure is observed on three-dimensional (3-D) seismic data from James River, Alberta. The structure has an outer diameter of 4.8 km and a raised central uplift surrounded by a rim synform. The central uplift has a diameter of 2.4 km and its crest appears to be uplifted about 400 m above regional levels. The structure is at a depth of about 4500 m. This is below the zone of economic interest and the feature has not been penetrated by any wells. The disturbed sediments are interpreted to be Cambrian. We infer that the structure was formed in Late Cambrian to Middle Devonian time and suffered erosion before the deposition of the overlying Middle Devonian carbonates. Rim faults, probably caused by slumping of material into the depression, are observed on the outside limb of the synform. Reverse faults are evident underneath the feature and the central uplift appears to have coherent internal reflections. The amount of uplift decreases with increasing depth in the section. The entire feature is interpreted to be a cryptoexplosion structure, possibly caused by a meteorite impact. INTRODUCTION Several enigmatic circular structures, of different sizes and ages, have been observed on seismic data from the Western Canadian sedimentary basin (WCSB) (e.g., Sawatzky, 1976; Isaac and Stewart, 1993) and other parts of Canada (Scott and Hajnal, 1988; Jansa et al., 1989). The structures present startling interruptions in otherwise planar seismic features.
    [Show full text]
  • Natural Ground-Water Quality in Michigan, 1974-87
    NATURAL GROUND-WATER QUALITY IN MICHIGAN, 1974-87 By T. Ray Cumnings U.S. GEOLOGICAL SURVEY Open-File Report 89-259 Prepared in cooperation with the MICHIGAN DEPARTMENT OF NATURAL RESOURCES GEOLOGICAL SURVEY DIVISION Lansing, Michigan July 1989 DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information Copies of this report can write to: be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Books and Open-File Reports Section 6520 Mercantile Way, Suite 5 Federal Center, Building 810 Lansing, Michigan 48911 Box 25425 Denver, Colorado 80225 CONTENTS Page Abstract l Introduction 1 Purpose and scope 2 Methods of investigation 2 General water-quality conditions 3 Areal variations in water quality 12 Relation of water quality to geologic source 17 Relation of water quality to mineral associations 25 Conclusions 28 Selected references 30 Definition of terms 32 Appendix: Median values of chemical and physical characteristics of water from geologic sources 33 ill ILLUSTRATIONS Page Figure 1. Relation of dissolved-solids concentration to chemical characteristics of water 6 2. Relation of specific conductance to dissolved-solids concentration of water 7 3. Areal variation of dissolved solids in water 13 4. Areal variation of ammonia and hardness of water 14 5. Areal variation of total recoverable lead and total recoverable mercury in water- 15 6. Areal variation of total recoverable iron and total recoverable copper in water 16 7. Relation of depth of well to dissolved-solids concentration 18 8. Chemical characteristics of water from glacial deposit s 20 9.
    [Show full text]
  • Cross-References ASTEROID IMPACT Definition and Introduction History of Impact Cratering Studies
    18 ASTEROID IMPACT Tedesco, E. F., Noah, P. V., Noah, M., and Price, S. D., 2002. The identification and confirmation of impact structures on supplemental IRAS minor planet survey. The Astronomical Earth were developed: (a) crater morphology, (b) geo- 123 – Journal, , 1056 1085. physical anomalies, (c) evidence for shock metamor- Tholen, D. J., and Barucci, M. A., 1989. Asteroid taxonomy. In Binzel, R. P., Gehrels, T., and Matthews, M. S. (eds.), phism, and (d) the presence of meteorites or geochemical Asteroids II. Tucson: University of Arizona Press, pp. 298–315. evidence for traces of the meteoritic projectile – of which Yeomans, D., and Baalke, R., 2009. Near Earth Object Program. only (c) and (d) can provide confirming evidence. Remote Available from World Wide Web: http://neo.jpl.nasa.gov/ sensing, including morphological observations, as well programs. as geophysical studies, cannot provide confirming evi- dence – which requires the study of actual rock samples. Cross-references Impacts influenced the geological and biological evolu- tion of our own planet; the best known example is the link Albedo between the 200-km-diameter Chicxulub impact structure Asteroid Impact Asteroid Impact Mitigation in Mexico and the Cretaceous-Tertiary boundary. Under- Asteroid Impact Prediction standing impact structures, their formation processes, Torino Scale and their consequences should be of interest not only to Earth and planetary scientists, but also to society in general. ASTEROID IMPACT History of impact cratering studies In the geological sciences, it has only recently been recog- Christian Koeberl nized how important the process of impact cratering is on Natural History Museum, Vienna, Austria a planetary scale.
    [Show full text]
  • Geoscience and a Lunar Base
    " t N_iSA Conference Pubhcatmn 3070 " i J Geoscience and a Lunar Base A Comprehensive Plan for Lunar Explora, tion unclas HI/VI 02907_4 at ,unar | !' / | .... ._-.;} / [ | -- --_,,,_-_ |,, |, • • |,_nrrr|l , .l -- - -- - ....... = F _: .......... s_ dd]T_- ! JL --_ - - _ '- "_r: °-__.......... / _r NASA Conference Publication 3070 Geoscience and a Lunar Base A Comprehensive Plan for Lunar Exploration Edited by G. Jeffrey Taylor Institute of Meteoritics University of New Mexico Albuquerque, New Mexico Paul D. Spudis U.S. Geological Survey Branch of Astrogeology Flagstaff, Arizona Proceedings of a workshop sponsored by the National Aeronautics and Space Administration, Washington, D.C., and held at the Lunar and Planetary Institute Houston, Texas August 25-26, 1988 IW_A National Aeronautics and Space Administration Office of Management Scientific and Technical Information Division 1990 PREFACE This report was produced at the request of Dr. Michael B. Duke, Director of the Solar System Exploration Division of the NASA Johnson Space Center. At a meeting of the Lunar and Planetary Sample Team (LAPST), Dr. Duke (at the time also Science Director of the Office of Exploration, NASA Headquarters) suggested that future lunar geoscience activities had not been planned systematically and that geoscience goals for the lunar base program were not articulated well. LAPST is a panel that advises NASA on lunar sample allocations and also serves as an advocate for lunar science within the planetary science community. LAPST took it upon itself to organize some formal geoscience planning for a lunar base by creating a document that outlines the types of missions and activities that are needed to understand the Moon and its geologic history.
    [Show full text]
  • Exceptionally Well-Preserved Fossils in a Middle Ordovician Impact Crater
    Downloaded from http://jgs.lyellcollection.org/ by guest on September 29, 2021 Review focus Journal of the Geological Society Published Online First https://doi.org/10.1144/jgs2018-101 The Winneshiek biota: exceptionally well-preserved fossils in a Middle Ordovician impact crater Derek E.G. Briggs1,2*, Huaibao P. Liu3, Robert M. McKay3 & Brian J. Witzke4 1 Department of Geology and Geophysics, Yale University, New Haven, CT 06520, USA 2 Yale Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA 3 Iowa Geological Survey, IIHR – Hydroscience & Engineering, University of Iowa, 340 Trowbridge Hall, Iowa City, IA 52242, USA 4 Department of Earth and Environmental Sciences, University of Iowa, 115 Trowbridge Hall, Iowa City, IA 52242, USA D.E.G.B., 0000-0003-0649-6417 * Correspondence: [email protected] Abstract: The Winneshiek Shale (Middle Ordovician, Darriwilian) was deposited in a meteorite crater, the Decorah impact structure, in NE Iowa. This crater is 5.6 km in diameter and penetrates Cambrian and Ordovician cratonic strata. It was probably situated close to land in an embayment connected to the epicontinental sea; typical shelly marine taxa are absent. The Konservat-Lagerstätte within the Winneshiek Shale is important because it represents an interval when exceptional preservation is rare. The biota includes the earliest eurypterid, a giant form, as well as a new basal chelicerate and the earliest ceratiocarid phyllocarid. Conodonts, some of giant size, occur as bedding plane assemblages. Bromalites and rarer elements, including a linguloid brachiopod and a probable jawless fish, are also present. Similar fossils occur in the coeval Ames impact structure in Oklahoma, demonstrating that meteorite craters represent a novel and under-recognized setting for Konservat- Lagerstätten.
    [Show full text]
  • Terrestrial Impact Structures Provide the Only Ground Truth Against Which Computational and Experimental Results Can Be Com­ Pared
    Ann. Rev. Earth Planet. Sci. 1987. 15:245-70 Copyright([;; /987 by Annual Reviews Inc. All rights reserved TERRESTRIAL IMI!ACT STRUCTURES ··- Richard A. F. Grieve Geophysics Division, Geological Survey of Canada, Ottawa, Ontario KIA OY3, Canada INTRODUCTION Impact structures are the dominant landform on planets that have retained portions of their earliest crust. The present surface of the Earth, however, has comparatively few recognized impact structures. This is due to its relative youthfulness and the dynamic nature of the terrestrial geosphere, both of which serve to obscure and remove the impact record. Although not generally viewed as an important terrestrial (as opposed to planetary) geologic process, the role of impact in Earth evolution is now receiving mounting consideration. For example, large-scale impact events may hav~~ been responsible for such phenomena as the formation of the Earth's moon and certain mass extinctions in the biologic record. The importance of the terrestrial impact record is greater than the relatively small number of known structures would indicate. Impact is a highly transient, high-energy event. It is inherently difficult to study through experimentation because of the problem of scale. In addition, sophisticated finite-element code calculations of impact cratering are gen­ erally limited to relatively early-time phenomena as a result of high com­ putational costs. Terrestrial impact structures provide the only ground truth against which computational and experimental results can be com­ pared. These structures provide information on aspects of the third dimen­ sion, the pre- and postimpact distribution of target lithologies, and the nature of the lithologic and mineralogic changes produced by the passage of a shock wave.
    [Show full text]
  • A Study of the Brushy Creek Feature, Saint Helena Parish, Louisiana Andrew Schedl
    Open-File Series No. 18-01 Fall 2018 A Study of the Brushy Creek Feature, Saint Helena Parish, Louisiana Andrew Schedl Abstract This study was unable to determine the origin of the Brushy Creek feature. New¯ thin sections were made and new and old thin sections were examined using the opti- cal and scanning electron microscope (SEM). Powdered samples from the center of Brushy Creek were examined using X-ray diffraction (XRD). In sample 16SHPA, a half dozen new grains with probable planar deformation features (PDF) were found with orientations of {1012} and {1011}. Preliminary SEM studies of zircons showed no evidence for PDFs or reidite. Only one grain from the center of Brushy Creek structure showed possible rectangular fracture. XRD analysis found no evidence for high-pressure forms of quartz, coesite and stishovite. Suggestions for further study are included. Introduction North-south oriented ridges and ravines dominate the landscape in this part of Louisiana. The Brushy Creek is a “noticeable circular hole” in the ridge/ravine topography (Heinrich, 2003). The feature is about 2 kilometers in diameter and has a relief of 15 meters and Brushy Creek breeches the southeast rim of this feature. Exposed in the rim is the poorly lithified and highly fractured Pliocene Citronelle Formation. Near the Brushy Creek feature, the Citronelle formation consists of cross-bedded, massive, poorly sorted fine to coarse sand 9-12 meters thick underlain by 6 meters of laminated clay and silt. The Kentwood Brick and Tile Company has drilled the center of the feature and have found that the laminated clay and silt is absent.
    [Show full text]
  • Stratigraphic Succession in Lower Peninsula of Michigan
    STRATIGRAPHIC DOMINANT LITHOLOGY ERA PERIOD EPOCHNORTHSTAGES AMERICANBasin Margin Basin Center MEMBER FORMATIONGROUP SUCCESSION IN LOWER Quaternary Pleistocene Glacial Drift PENINSULA Cenozoic Pleistocene OF MICHIGAN Mesozoic Jurassic ?Kimmeridgian? Ionia Sandstone Late Michigan Dept. of Environmental Quality Conemaugh Grand River Formation Geological Survey Division Late Harold Fitch, State Geologist Pennsylvanian and Saginaw Formation ?Pottsville? Michigan Basin Geological Society Early GEOL IN OG S IC A A B L N Parma Sandstone S A O G C I I H E C T I Y Bayport Limestone M Meramecian Grand Rapids Group 1936 Late Michigan Formation Stratigraphic Nomenclature Project Committee: Mississippian Dr. Paul A. Catacosinos, Co-chairman Mark S. Wollensak, Co-chairman Osagian Marshall Sandstone Principal Authors: Dr. Paul A. Catacosinos Early Kinderhookian Coldwater Shale Dr. William Harrison III Robert Reynolds Sunbury Shale Dr. Dave B.Westjohn Mark S. Wollensak Berea Sandstone Chautauquan Bedford Shale 2000 Late Antrim Shale Senecan Traverse Formation Traverse Limestone Traverse Group Erian Devonian Bell Shale Dundee Limestone Middle Lucas Formation Detroit River Group Amherstburg Form. Ulsterian Sylvania Sandstone Bois Blanc Formation Garden Island Formation Early Bass Islands Dolomite Sand Salina G Unit Paleozoic Glacial Clay or Silt Late Cayugan Salina F Unit Till/Gravel Salina E Unit Salina D Unit Limestone Salina C Shale Salina Group Salina B Unit Sandy Limestone Salina A-2 Carbonate Silurian Salina A-2 Evaporite Shaley Limestone Ruff Formation
    [Show full text]
  • Chapter 6 Lawn Hill Megabreccia
    Chapter 6 Lawn Hill Megabreccia Chapter 6 Catastrophic mass failure of a Middle Cambrian platform margin, the Lawn Hill Megabreccia, Queensland, Australia Leonardo Feltrin 6-1 Chapter 6 Lawn Hill Megabreccia Acknowledgement of Contributions N.H.S. Oliver – normal supervisory contributions Leonardo Feltrin 6-2 Chapter 6 Lawn Hill Megabreccia Abstract Megabreccia and related folds are two of the most spectacular features of the Lawn Hill Outlier, a small carbonate platform of Middle Cambrian age, situated in the northeastern part of the Georgina Basin, Australia. The megabreccia is a thick unit (over 200 m) composed of chaotic structures and containing matrix-supported clasts up to 260 m across. The breccia also influenced a Mesoproterozoic basement, which hosts the world class Zn-Pb-Ag Century Deposit. Field-studies (undertaken in the mine area), structural 3D modelling and stable isotopic data were used to assess the origin and timing of the megabreccia, and its relationship to the tectonic framework. Previous workers proposed the possible linkage of the structural disruption to an asteroid impact, to justify the extremely large clasts and the conspicuous basement interaction. However, the megabreccia has comparable clast size to some of the largest examples of sedimentary breccias and synsedimentary dyke intrusions in the world. Together with our field and isotope data, the reconstruction of the sequence of events that led to the cratonization of the Centralian Superbasin supports a synsedimentary origin for the Lawn Hill Megabreccia. However, later brittle faulting and veining accompanying strain localisation within the Thorntonia Limestones may represent post-sedimentary, syntectonic deformation, possibly linked to the late Devonian Alice Springs Orogeny.
    [Show full text]
  • AND GEOLOGY of the SURROUNDING AREA I
    . " ... , - .: ~... GP3/10 ~ " . :6',;, J .~~- -i-~ .. '~ MANITOBA MINES BRANCH DEPARTMENT OF MfNES AND NATURAL RESOURCES LAKE ST. MARTIN CRYPTO~EXPLOSION CRATER .. AND GEOLOGY OF THE SURROUNDING AREA i . , - by H. R. McCabe and B. B. Bannatyne Geological Paper 3/70 Winnipeg 1970 Electronic Capture, 2011 The PDF file from which this document was printed was generated by scanning an original copy of the publication. Because the capture method used was 'Searchable Image (Exact)', it was not possible to proofread the resulting file to remove errors resulting from the capture process. Users should therefore verify critical information in an original copy of the publication. (i) GP3/10 MANITOBA M]NES BRANCH DEPARTMENT OF MINES AND NATURAL RESOURCES LAKE ST. MARTIN CRYPTO·EXPLOSION CRATER AND GEOLOGY OF THE SURROUNDING AREA by H. R. McCabe and B. B. Bannatync • Geological Paper 3/70 Winnipeg 1970 (ii) TABLE OF CONTENTS Page Introduction' r Previous work I .. Present work 2 Purpose 4 Acknowledgcmcnts 4 Part A - Regional geology and structural setting 4 Post-Silurian paleogeography 10 Post-crater structure 11 Uthology 11 Precambrian rocks 12 Winnipeg Fomlation 13 Red River Fomlation 14 Stony Mountain Formation 15 Gunn Member 15 Gunton Member 16 Stoncwall Formation 16 Interlake Group 16 Summary 17 Part B - Lake St. Martin crypto-explosion crater 33 St. Martin series 33 Shock metamorphism 33 Quartz 33 Feldspar 35 Biotite 35 Amphibole 36 Pseudotachylyte 36 Altered gneiss 37 Carbonate breccias 41 Polymict breccias 43 Aphanitic igneous rocks - trachyandcsitc 47 Post·crater Red Beds and Evaporites (Amaranth Formation?) 50 Red Bed Member 50 Evaporite Member 52 Age of Red Bed·Evaporite sequence 53 Selected References 67 .
    [Show full text]
  • Impact Cratering
    6 Impact cratering The dominant surface features of the Moon are approximately circular depressions, which may be designated by the general term craters … Solution of the origin of the lunar craters is fundamental to the unravel- ing of the history of the Moon and may shed much light on the history of the terrestrial planets as well. E. M. Shoemaker (1962) Impact craters are the dominant landform on the surface of the Moon, Mercury, and many satellites of the giant planets in the outer Solar System. The southern hemisphere of Mars is heavily affected by impact cratering. From a planetary perspective, the rarity or absence of impact craters on a planet’s surface is the exceptional state, one that needs further explanation, such as on the Earth, Io, or Europa. The process of impact cratering has touched every aspect of planetary evolution, from planetary accretion out of dust or planetesimals, to the course of biological evolution. The importance of impact cratering has been recognized only recently. E. M. Shoemaker (1928–1997), a geologist, was one of the irst to recognize the importance of this process and a major contributor to its elucidation. A few older geologists still resist the notion that important changes in the Earth’s structure and history are the consequences of extraterres- trial impact events. The decades of lunar and planetary exploration since 1970 have, how- ever, brought a new perspective into view, one in which it is clear that high-velocity impacts have, at one time or another, affected nearly every atom that is part of our planetary system.
    [Show full text]
  • Stories in Sand
    Above: Cliffs along the trail east of Miners Castle Stories in Sand Sandstone cliffs-ochre, tan, and brown with layers of Moving ice ground volcanic and sedimentary rock from Twelvemile Beach are horn coral from an ancient sea, white and green-tower 50 to 200 feet above the water. previous eras into rubble and slowly enlarged river valleys polished granite and quartz rounded like eggs, and Vast, blue Lake Superior glistens against a cloud-streaked into the wide basins that would become the Great Lakes. disk-shaped fragments of the Jacobsville sandstone. sky. Deep forests of emerald, black, and gold open onto small lakes and waterfalls. The images are like a painter's The last glacier began retreating about 10,000 years ago. Colorful Cliffs The name Pictured Rocks comes from the work. A palette of nature's colors, textures, and shapes Over time its meltwater formed powerful rivers and streaks of mineral stain decorating the face of the cliffs. sets the scene at Pictured Rocks National Lakeshore. scattered rubble onto outwash plains and into crevasses. The streaks occur when groundwater oozes out of cracks. Water scooped out the basins and channels that harbor The dripping water contains iron, manganese, limonite, This place of beauty was authorized as the first national wetlands in the park today. Eventually, as the weight of copper, and other minerals that leave behind a colorful lakeshore in 1966 to preserve the shoreline, beaches, the glacier lessened, the land rose and exposed bedrock stain as the water trickles down a cliff face. cliffs, and dunes and to provide an extraordinary place to lake erosion.
    [Show full text]