An Analysis of the Abaca Natural Fiber in Reinforcing Concrete Composites As a Construction Material in Developing Countries

Total Page:16

File Type:pdf, Size:1020Kb

An Analysis of the Abaca Natural Fiber in Reinforcing Concrete Composites As a Construction Material in Developing Countries University of Northern Iowa UNI ScholarWorks Dissertations and Theses @ UNI Student Work 1988 An analysis of the abaca natural fiber in einforr cing concrete composites as a construction material in developing countries Rolando V. Magdamo University of Northern Iowa Let us know how access to this document benefits ouy Copyright ©1988 Rolando V. Magdamo Follow this and additional works at: https://scholarworks.uni.edu/etd Part of the Construction Engineering and Management Commons, and the Materials Science and Engineering Commons Recommended Citation Magdamo, Rolando V., "An analysis of the abaca natural fiber in einforr cing concrete composites as a construction material in developing countries" (1988). Dissertations and Theses @ UNI. 865. https://scholarworks.uni.edu/etd/865 This Open Access Dissertation is brought to you for free and open access by the Student Work at UNI ScholarWorks. It has been accepted for inclusion in Dissertations and Theses @ UNI by an authorized administrator of UNI ScholarWorks. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. These are also available as one exposure on a standard 35mm slide or as a 17" x 23" black and white photographic print for an additional charge. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 313/761-4700 800/521-0600 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Order Number 8919070 An analysis of the abaca natural fiber in reinforcing concrete composites as a construction material in developing countries Magdamo, Rolando V., D.I.T. University of Northern Iowa, 1988 Copyright ©1988 by Magdamo, Rolando V . A ll rights reserved. 300 N. Zeeb Rd. Ann Arbor, MI 48106 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. AN ANALYSIS OF THE ABACA NATURAL FIBER IN REINFORCING CONCRETE COMPOSITES AS A CONSTRUCTION MATERIAL IN DEVELOPING COUNTRIES A Dissertation Submitted In Partial Fulfillment of the Requirements for the Degree of Doctor of Industrial Technology- Approved: Dr. Mohammed F. Fahmy, Advisor f Dr. Ronald D. Bro, Co-Advisor Jack F. Kimball, Member Rolando V. Magdamo University of Northern Iowa July 1988 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Copyright by ROLANDO V. MAGDAMO July 1988 All Rights Reserved Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGEMENTS The writer wishes to express his thanks and sincere appreciation to the following: To his doctoral advisory committee: Dr. Mohammed F. Fahmy, Dr. Ronald D. Bro, Dr. M. Roger Betts, Dr. Harley E. Erickson, and Dr. Jack F. Kimball; To Dr. Mohammed F. Fahmy for his professional guidance, technical expertise and efforts relating to the scanning electron micrographs which have greatly contributed to the completion of this study; To Dr. Harley E. Erickson for his expertise, guidance and genuine concern relating to the statistical analysis of the data gathered; To Ms. Joyce E. Broell for her time and patience in typing this dissertation; and to his wife, Lilia and son, Neil for their patience, understanding and encouragement during the progress of this work. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. iii TABLE OF CONTENTS Title Paee CHAPTER I--THE PROBLEM .................................. 1 Introduction ....................................... 1 Statement of the Problem .............................. 3 Purpose of the Study .................................. 3 Hypotheses ........................................... 3 Importance of the S t u d y .............................. 4 Assumptions ......................................... 7 Limitations of the Study .............................. 7 Definition of Terms .................................. 8 CHAPTER II--REVIEW OF RELATED LITERATURE ................... 9 Introduction ......................................... 9 Asbestos Fibers as Reinforcing Material in Cement .... 11 Steel Fibers as Reinforcing Material in Concrete ........ 12 Polypropylene Fibers in Concrete ...................... 15 Natural Fibers as Reinforcing Material in Concrete .... 17 Coconut Fiber .................................... 18 Sisal Fiber ...................................... 19 Abaca Fiber ...................................... 20 Grading of abaca fiber ...................... 21 Microscopic characteristics of abaca .......... 21 Chemical composition of abaca ............... 22 Fiber characterization ...................... 22 Structure and properties of abaca ........... 23 Abaca in u s e ................................ 24 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. iv Title Page S u m m a r y ............................................. 24 CHAPTER III--METHODOLOGY ................................ 26 Procedure of the Study ................................ 26 Methods of Investigation.............................. 29 Methods of Measurement ................................ 30 The Sample S i z e ...................................... 30 The Concrete Mix Designs .............................. 31 The Equipment ........................................ 31 Flexural Testing ...................................... 33 Splitting Tensile Testing ............................ 36 Scanning Electron Microscope Procedure ................. 39 Scanning Electron Microscope ..................... 39 Sample Preparation and Failure Analysis ........... 40 Scanning Electron Microscope Procedures ........... 41 SEM Sample Preparation .......................... 42 CHAPTER IV--EXPERIMENTAL RESULTS AND DISCUSSION ........... 43 Flexural Strength Analysis ............................ 43 D i s c u s s i o n ........................................... 46 Statistical Analysis of Flexural Strength ............. 47 Splitting Tensile Strength Analysis ................... 49 Statistical Analysis of Splitting Tensile Strength .... 52 Testing of Hypotheses ................................ 53 Scanning Electron Microscope Analysis ................. 56 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Title Page Abaca Natural Fiber .............................. 56 Abaca Fibers taken from Failed Concrete Specimens . 59 CHAPTER V--SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS........ 66 Restatement of the Problem and Purpose ................. 66 Summary of Findings .................................. 67 Conclusions .......................................... 71 Recommendations ...................................... 73 REFERENCES ............................................... 75 APPENDICES ............................................... 78 A. Flexural Beams Strength Test Results ............... 78 B. Flexural Beams Deflection Readings in Group I - Control Group .................................... 79 C. Flexural Beams Deflection Readings in Group II - 0.2% Fiber Group .................................. 80 D. Flexural Beams Deflection Readings in Group III - 0.4% Fiber Group .................................. 81 E. Flexural Beams Strain/Stress Readings .............. 82 F. Flexural Beams Strain/Stress Readings .............. 83 G. Flexural Beams Strain/Stress Readings .............. 84 H. Stress/Strain Diagram - Group I - Control Group . 85 I. Stress/Strain Diagram - Group II - 0.2% Fiber Group . 86 J. Stress/Strain Diagram - Group III - 0.4% Fiber Group . 87 K. Concrete Cylinders Splitting Tensile Test Results . 88 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vi Title Page L. Modulus of Rupture as Calculated from Flexural Strength Results (in P S I ) ..................... 89 M. Modulus of Rupture (in PSI) by B a t c h
Recommended publications
  • Investigation of Mechanical Behaviour of Sisal Bamboo and Epoxy Reinforced Natural Composite
    International Journal of Engineering Applied Sciences and Technology, 2021 Vol. 5, Issue 12, ISSN No. 2455-2143, Pages 307-310 Published Online April 2021 in IJEAST (http://www.ijeast.com) INVESTIGATION OF MECHANICAL BEHAVIOUR OF SISAL BAMBOO AND EPOXY REINFORCED NATURAL COMPOSITE Gobi K Kaleeswaran M Department of Mechanical Engineering Department of Mechanical Engineering P.A. College of Engineering and Technology, P.A. College of Engineering and Technology, Pollachi, Coimbatore, India. Pollachi, Coimbatore, India. Amaresh D Dhanush R Department of Mechanical Engineering Department of Mechanical Engineering P.A. College of Engineering and Technology, P.A. College of Engineering and Technology, Pollachi, Coimbatore, India. Pollachi, Coimbatore, India. Abstract - Now-a-days, The natural sisal/bamboos from serve the desirable properties. Further, though composite types renewable natural resources offer the potential to act as a are often distinguishable from one another, no clear reinforcing material for polymer composites alternative to determination can be really made. The demands on matrices are the use of glass, carbon and wood. Among various natural many. They may need to temperature variations, be conductors fibers, sisal or bamboo is most widely used natural fiber due or resistors of electricity, have moisture sensitivity etc. This to its advantages like easy availability, low density, low may offer weight advantages, ease of handling and other merits production cost and satisfactory mechanical properties. For which may also become applicable depending on the purpose a composite material, its mechanical behavior depends on for which matrices are chosen. Solids that accommodate stress many factors such as fiber content, orientation, types, to incorporate other constituents provide strong bonds for the length etc.
    [Show full text]
  • Effect of a New Continuous Production Technology of Ramie (Boehmeria Nivea) on Fiber Yield and Fineness
    INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 11–339/MFA/2012/14–1–87–90 http://www.fspublishers.org Full Length Article Effect of a New Continuous Production Technology of Ramie (Boehmeria nivea) on Fiber Yield and Fineness LIU LI-JUN, TANG DI-LUO, DAI XIAO-BING, YU RUN-QING AND PENG DING-XIANG1 Key Laboratory of Huazhong Crop Physiology, Ecology and Production, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China *Corresponding author’s e-mail: [email protected] ABSTRACT To resolve the bottleneck problems hindering the development of the ramie (Boehmeria nivea L. Gaud) cultivation industry, the feasibility of a new harvesting mode was investigated. This allows a continuous supply of ramie within a growing season and provided theoretical and technical support for industrialized production of ramie. Huazhu 4 was used and harvesting times were within 28 May to 21 October 7 days interval. Five harvesting modes were designed with 3 replications, with traditional harvesting mode as the control. The results showed that the range in fiber fineness among the five harvesting modes was 1659–1958 m/g. The mean in mode 1 was the highest of the five modes (1958 m/g) and was 6.47% higher than in controls. Compared to controls, the average fiber fineness in mode 5 was 1.96% higher, and that of mode 4 was the same as the controls. However, modes 2 and 3 had 9.79 and 5.55% lower mean fiber fineness compared with controls, respectively. The harvested yields of raw fiber in modes 2 and 3 were 21.50 and 5.04%, respectively higher than controls - with no increases in other modes.
    [Show full text]
  • Mechanical Behaviour of Hybrid Composites Prepared Using Sisal-Pineapple-Kenaf Fibre
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-5, January 2020 Mechanical Behaviour of Hybrid Composites Prepared using Sisal-Pineapple-Kenaf Fibre D Tamilvendan, G Mari Prabu, S Sivaraman, A. R. Ravikumar durability, tensile strength, impact strength, rupture strengths, Abstract: Variety of application use fibre reinforced composites stiffness and fatigue characteristics. Due to these numerous because of their intrinsic properties in mechanical strength, superior properties, they are extensively used in the machine renewability and low production cost compared to conventional parts like drive shafts, tanks, pressure vessels , automotive, materials. Natural fibres are environmentally friendly their use will not break the budget when used as an alternative to the combustion engines, thermal management, railway coaches regular materials. Reinforcement used in polymer is either and aircraft structures and power plant structures. man-made or natural. Man-made synthetic, metallic, Composites are made up of chemically distinct multiphase semi-synthetic, polymer fibres have superior specific strength but materials separated by distinct interface that exhibit better their high cost of production limits its application and feasibility to combination of properties compared to the constituent make composites. Recently there is a rise in use of natural fibres materials. Composite material is a combination of robust from various natural resources which are available abundantly. Composites based on natural fibres have their advantages of cost load-carrying material (known as reinforcement) imbedded in making the fibres from different vegetables, wood, animals and with weaker materials (known as matrix) differing in minerals. In this work a thorough and systematic inquiry composition on a macro scale.
    [Show full text]
  • A New Method for the Conservation of Ancient Colored Paintings on Ramie
    Liu et al. Herit Sci (2021) 9:13 https://doi.org/10.1186/s40494-021-00486-4 RESEARCH ARTICLE Open Access A new method for the conservation of ancient colored paintings on ramie textiles Jiaojiao Liu*, Yuhu Li*, Daodao Hu, Huiping Xing, Xiaolian Chao, Jing Cao and Zhihui Jia Abstract Textiles are valuable cultural heritage items that are susceptible to several degradation processes due to their sensi- tive nature, such as the case of ancient ma colored-paintings. Therefore, it is important to take measures to protect the precious ma artifacts. Generally, ″ma″ includes ramie, hemp, fax, oil fax, kenaf, jute, and so on. In this paper, an examination and analysis of a painted ma textile were the frst step in proposing an appropriate conservation treat- ment. Standard fber and light microscopy were used to identify the fber type of the painted ma textile. Moreover, custom-made reinforcement materials and technology were introduced with the principles of compatibility, durabil- ity and reversibility. The properties of tensile strength, aging resistance and color alteration of the new material to be added were studied before and after dry heat aging, wet heat aging and UV light aging. After systematic examina- tion and evaluation of the painted ma textile and reinforcement materials, the optimal conservation treatment was established, and exhibition method was established. Our work presents a new method for the conservation of ancient Chinese painted ramie textiles that would promote the protection of these valuable artifacts. Keywords: Painted textiles, Ramie fber, Conservation methods, Reinforcement, Cultural relic Introduction Among them, painted ma textiles are characterized by Textiles in all forms are an essential part of human civi- the fexibility, draping quality, heterogeneity, and mul- lization [1].
    [Show full text]
  • Raffia Palm Fibre, Composite, Ortho Unsaturated Polyester, Alkali Treatment
    American Journal of Polymer Science 2014, 4(4): 117-121 DOI: 10.5923/j.ajps.20140404.03 The Effect of Alkali Treatment on the Tensile Behaviour and Hardness of Raffia Palm Fibre Reinforced Composites D. C. Anike1,*, T. U. Onuegbu1, I. M. Ogbu2, I. O. Alaekwe1 1Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University Awka, Anambra State, Nigeria 2Department of Chemistry Federal University Ndufu-Alike, Ikwo Ebonyi State, Nigeria Abstract The effects of alkali treatment and fibre loads on the properties of raffia palm fibre polyester composite were studied. Some clean raffia palm fibres were treated with 10% NaOH, and ground. The ground treated and untreated fibres were incorporated into the ortho unsaturated polyester resin. The treated and the untreated fibre composites samples were subjected to tensile tests according to ASTM D638 using instron model 3369. The microhardness test was done by forcing a diamond cone indenter into the surface of the hard specimen, to create an indentation. The significant findings of the results showed that alkali treatment improved the microhardness and extension at break at all fibre loads, better than the untreated fibre composites, with the highest values at 20% (14.40 and 3.47mm for microhardness and extension at break respectively). Tensile strength, tensile strain and modulus of elasticity also improved for alkali treated fibre composites, except in 5% and 20% for tensile strength, 15% for tensile strain, and 15% and 20% for modulus of elasticity, compared to the corresponding fibre loads of untreated fibre composites. Keywords Raffia palm fibre, Composite, Ortho unsaturated polyester, Alkali treatment The main drawbacks of such composites are their water 1.
    [Show full text]
  • Flax and Linen: an Uncertain Oregon Industry by Steve M
    Flax and Linen: An Uncertain Oregon Industry By Steve M. Wyatt One of the several painstaking, time-consuming tasks involved in processing flax is shown in this photo from 1946. Here workers bind dried bundles of retted flax, preparing them for scutching, the procedure by which usable fiber is separated from the plant. (Courtesy Horner Museum, Oregon State University) In many languages the word for flax is lin. In Eng lish, then, the two principal products derived from Steve m. WYATT, a lifelong this fibrous plant are known as linen and linseed oil. Fabrics made of flax have a reputation for both Oregon resident currently durability and beauty. Linen, for example, because of living in Newport, wrote his its resilience and strength (which increases by 20 per master's thesis on the Ore cent when wet), has had both military and industrial gon flax industry. applications.1 And linen can also, of course, be woven 150 This content downloaded from 71.34.93.71 on Mon, 02 Sep 2019 14:40:44 UTC All use subject to https://about.jstor.org/terms into fine and beautiful patterns. Linseed oil, a product Oregon's on-again, extracted from the seed of the flax plant, is used to off-again affair make oil-based paints, linoleum, wood preservatives, and rust inhibitors. In addition, doctors and veterinar with the fibrous ians have long used flax seed in poultices to relieve plant and its textile painful and inflamed wounds. At various times in the late nineteenth and twentieth offspring centuries, farmers in Oregon's Willamette Valley have pursued flax cultivation on an industrial scale.
    [Show full text]
  • Installation Guidelines for Livos Wallcovering
    Cu& sisalcarperrant.com INSTALLATION GUIDELINES FOR LIVOS WALLCOVERING RECOMMENDED ADHESIVE Use Sisal #1-422 Adhesive (available in 3.5 gallon pail and covers 23 sq/yds). • Sisal is a natural fiber that reacts to excess moisture in other types of wallcovering and multi-purpose adhesive by shrinking before the adhesive dries and sets, which is normally during the first 24 hours after the wallcovering has been applied to the wall. • Sisal #1-422 Adhesive contains fire retardant for passage of the NFPA test method, which is used by national commercial fire codes such as the Uniform Building Code. HUMIDITY LEVELS EFFECT THE DRYING TIME OF THE ADHESIVE Airborne moisture causes the adhesive to dry slowly and may cause the sisal wallcovering to shrink at the seams and edges. Avoid this condition by installing sisal wallcovering in climate control buildings or use mechanical fans at the point of installation to provide air movement. Keeping all doorways to the outside of the building closed is also recommended. ADHESIVE APPLICATION 1. For ease of troweling the low water content #1-422 Sisal Adhesive, apply adhesive to primed new walls or previously painted walls. On walls that have been stripped of old wallcovering, priming the old adhesive is not necessary. 2. Use a 3/16th x 5/32nd V-notched trowel. Check previously used trowels since the notch depth can be scraped flat with use. 3. Spread adhesive over the entire surface. Seal the edges with a clear latex seam sealer. Spots left uncovered with adhesive cause air pockets. 4. A good bond with the wallcovering can only occur when the wallcovering is pressed into the adhesive.
    [Show full text]
  • Natural Fibers and Fiber-Based Materials in Biorefineries
    Natural Fibers and Fiber-based Materials in Biorefineries Status Report 2018 This report was issued on behalf of IEA Bioenergy Task 42. It provides an overview of various fiber sources, their properties and their relevance in biorefineries. Their status in the scientific literature and market aspects are discussed. The report provides information for a broader audience about opportunities to sustainably add value to biorefineries by considerin g fiber applications as possible alternatives to other usage paths. IEA Bioenergy Task 42: December 2018 Natural Fibers and Fiber-based Materials in Biorefineries Status Report 2018 Report prepared by Julia Wenger, Tobias Stern, Josef-Peter Schöggl (University of Graz), René van Ree (Wageningen Food and Bio-based Research), Ugo De Corato, Isabella De Bari (ENEA), Geoff Bell (Microbiogen Australia Pty Ltd.), Heinz Stichnothe (Thünen Institute) With input from Jan van Dam, Martien van den Oever (Wageningen Food and Bio-based Research), Julia Graf (University of Graz), Henning Jørgensen (University of Copenhagen), Karin Fackler (Lenzing AG), Nicoletta Ravasio (CNR-ISTM), Michael Mandl (tbw research GesmbH), Borislava Kostova (formerly: U.S. Department of Energy) and many NTLs of IEA Bioenergy Task 42 in various discussions Disclaimer Whilst the information in this publication is derived from reliable sources, and reasonable care has been taken in its compilation, IEA Bioenergy, its Task42 Biorefinery and the authors of the publication cannot make any representation of warranty, expressed or implied, regarding the verity, accuracy, adequacy, or completeness of the information contained herein. IEA Bioenergy, its Task42 Biorefinery and the authors do not accept any liability towards the readers and users of the publication for any inaccuracy, error, or omission, regardless of the cause, or any damages resulting therefrom.
    [Show full text]
  • Zbwleibniz-Informationszentrum
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Aragon, Corazon Working Paper Fiber Crops Program Area Research Planning and Prioritization PIDS Discussion Paper Series, No. 2000-30 Provided in Cooperation with: Philippine Institute for Development Studies (PIDS), Philippines Suggested Citation: Aragon, Corazon (2000) : Fiber Crops Program Area Research Planning and Prioritization, PIDS Discussion Paper Series, No. 2000-30, Philippine Institute for Development Studies (PIDS), Makati City This Version is available at: http://hdl.handle.net/10419/127739 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Philippine Institute for Development Studies Fiber Crops Program Area Research Planning and Prioritization Corazon T. Aragon DISCUSSION PAPER SERIES NO. 2000-30 The PIDS Discussion Paper Series constitutes studies that are preliminary and subject to further revisions.
    [Show full text]
  • Thermal Behaviour of Flax Kenaf Hybrid Natural Fiber Composite
    ISSN: 2350-0328 International Journal of Advanced Research in Science, Engineering and Technology Vol. 2, Issue 10 , October 2015 Thermal Behaviour of Flax Kenaf Hybrid Natural Fiber Composite V.S. Srinivasan, S. Rajendra Boopathy, B. Vijaya Ramnath Department of Mechanical Engineering, CEGC, Anna University, Chennai-25. Department of Mechanical Engineering, CEGC, Anna University, Chennai-25. Department of Mechanical Engineering, Sri Sairam Engineering College, Chennai-44. ABSTRACT: In this work, natural fibers of flax and kenaf are used. Hybrid materials are given importance as they play very important role in all applications and characterizations. This paper deals with one of such hybrid composite made of natural fibers namely, kenaf and flax fibers. The hybrid built-up is such that one layer of kenaf is sandwiched between two layers of flax fibres by hand layup method with a volume fraction of 40% using Epoxy resin and HY951 hardener. Glass fiber reinforcement polymer (GFRP) is used for lamination on both sides. Thermal properties are investigated for single fiber composites and kenaf - flax with GFRP hybrid composites. The hybrid composites have better thermal stability than single fibre composites. KEYWORDS: Flax, Kenaf, GFRP, Thermal behavior 1. INTRODUCTION The usage of natural fiber- reinforced composite materials is rapidly growing both in industries and in various research activities. The advantages of fibers are cheap, recyclable and biodegradable. Plants such as flax, hemp, cotton sisal, kenaf, banana etc., are the most used reinforcements of composites. They are used widely for manufacturing composites because of their easy availability, renewability, low density, and low price. The natural fiber containing composites are more environmental friendly and are used in transportation (automobiles, railway coaches, aerospace etc.,), military applications, building and construction industries in paneling and partition boards, packaging, consumer products etc.
    [Show full text]
  • A Biodegradable Ramie Fiber-Based Nonwoven Film Used for Increasing Oxygen Supply to Cultivated Soil
    applied sciences Article A Biodegradable Ramie Fiber-Based Nonwoven Film Used for Increasing Oxygen Supply to Cultivated Soil Wanlai Zhou *,† , Yanbin Niu †, Chaoyun Wang *, Yuanru Yang, Zhijian Tan , Yongjian Yi, Wang Yu and Hongying Wang Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; [email protected] (Y.N.); [email protected] (Y.Y.); [email protected] (Z.T.); [email protected] (Y.Y.); [email protected] (W.Y.); [email protected] (H.W.) * Correspondence: aruofl[email protected] (W.Z.); [email protected] (C.W.); Tel.: +86-731-8899-8517 (W.Z.); Tel./Fax: +86-731-8899-8501 (C.W.) † These authors contributed equally to this work and should be considered co-first authors. Received: 3 September 2018; Accepted: 18 September 2018; Published: 3 October 2018 Featured Application: Short-term plant cultivation within containers where anoxia often occurs. Abstract: Plastic agricultural nonwoven films are traditionally used as covering materials, and are prone to cause various ecological problems due to their poor biodegradability. In this paper, a ramie fiber/starch nonwoven film was prepared, and was used as bedding material, that was covered by cultivated soil as opposed to covering it. The biodegradability and porosity characteristics of the film were analyzed, and its effect on oxygen supply to soil was investigated. Results showed that the prepared film had good biodegradability (65.6% after 72 days), and had a loose and porous structure, with the main pore size being in the range of 250–300 µm. After the soil moisture content was reduced to about 44%, the oxygen concentration in the soil that was in close contact with the film, which padded the bottom surface of the plate, rose sharply and then kept stable at 20.1%, whereas soil directly in contact with the plate remained extremely anoxic (0.2%).
    [Show full text]
  • The History of Flax (Common Flax; Linum Usitatissimum)
    The History of Flax (Common Flax; Linum usitatissimum) Ida Dyment http://www.flaxminnesota.com/Flax_Field_1_Med.jpg Common Flax (Linum usitatissimum) • Genus Linum, in Linaceae family. • Annual plant – grows up to 47 inches – thin leaves and stems. – Five-petal blue (to purple) flowers. http://www.mdidea.com/products/new/flax_flower01.jpg http://www.fleurdandeol.com/pic/msc/flax3.jpg The origins of Flax • Originated in the Mediterranean region into India. • Used in Egypt to wrap mummies • Early colonists grew small home plots • Began to be commercially processed starting around 1750 • Declined when cotton gin became popular Agriculture and Production • Flax grows well in temperate and sub-tropical regions in both hemisphere – France, Belgium, Russia, China, and Egypt grow a lot of the fiber flax currently – Minnesota and the Dakotas grow seed flax in the US • There are two common types of flax planted http://www.naturallygreen.co.uk/images/flaxseed.jpg Uses • Fiber – From Egypt to Modern Industry • Textiles, rope, paper • Food – Human food from seeds, fiber, oil – Livestock feed • Pharmacy – (Omega-3 fatty acids) – Heart health – skin treatment and cosmetics • Also used for ornamental purposes Omega-3 fatty acids • Omega-3 fatty acids in linseed oil may help prevent certain cancers. • Omega-3’s are also helpful for mental health • Helps lower cholesterol and regulate blood pressure • Flax also has very high level of lignans Many other uses • Flax in animal feed – Livestock and chickens • Aids digestion and • fortifies eggs • Flaxseed oil (linseed) also used for oil-painting agents, specialized paper, particleboard, varnish http://riverglenfarm.ca/__oneclick_uploads/2008/07/eggs.jpg http://www.sghongsheng.com/image/Plain%20particle%20board1.jpg http://www.frontera.com/assets/inline_images/39_braz%20cherry%20with%20linseed%20oil.jpg .
    [Show full text]