Earth Satellites and Detection of Air and Ground-Based Activities

Total Page:16

File Type:pdf, Size:1020Kb

Earth Satellites and Detection of Air and Ground-Based Activities Earth Satellites and Detection of Air and Ground-based Activities Ulf Ekblad Doctoral Thesis Stockholm, Sweden, 2004 TRITA-FYS 2002:42 ISSN 0280-316X KTH Fysik ISRN KTH/FYS/--02:42--SE 100 44 Stockholm ISBN 91-7283-376-9 SWEDEN Akademisk avhandling som med tillstånd av Kungliga Tekniska Högskolan framläggs till offentlig granskning för avläggande av filosofie doktorsexamen torsdagen den 3 juni 2004 i sal E2 på KTH, Stockholm. Ulf Ekblad, 2004 Tryck: Universitetsservice USAB 2 Contents Acknowledgements.................................................................................................. 7 Preface .................................................................................................................... 11 Abstract................................................................................................................... 13 I Introduction................................................................ 15 1. General Introduction and Outline of the Thesis.....................................17 1.1 Background.....................................................................................17 1.2 The Author’s Contribution to the Work Presented in this Thesis ....19 1.3 Outline of the Thesis .......................................................................23 II Remote Sensing from Space .................................. 25 2. Satellites for Earth Observations ............................................................27 2.1 Historical Background ....................................................................27 2.2 Satellites for Information Acquisition .............................................29 2.2.1 Optical Remote Sensing Satellites...........................................30 2.2.2 Early Warning Satellites .........................................................31 2.2.3 SAR Satellites.........................................................................31 2.2.4 Signals Intelligence Satellites..................................................31 3. Sensors for Information Acquisition.......................................................33 3.1 Space-based Techniques for Information Acquisition .....................33 3.1.1 Sensors for Acquiring Information..........................................33 3.1.2 Characteristics of Sensors .......................................................34 3.2 Optical Sensors ...............................................................................35 3.3 Thermal Sensors..............................................................................35 3.4 SAR Systems ..................................................................................35 3.5 Signals Intelligence Systems ...........................................................36 3.6 Sensor Fusion..................................................................................37 3.6.1 Multi-Sensor Systems .............................................................37 3.6.2 The ATLAS Detector System .................................................38 3 3.6.3 Image Information Mining......................................................39 4. Purposes of Earth Observations .............................................................41 4.1 Civilian Uses of Earth Satellites......................................................41 4.2 Military Reconnaissance .................................................................42 4.3 Verification Purposes......................................................................44 4.3.1 Satellite Imagery Verification .................................................44 4.3.2 Nuclear-Test-Ban Treaty.........................................................45 5. Classical Limitations and Quantum Possibilities ..................................47 5.1 General Considerations ...................................................................47 5.2 Coverage Limitations due to Orbital Constraints.............................48 5.2.1 Minimum Number of Satellites for Periodic Coverage ...........48 5.2.2 Assumptions ...........................................................................49 5.2.3 Number of Satellites................................................................49 5.3 Limitations due to Data Handling Processes ...................................52 5.3.1 Demands on Information Accessibility ...................................52 5.3.2 Data Transfer ..........................................................................53 5.3.3 Data Processing.......................................................................54 5.3.4 Data Security ..........................................................................55 5.4 Photon Entanglement ......................................................................56 5.4.1 Introduction.............................................................................56 5.4.2 Theory.....................................................................................56 5.4.3 Experiments ............................................................................57 5.4.4 Secure Communication ...........................................................58 5.4.5 Possible Space Applications of Entanglement.........................60 5.4.6 Summary.................................................................................61 III Detection of Air and Ground-based Activities..... 63 6. Change Detection in Images ....................................................................65 6.1 Image Information Content and Extraction .....................................65 6.2 The Concept of Changes in Imagery ...............................................67 6.3 Change Detection............................................................................68 6.3.1 Introduction.............................................................................68 6.3.2 Review of Computerised Change Detection Methods .............68 6.3.3 Edge Segment Matching .........................................................71 6.3.4 The Dipole Method.................................................................72 6.3.5 Global Change Detection ........................................................74 6.3.6 Discussions of the Methods.....................................................75 6.4 Analyst versus Computer ................................................................76 4 7. Change Detection Using Neural Networks .............................................77 7.1 Artificial Neural Networks..............................................................77 7.1.1 Introduction.............................................................................77 7.1.2 Biological Neurons .................................................................78 7.1.3 Artificial Neurons ...................................................................80 7.1.4 Multi-Layered Perceptron Networks.......................................80 7.1.5 The Visual Cortex and Locally Coupled Neural Oscillators....81 7.1.6 Pulse-Coupled Neural Networks .............................................83 7.1.7 The PCNN Model ...................................................................84 7.1.8 The Intersecting Cortical Model..............................................85 7.1.9 Level-Set Methods, Diffusion, and Autowaves.......................88 7.2 Change Detection using ICM..........................................................91 7.2.1 Introduction.............................................................................91 7.2.2 ICM Signatures .......................................................................93 7.2.3 Minimum Risk Angle............................................................100 7.2.4 Angle of maximum distance .................................................106 7.2.5 Image Fusion ........................................................................112 7.2.6 Aircraft Detection .................................................................114 7.2.7 Car Detection ........................................................................115 7.2.8 Discussions ...........................................................................118 7.3 Validation .....................................................................................120 IV Satellite Imagery Analyses .................................. 125 8. Satellite Imagery Simulation ..................................................................127 8.1 Terrain Model with Tanks.............................................................127 8.2 Resolution Degradation.................................................................129 8.3 Control of Filter Process ...............................................................135 8.4 Simulation Results ........................................................................135 8.4.1 Resolution Demands for Detection of Tanks.........................135 8.4.2 Resolution Relationships.......................................................138 9. Detection of Underground Nuclear Explosions ...................................139 9.1 Landsat Imagery of Nuclear Explosion Site ..................................139 9.2 Pixel Subtraction Method..............................................................140 9.2.1 Introduction...........................................................................140 9.2.2 Difference Filter....................................................................140 9.2.3 The Subtraction.....................................................................141 9.2.4 The Astrakhan Nuclear Explosion
Recommended publications
  • Rafael Space Propulsion
    Rafael Space Propulsion CATALOGUE A B C D E F G Proprietary Notice This document includes data proprietary to Rafael Ltd. and shall not be duplicated, used, or disclosed, in whole or in part, for any purpose without written authorization from Rafael Ltd. Rafael Space Propulsion INTRODUCTION AND OVERVIEW PART A: HERITAGE PART B: SATELLITE PROPULSION SYSTEMS PART C: PROPELLANT TANKS PART D: PROPULSION THRUSTERS Satellites Launchers PART E: PROPULSION SYSTEM VALVES PART F: SPACE PRODUCTION CAPABILITIES PART G: QUALITY MANAGEMENT CATALOGUE – Version 2 | 2019 Heritage PART A Heritage 0 Heritage PART A Rafael Introduction and Overview Rafael Advanced Defense Systems Ltd. designs, develops, manufactures and supplies a wide range of high-tech systems for air, land, sea and space applications. Rafael was established as part of the Ministry of Defense more than 70 years ago and was incorporated in 2002. Currently, 7% of its sales are re-invested in R&D. Rafael’s know-how is embedded in almost every operational Israel Defense Forces (IDF) system; the company has a special relationship with the IDF. Rafael has formed partnerships with companies with leading aerospace and defense companies worldwide to develop applications based on its proprietary technologies. Offset activities and industrial co-operations have been set-up with more than 20 countries world-wide. Over the last decade, international business activities have been steadily expanding across the globe, with Rafael acting as either prime-contractor or subcontractor, capitalizing on its strengths at both system and sub-system levels. Rafael’s highly skilled and dedicated workforce tackles complex projects, from initial development phases, through prototype, production and acceptance tests.
    [Show full text]
  • CHAPTER 57 the Role of GIS in Military Strategy, Operations and Tactics Steven D
    CHAPTER 57 The Role of GIS in Military Strategy, Operations and Tactics Steven D. Fleming, Michael D. Hendricks and John A. Brockhaus 57.1 Introduction The United States military has used geospatial information in every conflict throughout its history of warfare. Until the last quarter century, geospatial information used by commanders on the battlefield was in the form of paper maps. Of note, these maps played pivotal roles on the littoral battlegrounds of Normandy, Tarawa and Iwo Jima (Greiss 1984; Ballendorf 2003). Digital geospatial data were employed extensively for the first time during military actions on Grenada in 1983 (Cole 1998). Since then, our military has conducted numerous operations while preparing for many like contingencies (Cole 1998; Krulak 1999). US forces have and will continue to depend on maps—both analog and digital—as baseline planning tools for military operations that employ both Legacy and Objective Forces (Murray and O’Leary 2002). Important catalysts involved in transitioning the US military from dependency on analog to digital products include: (1) the Global Positioning System (GPS); (2) unmanned aerial vehicles (UAVs); (3) high-resolution satellite imagery; and (4) geographic information systems (GISs) (NIMA 2003). In addressing these four important catalysts, this review is first structured to include a summary of geospatial data collection technologies, traditional and state-of-the-art, relevant to military operations and, second, to examine GIS integration of these data for use in military applications. The application that will be addressed is the devel- opment and analysis of littoral warfare (LW) databases used to assess maneuvers in coastal zones (Fleming et al.
    [Show full text]
  • Synthetic Aperture Radar
    Synthetic Aperture Radar Subjects: Information Technology & Data Management Submitted by: Sung Wook Paek Definition SAR constellations Table of Contents [Hide] 1. Introduction Space-based radar observation has growing potentials for monitoring the global biospheric diversity subject to anthropogenic drivers at geological scales [1]. The performance of radar is less affected by weather and sunlight conditions than that of optical sensors. Satellites with onboard sensors can provide comprehensive coverage of remote areas or vast regions that may be too costly for unmanned aerial vehicles (UAVs) or ground-based platforms, provided that all platforms provide congruent results via calibrations [2][3][4]. Therefore, it was Seasat, the first satellite dedicated to remote sensing of the Earth’s oceans, that carried the first synthetic aperture radar (SAR) and other radar instruments operable in space. Despite these advantages, miniaturization of radar-carrying satellites was rather slow compared to satellites carrying optical devices due to the lack of commercial-off-the-shelf (COTS) components as well as challenging design requirements for the satellite platform [5][6]. Representative use cases of space-based radar include altimetry, sounding, scatterometry, and so forth in the studies of land, cryosphere, and oceans. Biospheric monitoring is another useful application because radar has high sensitivity in detecting surface changes in a target area and discriminating mobile targets against a background [7]. This paper will consider mainly SAR because of its three-dimensional mapping capability through interferometry. The heritage of Seasat has influenced many of later SAR missions for decades, as listed in Table 1 [8][9][10][11][12][13]; for instance, Shuttle Image Radar (SIR) missions used spare parts of the previous Seasat mission onboard Space Shuttles to test SAR image applications in land use, geology, hydrology, and forestry [14][15].
    [Show full text]
  • The Great Game in Space China’S Evolving ASAT Weapons Programs and Their Implications for Future U.S
    The Great Game in Space China’s Evolving ASAT Weapons Programs and Their Implications for Future U.S. Strategy Ian Easton The Project 2049 Institute seeks If there is a great power war in this century, it will not begin to guide decision makers toward with the sound of explosions on the ground and in the sky, but a more secure Asia by the rather with the bursting of kinetic energy and the flashing of century’s mid-point. The laser light in the silence of outer space. China is engaged in an anti-satellite (ASAT) weapons drive that has profound organization fills a gap in the implications for future U.S. military strategy in the Pacific. This public policy realm through Chinese ASAT build-up, notable for its assertive testing regime forward-looking, region-specific and unexpectedly rapid development as well as its broad scale, research on alternative security has already triggered a cascade of events in terms of U.S. and policy solutions. Its strategic recalibration and weapons acquisition plans. The interdisciplinary approach draws notion that the U.S. could be caught off-guard in a “space on rigorous analysis of Pearl Harbor” and quickly reduced from an information-age socioeconomic, governance, military juggernaut into a disadvantaged industrial-age power in any conflict with China is being taken very seriously military, environmental, by U.S. war planners. As a result, while China’s already technological and political impressive ASAT program continues to mature and expand, trends, and input from key the U.S. is evolving its own counter-ASAT deterrent as well as players in the region, with an eye its next generation space technology to meet the challenge, toward educating the public and and this is leading to a “great game” style competition in informing policy debate.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • Into the Unknown Together the DOD, NASA, and Early Spaceflight
    Frontmatter 11/23/05 10:12 AM Page i Into the Unknown Together The DOD, NASA, and Early Spaceflight MARK ERICKSON Lieutenant Colonel, USAF Air University Press Maxwell Air Force Base, Alabama September 2005 Frontmatter 11/23/05 10:12 AM Page ii Air University Library Cataloging Data Erickson, Mark, 1962- Into the unknown together : the DOD, NASA and early spaceflight / Mark Erick- son. p. ; cm. Includes bibliographical references and index. ISBN 1-58566-140-6 1. Manned space flight—Government policy—United States—History. 2. National Aeronautics and Space Administration—History. 3. Astronautics, Military—Govern- ment policy—United States. 4. United States. Air Force—History. 5. United States. Dept. of Defense—History. I. Title. 629.45'009'73––dc22 Disclaimer Opinions, conclusions, and recommendations expressed or implied within are solely those of the editor and do not necessarily represent the views of Air University, the United States Air Force, the Department of Defense, or any other US government agency. Cleared for public re- lease: distribution unlimited. Air University Press 131 West Shumacher Avenue Maxwell AFB AL 36112-6615 http://aupress.maxwell.af.mil ii Frontmatter 11/23/05 10:12 AM Page iii To Becky, Anna, and Jessica You make it all worthwhile. THIS PAGE INTENTIONALLY LEFT BLANK Frontmatter 11/23/05 10:12 AM Page v Contents Chapter Page DISCLAIMER . ii DEDICATION . iii ABOUT THE AUTHOR . ix 1 NECESSARY PRECONDITIONS . 1 Ambling toward Sputnik . 3 NASA’s Predecessor Organization and the DOD . 18 Notes . 24 2 EISENHOWER ACT I: REACTION TO SPUTNIK AND THE BIRTH OF NASA . 31 Eisenhower Attempts to Calm the Nation .
    [Show full text]
  • Commercial Spacecraft Mission Model Update
    Commercial Space Transportation Advisory Committee (COMSTAC) Report of the COMSTAC Technology & Innovation Working Group Commercial Spacecraft Mission Model Update May 1998 Associate Administrator for Commercial Space Transportation Federal Aviation Administration U.S. Department of Transportation M5528/98ml Printed for DOT/FAA/AST by Rocketdyne Propulsion & Power, Boeing North American, Inc. Report of the COMSTAC Technology & Innovation Working Group COMMERCIAL SPACECRAFT MISSION MODEL UPDATE May 1998 Paul Fuller, Chairman Technology & Innovation Working Group Commercial Space Transportation Advisory Committee (COMSTAC) Associative Administrator for Commercial Space Transportation Federal Aviation Administration U.S. Department of Transportation TABLE OF CONTENTS COMMERCIAL MISSION MODEL UPDATE........................................................................ 1 1. Introduction................................................................................................................ 1 2. 1998 Mission Model Update Methodology.................................................................. 1 3. Conclusions ................................................................................................................ 2 4. Recommendations....................................................................................................... 3 5. References .................................................................................................................. 3 APPENDIX A – 1998 DISCUSSION AND RESULTS........................................................
    [Show full text]
  • OFEK-9 Soars Into Space
    A MONTHLY REPORT COVERING NEWS AND INVESTMENT OPPORTUNITIES JOSEPH MORGENSTERN, PUBLISHER July 2010 Vol. XXV Issue No.7 You are invited to visit us at our website: http://ishitech.co.il OFEK-9 Soars into Space Towards the end of With the launch of Ofek-9, Israel has six spy satel- June Israel launched lites in space. a spy satellite from Defense News is a leading international news a base in the south weekly covering the global defense industry. of the country, the Barbara Opall-Rome, the Defense News’ Israeli defence ministry said, with the device report- edly capable of monitoring arch-foe Iran. co.il “A few minutes ago the State of Israel launched http://ishitech. the Ofek-9 (Horizon-9) satellite from the Pal- machim base,” the ministry said. “The results of the launch are being examined by the technical In this Issue team.” It gave no details on the satellite, but public Ofek-9 soars into space radio said it, like its predecessors in the Ofek BiolineRX deal with Cypress Bioscience worth up to $365m series, were capable of taking high resolution Merck Serono to expand Israel operations pictures and aimed at monitoring Iran’s nuclear Collagen made from transgenic tobacco plants Economic Developments Q1 2010 programme. Computers used in drive to test stress Computers used in drive to test stress The radio said the satellite was developed by Diamonds in space Israel Aircraft Industries and launched on a Sha- Nano-diamonds are forever “Bad Name” vit rocket. “A Nice Shower” Odds & Ends Israel, regards Iran as its principal threat after Medtronic invests $70m in cardiology co BioControl repeated predictions by the Islamic republic’s hardline President Mahmoud Ahmadinejad of the Jewish state’s demise.
    [Show full text]
  • Appendix 15B. Tables of Operational Military Satellites TED MOLCZAN and JOHN PIKE*
    Appendix 15B. Tables of operational military satellites TED MOLCZAN and JOHN PIKE* Table 15B.1. US operational military satellites, as of 31 December 2002a Common Official Intl NORAD Launched Launch Perigee Apogee Incl. Period name name name design. (date) Launcher site (km) (km) (deg.) (min.) Comments Navigation satellites in medium earth orbit GPS 2-02 SVN 13/USA 38 1989-044A 20061 10 June 89 Delta 6925 CCAFS 19 594 20 787 53.4 718.0 GPS 2-04b SVN 19/USA 47 1989-085A 20302 21 Oct 89 Delta 6925 CCAFS 21 204 21 238 53.4 760.2 (Retired, not in SEM Almanac) GPS 2-05 SVN 17/USA 49 1989-097A 20361 11 Dec 89 Delta 6925 CCAFS 19 795 20 583 55.9 718.0 GPS 2-08b SVN 21/USA 63 1990-068A 20724 2 Aug 90 Delta 6925 CCAFS 19 716 20 705 56.2 718.8 (Decommissioned Jan. 2003) GPS 2-09 SVN 15/USA 64 1990-088A 20830 1 Oct 90 Delta 6925 CCAFS 19 978 20 404 55.8 718.0 GPS 2A-01 SVN 23/USA 66 1990-103A 20959 26 Nov 90 Delta 6925 CCAFS 19 764 20 637 56.4 718.4 GPS 2A-02 SVN 24/USA 71 1991-047A 21552 4 July 91 Delta 7925 CCAFS 19 927 20 450 56.0 717.9 GPS 2A-03 SVN 25/USA 79 1992-009A 21890 23 Feb 92 Delta 7925 CCAFS 19 913 20 464 53.9 717.9 GPS 2A-04b SVN 28/USA 80 1992-019A 21930 10 Apr 92 Delta 7925 CCAFS 20 088 20 284 54.5 717.8 (Decommissioned May 1997) GPS 2A-05 SVN 26/USA 83 1992-039A 22014 7 July 92 Delta 7925 CCAFS 19 822 20 558 55.9 718.0 GPS 2A-06 SVN 27/USA 84 1992-058A 22108 9 Sep 92 Delta 7925 CCAFS 19 742 20 638 54.1 718.0 GPS 2A-07 SVN 32/USA 85 1992-079A 22231 22 Nov 92 Delta 7925 CCAFS 20 042 20 339 55.7 718.0 GPS 2A-08 SVN 29/USA 87 1992-089A
    [Show full text]
  • Synthetic Aperture Radar (SAR) (L-Band, Res
    University of Rome “Sapienza”, Faculty of Enginnering, Aula del Chiostro, June 14th, 2016 1 SPACE BASED RADAR: A SECRET START 21/12/1964: Quill (P-40), NRO experimental satellite of Corona Program. 1st SAR in orbit (all weather all time imaging) Due to the poor quality, images were considered useless and the program was discontinued (secret until 9 July 2012) RADAR ALTIMETRY: A NEW START IN 1973 14/5/1973 Skylab: mission included S-193, NASA & DoD experimental multimode instrument, including technology test of Radar Altimetry at 13,9 GHz. Positive results. 9/4/1975 Geodynamics Experimental Ocean Satellite (GEOS-3) : First satellite totally dedicated to radar altimetry (13,9 GHz, height accuracy=20 cm). Unexpected result: evaluation of surface wind speed from RA data 27/6/1978:Seasat, 3 out of 5 instruments were radar: Radar Altimeter: f.o. of GEOS-3, (Ku- band, accur. 10cm)Scatterometer and the “first official” Synthetic Aperture Radar (SAR) (L-band, Res. 25m) Quil Seasat 2 1981, 1984: SPACE SHUTTLE, A NEW OPPORTUNITY FOR EARTH OBSERVATION Apr. 12, 1981: Inaugural flight of the Space Shuttle. Nov. 12-14, 1981: OSTA-1,(Office of Space and Terrestrial Applications) comprised the first Shuttle Imaging Radar A (SIR-A). L band, resolution40x40 m, fixed look angle 47°, swath width 50 km, based on Seasat design, and using its spare parts as well as spare parts of other NASA missions (other 4 instruments were different passive sensors in VIS-IR) Oct. 5-13, 1984: OSTA-3, Shuttle Imaging Radar–B (SIR-B). Upgraded SIR-A, L band, resolution 30-20m (azimuth), 58-16m (range), variable look angle 15°-65°, swath width 50 km.
    [Show full text]
  • China Dream, Space Dream: China's Progress in Space Technologies and Implications for the United States
    China Dream, Space Dream 中国梦,航天梦China’s Progress in Space Technologies and Implications for the United States A report prepared for the U.S.-China Economic and Security Review Commission Kevin Pollpeter Eric Anderson Jordan Wilson Fan Yang Acknowledgements: The authors would like to thank Dr. Patrick Besha and Dr. Scott Pace for reviewing a previous draft of this report. They would also like to thank Lynne Bush and Bret Silvis for their master editing skills. Of course, any errors or omissions are the fault of authors. Disclaimer: This research report was prepared at the request of the Commission to support its deliberations. Posting of the report to the Commission's website is intended to promote greater public understanding of the issues addressed by the Commission in its ongoing assessment of U.S.-China economic relations and their implications for U.S. security, as mandated by Public Law 106-398 and Public Law 108-7. However, it does not necessarily imply an endorsement by the Commission or any individual Commissioner of the views or conclusions expressed in this commissioned research report. CONTENTS Acronyms ......................................................................................................................................... i Executive Summary ....................................................................................................................... iii Introduction ................................................................................................................................... 1
    [Show full text]
  • Reconl1aissance Units by SGM Michael L. Ables SGM Randal Day
    Reconl1aissance Units by SGM Michael L. Ables SGM Randal Day SGM Kevin Engel MSG Armands Loginovs SGM Joe Tracy SMSgt Herrick Group Room R04 24 February 2006 · . Reconnaissance Units ii Outline Thesis: Based on technological advances in recent years, the need for the human reconnaissance unit is not fading away it ' s only changing. 1. Introduction Types of reconnaissance platforms T echllology II. Human reconnaissance III. Intelligence, SunTeillence, and Reconnaissance platforms IV. Satellite reconnaissance V. Umanned Aerial Vehicle VI. Analysis Conclusion Counterpoint Reconnaissance Units 1 Reconnaissance Units Based on technological advances in recent years, the need for the human reconnaissance unit is not fading away it's only changing. We will discuss four different types of reconnaissance platforms: human reconnaissance, Intelligence, Surveillance, and Reconnaissance (ISR), SateHite, and Unmanned Aerial Vehicle (UAV). Human reconnaissance has been around longer than any other asset. ISR platforms have been around since man has learned to fly. The ISR platform that we will look at is the Joint Surveillance Tactical Attack Radar System (JSTARS). Tlus platform is a joint venture with the United States Army and the Air Force. Satellite reconnaissance has been around since 04 October 1957 when Russia launched Sputluk 1. The Uluted States launched Explorer 1 on 31 January 1958 ("The History of Satellites, Sputnik and The Dawn ofthe Space Age"). Since that time satellites have been used for a multitude of purposes including but not restricted to commUlucations, various types of imagery, and intelligence gathering. UAVs have been used by the nulitary since the early 90s but were being tested and developed in 1989.
    [Show full text]