Polygonal Impact Craters in Argyre Region, Mars: Implications for Geology and Cratering Mechanics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Planetary Geologic Mappers Annual Meeting
Program Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Planetary Geologic Mappers Annual Meeting June 12–14, 2018 • Knoxville, Tennessee Institutional Support Lunar and Planetary Institute Universities Space Research Association Convener Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Science Organizing Committee David Williams, Chair Arizona State University Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Robert Jacobsen Earth and Planetary Sciences Department, University of Tennessee Knoxville Bradley Thomson Earth and Planetary Sciences Department, University of Tennessee Knoxville Abstracts for this meeting are available via the meeting website at https://www.hou.usra.edu/meetings/pgm2018/ Abstracts can be cited as Author A. B. and Author C. D. (2018) Title of abstract. In Planetary Geologic Mappers Annual Meeting, Abstract #XXXX. LPI Contribution No. 2066, Lunar and Planetary Institute, Houston. Guide to Sessions Tuesday, June 12, 2018 9:00 a.m. Strong Hall Meeting Room Introduction and Mercury and Venus Maps 1:00 p.m. Strong Hall Meeting Room Mars Maps 5:30 p.m. Strong Hall Poster Area Poster Session: 2018 Planetary Geologic Mappers Meeting Wednesday, June 13, 2018 8:30 a.m. Strong Hall Meeting Room GIS and Planetary Mapping Techniques and Lunar Maps 1:15 p.m. Strong Hall Meeting Room Asteroid, Dwarf Planet, and Outer Planet Satellite Maps Thursday, June 14, 2018 8:30 a.m. Strong Hall Optional Field Trip to Appalachian Mountains Program Tuesday, June 12, 2018 INTRODUCTION AND MERCURY AND VENUS MAPS 9:00 a.m. Strong Hall Meeting Room Chairs: David Williams Devon Burr 9:00 a.m. -
3-D Seismic Characterization of a Cryptoexplosion Structure
Cryptoexplosion structure 3-D seismic characterization of a eryptoexplosion structure J. Helen Isaac and Robert R. Stewart ABSTRACT Three-quarters of a circular structure is observed on three-dimensional (3-D) seismic data from James River, Alberta. The structure has an outer diameter of 4.8 km and a raised central uplift surrounded by a rim synform. The central uplift has a diameter of 2.4 km and its crest appears to be uplifted about 400 m above regional levels. The structure is at a depth of about 4500 m. This is below the zone of economic interest and the feature has not been penetrated by any wells. The disturbed sediments are interpreted to be Cambrian. We infer that the structure was formed in Late Cambrian to Middle Devonian time and suffered erosion before the deposition of the overlying Middle Devonian carbonates. Rim faults, probably caused by slumping of material into the depression, are observed on the outside limb of the synform. Reverse faults are evident underneath the feature and the central uplift appears to have coherent internal reflections. The amount of uplift decreases with increasing depth in the section. The entire feature is interpreted to be a cryptoexplosion structure, possibly caused by a meteorite impact. INTRODUCTION Several enigmatic circular structures, of different sizes and ages, have been observed on seismic data from the Western Canadian sedimentary basin (WCSB) (e.g., Sawatzky, 1976; Isaac and Stewart, 1993) and other parts of Canada (Scott and Hajnal, 1988; Jansa et al., 1989). The structures present startling interruptions in otherwise planar seismic features. -
Cross-References ASTEROID IMPACT Definition and Introduction History of Impact Cratering Studies
18 ASTEROID IMPACT Tedesco, E. F., Noah, P. V., Noah, M., and Price, S. D., 2002. The identification and confirmation of impact structures on supplemental IRAS minor planet survey. The Astronomical Earth were developed: (a) crater morphology, (b) geo- 123 – Journal, , 1056 1085. physical anomalies, (c) evidence for shock metamor- Tholen, D. J., and Barucci, M. A., 1989. Asteroid taxonomy. In Binzel, R. P., Gehrels, T., and Matthews, M. S. (eds.), phism, and (d) the presence of meteorites or geochemical Asteroids II. Tucson: University of Arizona Press, pp. 298–315. evidence for traces of the meteoritic projectile – of which Yeomans, D., and Baalke, R., 2009. Near Earth Object Program. only (c) and (d) can provide confirming evidence. Remote Available from World Wide Web: http://neo.jpl.nasa.gov/ sensing, including morphological observations, as well programs. as geophysical studies, cannot provide confirming evi- dence – which requires the study of actual rock samples. Cross-references Impacts influenced the geological and biological evolu- tion of our own planet; the best known example is the link Albedo between the 200-km-diameter Chicxulub impact structure Asteroid Impact Asteroid Impact Mitigation in Mexico and the Cretaceous-Tertiary boundary. Under- Asteroid Impact Prediction standing impact structures, their formation processes, Torino Scale and their consequences should be of interest not only to Earth and planetary scientists, but also to society in general. ASTEROID IMPACT History of impact cratering studies In the geological sciences, it has only recently been recog- Christian Koeberl nized how important the process of impact cratering is on Natural History Museum, Vienna, Austria a planetary scale. -
LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned
Space Sci Rev DOI 10.1007/s11214-011-9759-y LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned Jennifer L. Heldmann · Anthony Colaprete · Diane H. Wooden · Robert F. Ackermann · David D. Acton · Peter R. Backus · Vanessa Bailey · Jesse G. Ball · William C. Barott · Samantha K. Blair · Marc W. Buie · Shawn Callahan · Nancy J. Chanover · Young-Jun Choi · Al Conrad · Dolores M. Coulson · Kirk B. Crawford · Russell DeHart · Imke de Pater · Michael Disanti · James R. Forster · Reiko Furusho · Tetsuharu Fuse · Tom Geballe · J. Duane Gibson · David Goldstein · Stephen A. Gregory · David J. Gutierrez · Ryan T. Hamilton · Taiga Hamura · David E. Harker · Gerry R. Harp · Junichi Haruyama · Morag Hastie · Yutaka Hayano · Phillip Hinz · Peng K. Hong · Steven P. James · Toshihiko Kadono · Hideyo Kawakita · Michael S. Kelley · Daryl L. Kim · Kosuke Kurosawa · Duk-Hang Lee · Michael Long · Paul G. Lucey · Keith Marach · Anthony C. Matulonis · Richard M. McDermid · Russet McMillan · Charles Miller · Hong-Kyu Moon · Ryosuke Nakamura · Hirotomo Noda · Natsuko Okamura · Lawrence Ong · Dallan Porter · Jeffery J. Puschell · John T. Rayner · J. Jedadiah Rembold · Katherine C. Roth · Richard J. Rudy · Ray W. Russell · Eileen V. Ryan · William H. Ryan · Tomohiko Sekiguchi · Yasuhito Sekine · Mark A. Skinner · Mitsuru Sôma · Andrew W. Stephens · Alex Storrs · Robert M. Suggs · Seiji Sugita · Eon-Chang Sung · Naruhisa Takatoh · Jill C. Tarter · Scott M. Taylor · Hiroshi Terada · Chadwick J. Trujillo · Vidhya Vaitheeswaran · Faith Vilas · Brian D. Walls · Jun-ihi Watanabe · William J. Welch · Charles E. Woodward · Hong-Suh Yim · Eliot F. Young Received: 9 October 2010 / Accepted: 8 February 2011 © The Author(s) 2011. -
USGS Open-File Report 2005-1190, Table 1
TABLE 1 GEOLOGIC FIELD-TRAINING OF NASA ASTRONAUTS BETWEEN JANUARY 1963 AND NOVEMBER 1972 The following is a year-by-year listing of the astronaut geologic field training trips planned and led by personnel from the U.S. Geological Survey’s Branches of Astrogeology and Surface Planetary Exploration, in collaboration with the Geology Group at the Manned Spacecraft Center, Houston, Texas at the request of NASA between January 1963 and November 1972. Regional geologic experts from the U.S. Geological Survey and other governmental organizations and universities s also played vital roles in these exercises. [The early training (between 1963 and 1967) involved a rather large contingent of astronauts from NASA groups 1, 2, and 3. For another listing of the astronaut geologic training trips and exercises, including all attending and the general purposed of the exercise, the reader is referred to the following website containing a contribution by William Phinney (Phinney, book submitted to NASA/JSC; also http://www.hq.nasa.gov/office/pao/History/alsj/ap-geotrips.pdf).] 1963 16-18 January 1963: Meteor Crater and San Francisco Volcanic Field near Flagstaff, Arizona (9 astronauts). Among the nine astronaut trainees in Flagstaff for that initial astronaut geologic training exercise was Neil Armstrong--who would become the first man to step foot on the Moon during the historic Apollo 11 mission in July 1969! The other astronauts present included Frank Borman (Apollo 8), Charles "Pete" Conrad (Apollo 12), James Lovell (Apollo 8 and the near-tragic Apollo 13), James McDivitt, Elliot See (killed later in a plane crash), Thomas Stafford (Apollo 10), Edward White (later killed in the tragic Apollo 1 fire at Cape Canaveral), and John Young (Apollo 16). -
No. 40. the System of Lunar Craters, Quadrant Ii Alice P
NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates. -
General Index
General Index Italicized page numbers indicate figures and tables. Color plates are in- cussed; full listings of authors’ works as cited in this volume may be dicated as “pl.” Color plates 1– 40 are in part 1 and plates 41–80 are found in the bibliographical index. in part 2. Authors are listed only when their ideas or works are dis- Aa, Pieter van der (1659–1733), 1338 of military cartography, 971 934 –39; Genoa, 864 –65; Low Coun- Aa River, pl.61, 1523 of nautical charts, 1069, 1424 tries, 1257 Aachen, 1241 printing’s impact on, 607–8 of Dutch hamlets, 1264 Abate, Agostino, 857–58, 864 –65 role of sources in, 66 –67 ecclesiastical subdivisions in, 1090, 1091 Abbeys. See also Cartularies; Monasteries of Russian maps, 1873 of forests, 50 maps: property, 50–51; water system, 43 standards of, 7 German maps in context of, 1224, 1225 plans: juridical uses of, pl.61, 1523–24, studies of, 505–8, 1258 n.53 map consciousness in, 636, 661–62 1525; Wildmore Fen (in psalter), 43– 44 of surveys, 505–8, 708, 1435–36 maps in: cadastral (See Cadastral maps); Abbreviations, 1897, 1899 of town models, 489 central Italy, 909–15; characteristics of, Abreu, Lisuarte de, 1019 Acequia Imperial de Aragón, 507 874 –75, 880 –82; coloring of, 1499, Abruzzi River, 547, 570 Acerra, 951 1588; East-Central Europe, 1806, 1808; Absolutism, 831, 833, 835–36 Ackerman, James S., 427 n.2 England, 50 –51, 1595, 1599, 1603, See also Sovereigns and monarchs Aconcio, Jacopo (d. 1566), 1611 1615, 1629, 1720; France, 1497–1500, Abstraction Acosta, José de (1539–1600), 1235 1501; humanism linked to, 909–10; in- in bird’s-eye views, 688 Acquaviva, Andrea Matteo (d. -
1 Orbital Evidence for Clay and Acidic Sulfate Assemblages on Mars Based on 2 Mineralogical Analogs from Rio Tinto, Spain 3 4 Hannah H
1 Orbital Evidence for Clay and Acidic Sulfate Assemblages on Mars Based on 2 Mineralogical Analogs from Rio Tinto, Spain 3 4 Hannah H. Kaplan1*, Ralph E. Milliken1, David Fernández-Remolar2, Ricardo Amils3, 5 Kevin Robertson1, and Andrew H. Knoll4 6 7 Authors: 8 9 1 Department of Earth, Environmental and Planetary Sciences, Brown University, 10 Providence, RI, 02912 USA. 11 12 2British Geological Survey, Nicker Hill, Keyworth, NG12 5GG, UK. 13 14 3 Centro de Astrobiologia (INTA-CSIC), Ctra Ajalvir km 4, Torrejon de Ardoz, 28850, 15 Spain. 16 17 4 Department of Organismic and Evolutionary Biology, Harvard University, 18 Çambridge, MA, USA. 19 20 *Corresponding author: [email protected] 1 21 Abstract 22 23 Outcrops of hydrated minerals are widespread across the surface of Mars, 24 with clay minerals and sulfates being commonly identified phases. Orbitally-based 25 reflectance spectra are often used to classify these hydrated components in terms of 26 a single mineralogy, although most surfaces likely contain multiple minerals that 27 have the potential to record local geochemical conditions and processes. 28 Reflectance spectra for previously identified deposits in Ius and Melas Chasma 29 within the Valles Marineris, Mars, exhibit an enigmatic feature with two distinct 30 absorptions between 2.2 – 2.3 µm. This spectral ‘doublet’ feature is proposed to 31 result from a mixture of hydrated minerals, although the identity of the minerals has 32 remained ambiguous. Here we demonstrate that similar spectral doublet features 33 are observed in airborne, field, and laboratory reflectance spectra of rock and 34 sediment samples from Rio Tinto, Spain. -
Martian Crater Morphology
ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter. -
Episodic and Declining Fluvial Processes in Southwest Melas Chasma, Valles Marineris, Mars
Journal of Geophysical Research: Planets RESEARCH ARTICLE Episodic and Declining Fluvial Processes in Southwest Melas 10.1029/2018JE005710 Chasma, Valles Marineris, Mars Key Points: J. M. Davis1 , P. M. Grindrod1 , P. Fawdon2, R. M. E. Williams3 , S. Gupta4, and M. Balme2 • Episodic fluvial processes occurred in the southwest Melas basin, Valles 1Department of Earth Sciences, Natural History Museum, London, UK, 2School of Physical Sciences, The Open University, Marineris, Mars, likely during the 3 4 Hesperian period Milton Keynes, Buckinghamshire, UK, Planetary Science Institute, Tucson, AZ, USA, Department of Earth Sciences and • Evidence for multiple “wet and dry” Engineering, Imperial College London, London, UK periods is preserved in the fluvial systems and paleolacustrine deposits • Local Valles Marineris climate likely Abstract There is abundant evidence for aqueous processes on Noachian terrains across Mars; however, supported runoff and precipitation key questions remain about whether these processes continued into the Hesperian as the martian and transitioned from perennial to ephemeral conditions climate became less temperate. One region with an extensive Hesperian sedimentary record is Valles Marineris. We use high-resolution image and topographic data sets to investigate the fluvial systems in the Supporting Information: southwest Melas basin, Valles Marineris, Mars. Fluvial landforms in the basin exist across a wide area, and • Supporting Information S1 some are preserved as inverted channels. The stratigraphy of the basin is complex: Fluvial landforms are preserved as planview geomorphic features and are also interbedded with layered deposits in the basin. The Correspondence to: fluvial morphologies are consistent with formation by precipitation-driven runoff. Fluvial processes in the J. M. -
Evidence for Impact-Generated Deposition
EVIDENCE FOR IMPACT-GENERATED DEPOSITION ON THE LATE EOCENE SHORES OF GEORGIA by ROBERT SCOTT HARRIS (Under the direction of Michael F. Roden) ABSTRACT Modeling demonstrates that the Late Eocene Chesapeake Bay impact would have been capable of depositing ejecta in east-central Georgia with thicknesses exceeding thirty centimeters. A coarse sand layer at the base of the Upper Eocene Dry Branch Formation was examined for shocked minerals. Universal stage measurements demonstrate that planar fabrics in some fine to medium sand-size quartz grains are parallel to planes commonly exploited by planar deformation features (PDF’s) in shocked quartz. Possible PDF’s are observed parallel to {10-13}, {10-11}, {10-12}, {11-22} and {51-61}. Petrographic identification of shocked quartz is supported by line broadening in X-ray diffraction experiments. Other impact ejecta recognized include possible ballen quartz, maskelynite, and reidite-bearing zircon grains. The layer is correlative with an unusual diamictite that contains goethite spherules similar to altered microkrystites. It may represent an impact-generated debris flow. These discoveries suggest that the Chesapeake Bay impact horizon is preserved in Georgia. The horizon also should be the source stratum for Georgia tektites. INDEX WORDS: Chesapeake Bay impact, Upper Eocene, Shocked quartz, Impact shock, Shocked zircon, Impact, Impact ejecta, North American tektites, Tektites, Georgiaites, Georgia Tektites, Planar deformation features, PDF’s, Georgia, Geology, Coastal Plain, Stratigraphy, Impact stratigraphy, Impact spherules, Goethite spherules, Diamictite, Twiggs Clay, Dry Branch Formation, Clinchfield Sand, Irwinton Sand, Reidite, Microkrystite, Cpx Spherules, Impact debris flow EVIDENCE FOR IMPACT-GENERATED DEPOSITION ON THE LATE EOCENE SHORES OF GEORGIA by ROBERT SCOTT HARRIS B. -
Warfare in a Fragile World: Military Impact on the Human Environment
Recent Slprt•• books World Armaments and Disarmament: SIPRI Yearbook 1979 World Armaments and Disarmament: SIPRI Yearbooks 1968-1979, Cumulative Index Nuclear Energy and Nuclear Weapon Proliferation Other related •• 8lprt books Ecological Consequences of the Second Ihdochina War Weapons of Mass Destruction and the Environment Publish~d on behalf of SIPRI by Taylor & Francis Ltd 10-14 Macklin Street London WC2B 5NF Distributed in the USA by Crane, Russak & Company Inc 3 East 44th Street New York NY 10017 USA and in Scandinavia by Almqvist & WikseH International PO Box 62 S-101 20 Stockholm Sweden For a complete list of SIPRI publications write to SIPRI Sveavagen 166 , S-113 46 Stockholm Sweden Stoekholol International Peace Research Institute Warfare in a Fragile World Military Impact onthe Human Environment Stockholm International Peace Research Institute SIPRI is an independent institute for research into problems of peace and conflict, especially those of disarmament and arms regulation. It was established in 1966 to commemorate Sweden's 150 years of unbroken peace. The Institute is financed by the Swedish Parliament. The staff, the Governing Board and the Scientific Council are international. As a consultative body, the Scientific Council is not responsible for the views expressed in the publications of the Institute. Governing Board Dr Rolf Bjornerstedt, Chairman (Sweden) Professor Robert Neild, Vice-Chairman (United Kingdom) Mr Tim Greve (Norway) Academician Ivan M£ilek (Czechoslovakia) Professor Leo Mates (Yugoslavia) Professor