Exploration of Victoria Crater by the Mars Rover Opportunity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geochemistry This
TORONTOTORONTO Vol. 8, No. 4 April 1998 Call for Papers GSA TODAY — page C1 A Publication of the Geological Society of America Electronic Abstracts Submission — page C3 Antarctic Neogene Landscapes—In the 1998 Registration Refrigerator or in the Deep Freeze? Annual Issue Meeting — June GSA Today Introduction The present Molly F. Miller, Department of Geology, Box 117-B, Vanderbilt Antarctic landscape undergoes very University, Nashville, TN 37235, [email protected] slow environmental change because it is almost entirely covered by a thick, slow-moving ice sheet and thus effectively locked in a Mark C. G. Mabin, Department of Tropical Environmental Studies deep freeze. The ice sheet–landscape system is essentially stable, and Geography, James Cook University, Townsville, Queensland 4811, Australia, [email protected] Antarctic—Introduction continued on p. 2 Atmospheric Transport of Diatoms in the Antarctic Sirius Group: Pliocene Deep Freeze Arjen P. Stroeven, Department of Quaternary Research, Stockholm University, S-106 91 Stockholm, Sweden Lloyd H. Burckle, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964 Johan Kleman, Department of Physical Geography, Stockholm University, S-106, 91 Stockholm, Sweden Michael L. Prentice, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824 INTRODUCTION How did young diatoms (including some with ranges from the Pliocene to the Pleistocene) get into the Sirius Group on the slopes of the Transantarctic Mountains? Dynamicists argue for emplacement by a wet-based ice sheet that advanced across East Antarctica and the Transantarctic Mountains after flooding of interior basins by relatively warm marine waters [2 to 5 °C according to Webb and Harwood (1991)]. -
Curiosity's Candidate Field Site in Gale Crater, Mars
Curiosity’s Candidate Field Site in Gale Crater, Mars K. S. Edgett – 27 September 2010 Simulated view from Curiosity rover in landing ellipse looking toward the field area in Gale; made using MRO CTX stereopair images; no vertical exaggeration. The mound is ~15 km away 4th MSL Landing Site Workshop, 27–29 September 2010 in this view. Note that one would see Gale’s SW wall in the distant background if this were Edgett, 1 actually taken by the Mastcams on Mars. Gale Presents Perhaps the Thickest and Most Diverse Exposed Stratigraphic Section on Mars • Gale’s Mound appears to present the thickest and most diverse exposed stratigraphic section on Mars that we can hope access in this decade. • Mound has ~5 km of stratified rock. (That’s 3 miles!) • There is no evidence that volcanism ever occurred in Gale. • Mound materials were deposited as sediment. • Diverse materials are present. • Diverse events are recorded. – Episodes of sedimentation and lithification and diagenesis. – Episodes of erosion, transport, and re-deposition of mound materials. 4th MSL Landing Site Workshop, 27–29 September 2010 Edgett, 2 Gale is at ~5°S on the “north-south dichotomy boundary” in the Aeolis and Nepenthes Mensae Region base map made by MSSS for National Geographic (February 2001); from MOC wide angle images and MOLA topography 4th MSL Landing Site Workshop, 27–29 September 2010 Edgett, 3 Proposed MSL Field Site In Gale Crater Landing ellipse - very low elevation (–4.5 km) - shown here as 25 x 20 km - alluvium from crater walls - drive to mound Anderson & Bell -
Turbulence and Aeolian Morphodynamics in Craters on Mars: Application to Gale Crater, Landing Site of the Curiosity Rover
16TH EUROPEAN TURBULENCE CONFERENCE, 21-24 AUGUST, 2017, STOCKHOLM,SWEDEN TURBULENCE AND AEOLIAN MORPHODYNAMICS IN CRATERS ON MARS: APPLICATION TO GALE CRATER, LANDING SITE OF THE CURIOSITY ROVER William Anderson1, Gary Kocurek2 & Kenzie Day2 1Mechanical Engineering Dept., Univ. Texas at Dallas, Richardson, Texas, USA 2Dept. Geological Sciences, Jackson School of Geosciences, Univ. Texas at Austin, Austin, Texas, USA Mars is a dry planet with a thin atmosphere. Aeolian processes – wind-driven mobilization of sediment and dust – are the dominant mode of landscape variability on the dessicated landscapes of Mars. Craters are common topographic features on the surface of Mars, and many craters on Mars contain a prominent central mound (NASA’s Curiosity rover was landed in Gale crater, shown in Figure 1a [1], while Figures 1b and 1c show Henry and Korolev crater, respectively). These mounds are composed of sedimentary fill and, therefore, they contain rich information on the evolution of climatic conditions on Mars embodied in the stratigraphic “layering” of sediments. Many other craters no longer house a mound, but contain sediment and dust from which dune fields and other features form (see, for example, Victoria Crater, Figure 1d). Using density-normalized large-eddy simulations, we have modeled turbulent flows over crater-like topographies that feature a central mound. Resultant datasets suggest a deflationary mechanism wherein vortices shed from the upwind crater rim are realigned to conform to the crater profile via stretching and tilting. This was accomplished using three- dimensional datasets (momentum and vorticity) retrieved from LES. As a result, helical vortices occupy the inner region of the crater and, therefore, are primarily responsible for aeolian morphodynamics in the crater (radial katabatic flows are also important to aeolian processes within the crater [2]). -
Educator's Guide
EDUCATOR’S GUIDE ABOUT THE FILM Dear Educator, “ROVING MARS”is an exciting adventure that This movie details the development of Spirit and follows the journey of NASA’s Mars Exploration Opportunity from their assembly through their Rovers through the eyes of scientists and engineers fantastic discoveries, discoveries that have set the at the Jet Propulsion Laboratory and Steve Squyres, pace for a whole new era of Mars exploration: from the lead science investigator from Cornell University. the search for habitats to the search for past or present Their collective dream of Mars exploration came life… and maybe even to human exploration one day. true when two rovers landed on Mars and began Having lasted many times longer than their original their scientific quest to understand whether Mars plan of 90 Martian days (sols), Spirit and Opportunity ever could have been a habitat for life. have confirmed that water persisted on Mars, and Since the 1960s, when humans began sending the that a Martian habitat for life is a possibility. While first tentative interplanetary probes out into the solar they continue their studies, what lies ahead are system, two-thirds of all missions to Mars have NASA missions that not only “follow the water” on failed. The technical challenges are tremendous: Mars, but also “follow the carbon,” a building block building robots that can withstand the tremendous of life. In the next decade, precision landers and shaking of launch; six months in the deep cold of rovers may even search for evidence of life itself, space; a hurtling descent through the atmosphere either signs of past microbial life in the rock record (going from 10,000 miles per hour to 0 in only six or signs of past or present life where reserves of minutes!); bouncing as high as a three-story building water ice lie beneath the Martian surface today. -
Mars Reconnaissance Orbiter and Opportunity Observations Of
PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Mars Reconnaissance Orbiter and Opportunity 10.1002/2014JE004686 observations of the Burns formation: Crater Key Point: hopping at Meridiani Planum • Hydrated Mg and Ca sulfate Burns formation minerals mapped with MRO R. E. Arvidson1, J. F. Bell III2, J. G. Catalano1, B. C. Clark3, V. K. Fox1, R. Gellert4, J. P. Grotzinger5, and MER data E. A. Guinness1, K. E. Herkenhoff6, A. H. Knoll7, M. G. A. Lapotre5, S. M. McLennan8, D. W. Ming9, R. V. Morris9, S. L. Murchie10, K. E. Powell1, M. D. Smith11, S. W. Squyres12, M. J. Wolff3, and J. J. Wray13 1 2 Correspondence to: Department of Earth and Planetary Sciences, Washington University in Saint Louis, Missouri, USA, School of Earth and Space R. E. Arvidson, Exploration, Arizona State University, Tempe, Arizona, USA, 3Space Science Institute, Boulder, Colorado, USA, 4Department of [email protected] Physics, University of Guelph, Guelph, Ontario, Canada, 5Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 6U.S. Geological Survey, Astrogeology Science Center, Flagstaff, Arizona, USA, 7 8 Citation: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA, Department Arvidson, R. E., et al. (2015), Mars of Geosciences, Stony Brook University, Stony Brook, New York, USA, 9NASA Johnson Space Center, Houston, Texas, USA, Reconnaissance Orbiter and Opportunity 10Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland, USA, 11NASA Goddard Space Flight Center, observations of the Burns formation: Greenbelt, Maryland, USA, 12Department of Astronomy, Cornell University, Ithaca, New York, USA, 13School of Earth and Crater hopping at Meridiani Planum, J. -
"Nkw^ORKI
j 18 -f THE NEWr YORK HERALD, WEIDNESDAY, DECEMBER 28, 1921. SHIP PI NG NEWS FR<OM AL L PARIrs of The1fl ORLD f \ William A McKenney lat 38 43. Ion 74 42 Str City of St I.ouls, Johnson, Savannah nopn, 30.16 Inrhea; wind, W, light breeze; tall shaft, hut which Is now being towed tg CLOSING OF MAILS -7th. (, general).Ocean Steamship Co. weatlier, dull; temperature, 23 deg Fahr. port by str Balsam. Notice to Owners, Agents and William H t'oheny 434 E Tatnplco 27th. Str city of Savannah, Borum, Savannah The postponed auction sale of bargee STRONG MAN LIKELY Foreign mails will close promptly as ind icated below at the General Post Office and general).Ocean Steamship Co. hiictu and Congressman Scully took placeTim1at City Hall Station. Ordinary prints, samples, parcel pout packages and registered articles Ship Masters. Sir Arapahoe, Devereaux, Charleston and ICast Doeton Saturday by Deputy U S Ma^ close iwo hours earlier, except that registered articles have to be mailed between the hours PASSED CITY ISLAND. J acksonvtll" (general).Clyde Steamship Co. MARITIME MISCELLANY. rltal; they were purchased by R Savldge of of M AM and I'd I'M. At the Foreign Station (corner of Morton and West streets) foreign Str Hamilton. Nelson, Norfolk (general). 8tr Norfolk, Portland for Norfolk, put In Brooklyn for $10,100 each. mall closes half an hour later than at the Geie rul Post Office and Hall Station, The Herald publishes Id Dominion Transportation Co. here wit)i main steam pipe broken; veeeel ALIEN City daily Boston HAVANA, Doc 27.Freight is beginning to TO BEND closes at Str Osborn, BARS mall the double Bound South. -
LAYERED SULFATE-BEARING TERRAINS on MARS: INSIGHTS from GALE CRATER and MERIDIANI PLANUM. K.E. Powell1,2, R.E. Arvidson3, and C.S
Ninth International Conference on Mars 2019 (LPI Contrib. No. 2089) 6316.pdf LAYERED SULFATE-BEARING TERRAINS ON MARS: INSIGHTS FROM GALE CRATER AND MERIDIANI PLANUM. K.E. Powell1,2, R.E. Arvidson3, and C.S. Edwards1, 1Department of Physics & Astrono- my, Northern Arizona University, 2School of Earth & Space Exploration, Arizona State University, 3Department of Earth & Planetary Sciences, Washington University in St. Louis. Introduction: Sulfate species have been detected ronment, with episodes of diagenesis and weathering in late Noachian and Hesperian terrains on Mars lying to form a crystalline hematite lag deposit [4, 5]. The stratigraphically above clay minerals, which has been lag deposit masks the CRISM spectral signature of interpreted as documenting a shift from wetter to more sulfate in most locations. Sulfate minerals including arid environments on the surface. Sulfate detections kieserite and gypsum have been detected in impact are associated with layered deposits in numerous loca- crater walls and windswept regions [6]. The Oppor- tions including Gale Crater, Meridiani Planum, Vallis tunity rover explored southern Meridiani Planum Marineris, and Terra Sirenum, and Aram Chaos [1]. through a campaign of crater-hopping, using craters as These sulfates and clays been identified using their a natural drill to expose strata [6]. The deepest expo- diagnostic absorption features in visible and near- sures explored by Opportunity directly are ~10 meters infrared reflectance (VNIR) data acquired from Mars thick at Victoria Crater. Opportunity results indicate orbit. Additionally, two rover missions have explored that the top layers of Burns formation contain up to sites with massive sulfate deposits. The first, the MER 40% sulfate and included Mg, Ca, and Fe species. -
A MTAK Kiadványai 47. Budapest, 1966
A MAGYAR TUDOMÁNYOS AKADÉMIA KÖNYVTARÁNAK KÖZLEMÉNYEI PUBLICATIONES BIBLIOTHECAE ACADEMIAE SCIENTIARUM HUNGARICAE 47. INDEX ÀCRONYMORUM SELECTORUM Institute* communicationis BUDAPEST, 1966 VOCABULARIUM ABBREVIATURARUM BIBLIOTHECARII III Index acronymorum selectorum 7. Instituta communicationis A MAGYAR TUDOMÁNYOS AKADÉMIA KÖNYVTARÁNAK KÖZLEMÉNYEI PUBLICATIONES BIBLIOTHECAE ACADEMIAE SCIENTIARUM HUNGARICAE 47. VOCABULARIUM ABBREVIATURARUM BIBLIOTHECARII Index acronymorum selectorum 7. Instituta communicationis BUDAPEST, 196 6 A MAGYAR TUDOMÁNYOS AKADÉMIA KÖNYVTARÁNAK KÖZLEMÉNYEI PUBLICATIONES BIBLIOTHECAE ACADEMIAE SCIENTIARUM HUNGARICAE 47. INDEX ACRONYMORUM SELECTORUM 7 Instituta communications. BUDAPEST, 1966 INDEX ACRONYMORUM SELECTORUM Pars. 7. Instituta communicationis. Adiuvantibus EDIT BODNÁ R-BERN ÁT H et MAGDA TULOK collegit et edidit dr. phil. ENDRE MORAVEK Lectores: Gyula Tárkányi Sámuel Papp © 1966 MTA Köynvtára F. к.: Rózsa György — Kiadja a MTA Könyvtára — Példányszám: 750 Alak A/4. - Terjedelem 47'/* A/5 ív 65395 - M.T.A. KESz sokszorosító v ELŐSZÓ "Vocabularium abbreviaturarum bibliothecarii" cimü munkánk ez ujabb füzete az "Index acronymorum selectorum" kötet részeként, a köz- lekedési és hírközlési intézmények /ilyen jellegű állami szervek, vasu- tak, légiközlekedési vállalatok, távirati irodák, sajtóügynökségek stb/ névröviditéseit tartalmazza. Az idevágó felsőbb fokú állami intézmények /pl. minisztériumok stb./ nevének acronymáit, amelyeket az "Instituta rerum publicarum" c. kötetben közöltünk, technikai okokból nem -
GRAIL Reveals Secrets of the Lunar Interior
GRAIL Reveals Secrets of the Lunar Interior — Dr. Patrick J. McGovern, Lunar and Planetary Institute A mini-flotilla of spacecraft sent to the Moon in the past few years by several nations has revealed much about the characteristics of the lunar surface via techniques such as imaging, spectroscopy, and laser ranging. While the achievements of these missions have been impressive, only GRAIL has seen deeply enough to reveal inner secrets that the Moon holds. LRecent Lunar Missions Country Name Launch Date Status ESA Small Missions for Advanced September 27, 2003 Ended with lunar surface impact on Research in Technology-1 (SMART-1) September 3, 2006 USA Acceleration, Reconnection, February 27, 2007 Extension of the THEMIS mission; ended Turbulence and Electrodynamics of in 2012 the Moon’s Interaction with the Sun (ARTEMIS) Japan SELENE (Kaguya) September 14, 2007 Ended with lunar surface impact on June 10, 2009 PChina Chang’e-1 October 24, 2007 Taken out of orbit on March 1, 2009 India Chandrayaan-1 October 22, 2008 Two-year mission; ended after 315 days due to malfunction and loss of contact USA Lunar Reconnaissance Orbiter (LRO) June 18, 2009 Completed one-year primary mission; now in five-year extended mission USA Lunar Crater Observation and June 18, 2009 Ended with lunar surface impact on Sensing Satellite (LCROSS) October 9, 2009 China Chang’e-2 October 1, 2010 Primary mission lasted for six months; extended mission completed flyby of asteroid 4179 Toutatis in December 2012 USA Gravity Recovery and Interior September 10, 2011 Ended with lunar surface impact on I Laboratory (GRAIL) December 17, 2012 To probe deeper, NASA launched the Gravity Recovery and Interior Laboratory (GRAIL) mission: twin spacecraft (named “Ebb” and “Flow” by elementary school students from Montana) flying in formation over the lunar surface, tracking each other to within a sensitivity of 50 nanometers per second, or one- twenty-thousandth of the velocity that a snail moves [1], according to GRAIL Principal Investigator Maria Zuber of the Massachusetts Institute of Technology. -
Terrestrial Planets 1- 4 from the Sun Mercury in Sight
Terrestrial Planets 1- 4 from the Sun Image courtesy: http://commons.wikimedia.org/wiki/Image:Terrestrial_planet_size_comparisons_edit.jpg First ever ‘whole Earth’ picture from deep space, taken by Bill Anders on Apollo 8 Apollo 8 crew, Bill Anders centre: courtesy Nasa Mercury, Venus, Earth and Mars are four The Earth is just a planet astonishingly different planets Mercury and Venus have only been seen in any detail within the last 30 years Mercury in sight Mercury Mercury is like the Earth inside and the Moon outside Courtesy NASA (Mariner 10) Mercury has had a cooling and bombardment history Mercury is visible only soon after the setting similar to the moon sun or shortly before dawn It appears as cratered lava the Mariner 10 probe (1974/75) is the source of most information about Mercury – Messenger, launched 2004, with scarps first flypast in 2008 and orbit Mercury in 2011. ESA’s Its rocks are Earth-like BepiColombo, to be launched in 2013 Mariner 10 image Messenger images Messenger image ↑ Double-ringed crater – a Mercury feature courtesy: http://messenger.jhuapl.edu/gallery/sciencePhotos/pics/S trom02.jpg ← Courtesy: http://messenger.jhuapl.edu/gal lery/sciencePhotos/pics/EN010 8828161M.jpg Courtesy: http://messenger.jhuapl.edu/gallery/sciencePhotos/pics/Prockter06.jpg Messenger image Mercury Close-up Mercury’s topography was formed under stronger The gravity than on the Moon caloris The Caloris basin is an impact crater ~1400 km across, basin is the beneath which is thought to be a dense mass large 2 Mercury’s rotation period is exactly /3 of its orbital circular period of 87.97 days. -
FIELD STUDIES of CRATER GRADATION in GUSEV CRATER and MERIDIANI PLANUM USING the MARS EXPLORATION ROVERS. J. A. Grant1, M. P. Golombek2, A
Role of Volatiles and Atmospheres on Martian Impact Craters 2005 3004.pdf FIELD STUDIES OF CRATER GRADATION IN GUSEV CRATER AND MERIDIANI PLANUM USING THE MARS EXPLORATION ROVERS. J. A. Grant1, M. P. Golombek2, A. F. C. Haldemann2, L. Crumpler3, R. Li4, W. A. Watters5, and the Athena Science Team 1Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC 20560, 2Jet Propulsion Laboratory, California Institute of Tech- nology, Pasadena, CA 91109, 3New Mexico Museum of Natural History and Science, Albuquerque, NM 87104, 4Department of Civil Engineering and Remote Sensing, The Ohio State University, Columbus, OH 43210, 5Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139. Introduction: The Mars Exploration Rovers Spirit Impact Structures in Meridiani Planum: Craters and Opportunity investigated numerous craters since explored at Meridiani are fewer and farther between landing in Gusev crater (14.569oS, 175.473oE) and than at Gusev and all are formed into sulfate bedrock Meridiani Planum (1.946oS, 354.473oE) over the first [3]. With the exception of the most degraded examples, 400 sols of their missions [1-4]. Craters at both sites Meridiani craters have depth-to-diameter ratios >0.10 are simple structures and vary in size and preservation and preserve walls sloped generally >10 degrees. En- state. Comparing observed and expected pristine mor- durance crater is 150 m-in-diameter, 22 m deep, and phology and using process-specific gradational signa- possesses walls sloped between 15-30 degrees, but tures around terrestrial craters as a template [5-7] al- locally exceeding the repose angle (Table 1). -
The Lunar Crust: Global Structure and Signature of Major Basins
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 101, NO. E7, PAGES 16,841-16,843, JULY 25, 1996 The lunar crust: Global structure and signature of major basins GregoryA. Neumannand Maria T. Zuber1 Departmentof Earth and PlanetarySciences, Johns Hopkins University, Baltimore, Maryland David E. Smith and Frank G. Lemoine Laboratoryfor TerrestrialPhysics, NASA/Goddard Space Flight Center,Greenbelt, Maryland Abstract. New lunar gravityand topography data from the ClementineMission provide a global Bougueranomaly map correctedfor the gravitationalattraction of mare fill in mascon basins.Most of the gravity signalremaining after correctionsfor the attractionof topographyand mare fill can be attributedto variationsin depthto the lunar Moho and thereforecrustal thickness. The large range of global crustalthickness (-20-120 km) is indicativeof major spatialvariations in meltingof the lunar exteriorand/or significant impact-related redistribution. The 61-km averagecrustal thickness, constrained by a depth-to-Mohomeasured during the Apollo 12 and 14 missions,is preferentiallydistributed toward the farside,accounting for much of the offset in center-of-figurefrom the center-of-mass.While the averagefarside thickness is 12 km greaterthan the nearside,the distributionis nonuniform,with dramaticthinning beneath the farside, South Pole-Aitkenbasin. With the globalcrustal thickness map as a constraint,regional inversions of gravityand topographyresolve the crustalstructure of majormascon basins to half wavelengthsof 150 km. In order to yield crustalthickness maps with the maximum horizontalresolution permittedby the data, the downwardcontinuation of the Bouguergravity is stabilizedby a three- dimensional,minimum-slope and curvature algorithm. Both mare and non-marebasins are characterizedby a centralupwarped moho that is surroundedby ringsof thickenedcrust lying mainly within the basinrims. The inferredrelief at this densityinterface suggests a deep structuralcomponent to the surficialfeatures of multiring lunar impactbasins.