Sweet Pepperbush,Clethra Alnifolia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Natural Heritage Program List of Rare Plant Species of North Carolina 2016
Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Revised February 24, 2017 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org C ur Alleghany rit Ashe Northampton Gates C uc Surry am k Stokes P d Rockingham Caswell Person Vance Warren a e P s n Hertford e qu Chowan r Granville q ot ui a Mountains Watauga Halifax m nk an Wilkes Yadkin s Mitchell Avery Forsyth Orange Guilford Franklin Bertie Alamance Durham Nash Yancey Alexander Madison Caldwell Davie Edgecombe Washington Tyrrell Iredell Martin Dare Burke Davidson Wake McDowell Randolph Chatham Wilson Buncombe Catawba Rowan Beaufort Haywood Pitt Swain Hyde Lee Lincoln Greene Rutherford Johnston Graham Henderson Jackson Cabarrus Montgomery Harnett Cleveland Wayne Polk Gaston Stanly Cherokee Macon Transylvania Lenoir Mecklenburg Moore Clay Pamlico Hoke Union d Cumberland Jones Anson on Sampson hm Duplin ic Craven Piedmont R nd tla Onslow Carteret co S Robeson Bladen Pender Sandhills Columbus New Hanover Tidewater Coastal Plain Brunswick THE COUNTIES AND PHYSIOGRAPHIC PROVINCES OF NORTH CAROLINA Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate. -
Ocn319079567-2020-09-04.Pdf (471.0Kb)
Visit The University of Massachusetts Amherst Apply Give Search UMass.edu (/) Coronavirus (COVID-19) Resources from UMass Extension and the Center for Agriculture, Food and the Environment: ag.umass.edu/coronavirus (/coronavirus) LNUF Home (/landscape) About (/landscape/about) Newsletters & Updates (/landscape/newsletters-updates) Publications & Resources (/landscape/publications-resources) Services (/landscape/services) Education & Events (/landscape/upcoming-events) Make a Gift (https://securelb.imodules.com/s/1640/alumni/index.aspx?sid=1640&gid=2&pgid=443&cid=1121&dids=2540) Landscape Message: September 4, 2020 September 4, 2020 Issue: 16 UMass Extension's Landscape Message is an educational newsletter intended to inform and guide Massachusetts Green Industry professionals in the management of our collective landscape. (/landscape) Detailed reports from scouts and Extension specialists on growing conditions, pest activity, and Search CAFE cultural practices for the management of woody ornamentals, trees, and turf are regular features. The following issue has been updated to provide timely management information and the latest Search this site regional news and environmental data. Search Registration has begun for our UMass Extension GREEN SCHOOL! (/sites/ag.umass.edu/files/pest- alerts/images/content/green_school_2020_virtual.jpg) Green Newsletters & School is going VIRTUAL for 2020! Classes will be Oct. 26 - Dec. Updates 10. This comprehensive 12-day certificate short course for Green Landscape Message Industry professionals is taught -
Cally Plant List a ACIPHYLLA Horrida
Cally Plant List A ACIPHYLLA horrida ACONITUM albo-violaceum albiflorum ABELIOPHYLLUM distichum ACONITUM cultivar ABUTILON vitifolium ‘Album’ ACONITUM pubiceps ‘Blue Form’ ACAENA magellanica ACONITUM pubiceps ‘White Form’ ACAENA species ACONITUM ‘Spark’s Variety’ ACAENA microphylla ‘Kupferteppich’ ACONITUM cammarum ‘Bicolor’ ACANTHUS mollis Latifolius ACONITUM cammarum ‘Franz Marc’ ACANTHUS spinosus Spinosissimus ACONITUM lycoctonum vulparia ACANTHUS ‘Summer Beauty’ ACONITUM variegatum ACANTHUS dioscoridis perringii ACONITUM alboviolaceum ACANTHUS dioscoridis ACONITUM lycoctonum neapolitanum ACANTHUS spinosus ACONITUM paniculatum ACANTHUS hungaricus ACONITUM species ex. China (Ron 291) ACANTHUS mollis ‘Long Spike’ ACONITUM japonicum ACANTHUS mollis free-flowering ACONITUM species Ex. Japan ACANTHUS mollis ‘Turkish Form’ ACONITUM episcopale ACANTHUS mollis ‘Hollard’s Gold’ ACONITUM ex. Russia ACANTHUS syriacus ACONITUM carmichaelii ‘Spätlese’ ACER japonicum ‘Aconitifolium’ ACONITUM yezoense ACER palmatum ‘Filigree’ ACONITUM carmichaelii ‘Barker’s Variety’ ACHILLEA grandifolia ACONITUM ‘Newry Blue’ ACHILLEA ptarmica ‘Perry’s White’ ACONITUM napellus ‘Bergfürst’ ACHILLEA clypeolata ACONITUM unciniatum ACIPHYLLA monroi ACONITUM napellus ‘Blue Valley’ ACIPHYLLA squarrosa ACONITUM lycoctonum ‘Russian Yellow’ ACIPHYLLA subflabellata ACONITUM japonicum subcuneatum ACONITUM meta-japonicum ADENOPHORA aurita ACONITUM napellus ‘Carneum’ ADIANTUM aleuticum ‘Japonicum’ ACONITUM arcuatum B&SWJ 774 ADIANTUM aleuticum ‘Miss Sharples’ ACORUS calamus ‘Argenteostriatus’ -
Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both. -
The Vascular Flora of Back Bay National Wildlife Refuge and False Cape State Park, Virginia
Medical Research Archives The Vascular Flora of Back Bay National Wildlife Refuge and False Cape State Park, Virginia The Vascular Flora of Back Bay National Wildlife Refuge and False Cape State Park, Virginia Richard Stalter* and Eric E. Lamont ** Department of Biological Sciences, St. John's University, Jamaica, NY 11439 New York Botanical Garden, Bronx, NY 10458 *Corresponding Author Dr. Richard Stalter ( [email protected] ) Copyright 2015 KEI Journals. All rights reserved. Medical Research Archives The Vascular Flora of Back Bay National Wildlife Refuge and False Cape State Park, Virginia ABSTRACT The vascular flora of Bay National Wildlife Refuge and False Cape State Park, Virginia consists of 602 species within 343 genera and 123 families. Of these 519 are native (86%) while 83 are not native to the region. Thirty two species are listed as rare or endangered in Virginia including two small populations of Bartonia verna at False Cape State Park found nowhere else in the state. Several species with southern affinities reach their northern range limit on the Back Bay region, whereas only two northern taxa, Hudsonia tomentosa and Myrica pensylvania are near their southern limit. Non-native varieties of Phragmites australis are a major component of the natural vegetation and pose a threat to native taxa. Each taxonomic entry in the checklist is accompanied by an annotation which includes the locality and habitat in which each taxon occurs, frequence of occurrence, range extensions, rarity status, and pertinent synonyms. Key words : flora, distribution, biodiversity, Back Bay National Wildlife Refuge, False Cape State Park, Virginia. Copyright 2015 KEI Journals. -
Streamhead Canebrakes Are Treeless Or Sparsely Treed Vegetation Dominated by Arundinaria Tecta in Seepage-Fed Drainages
STREAMHEAD CANEBRAKE Concept: Streamhead Canebrakes are treeless or sparsely treed vegetation dominated by Arundinaria tecta in seepage-fed drainages. Tree plus broadleaf shrub cover is generally less than 25 percent in good examples but may be higher if fire frequency has been reduced. Most of this rare community type is in the Sandhills Region, but it might occur in sand dune areas elsewhere in the Coastal Plain. Distinguishing Features: Streamhead Canebrakes are distinguished from other communities of seepage-fed streamheads by the dominance of Arundinaria tecta combined with low cover of trees and other shrubs (less than 25 percent). They are distinguished from Peatland Canebrakes by occurring in streamheads rather than in flat or domed peatlands, Carolina bays, or shallow outer Coastal Plain swales. Synonyms: Arundinaria gigantea ssp. tecta Shrubland (CEGL003843) (not distinguished from Peatland Canebrake in NVC). Atlantic Coastal Plain Streamhead Seepage Swamp, Pocosin and Baygall (CES203.252). Sites: Streamhead Canebrakes occur along mucky headwater and small stream bottoms in dissected sandhill areas, where soils are kept saturated by seepage. Soils: Soils are mucky mineral soils, most often mapped as Johnston (Cumulic Humaquept). Hydrology: Hydrology is typical of the theme as a whole, with long-term saturation by nutrient- poor water but with little or no stream flooding or standing water. Vegetation: Vegetation consists of a dense thicket of Arundinaria tecta and limited cover of broadleaf shrubs. Pinus serotina, Liriodendron tulipifera, Pinus taeda, Nyssa biflora, and Magnolia virginiana may form a sparse canopy. Any of the species of Streamhead Pocosin may be present in moderate numbers. Lyonia lucida is the most abundant other shrub in CVS plot data. -
Sweetpepper Bush Clethra Alnifolia L
W&M ScholarWorks Reports 11-1-1999 Sweetpepper Bush Clethra alnifolia L. Gene Silberhorn Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Plant Sciences Commons Recommended Citation Silberhorn, G. (1999) Sweetpepper Bush Clethra alnifolia L.. Wetland Flora Technical Reports, Wetlands Program, Virginia Institute of Marine Science. Virginia Institute of Marine Science, College of William and Mary. http://dx.doi.org/doi:10.21220/m2-ep1m-de63 This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Wetlands Technical Report Program Wetland Flora No. 99-11 / November 1999 Gene Silberhorn Sweetpepper Bush Clethra alnifolia L. Growth Habit and Diagnostic Characteristics Habitat Sweetpepper bush is a coastal freshwater shrub with Sweetpepper bush is most likely found in wooded simple, deciduous, alternate leaves (3 to 6 inches wetlands in coastal Virginia, but can grow elsewhere long) and serrated margins. It often grows in dense in non-wetland areas. It is the dominant shrub in the thickets from 3 to 10 feet tall. In mid-summer, the Great Dismal Swamp in Virginia and North Carolina. shrub produces a terminal inflorescence (raceme) of Dense thickets exist there that are difficult to penetrate small, white fragrant flowers. By late summer or early during the growing season. In the Swamp, it is often fall, green, globular capsules (1/8- 1/4 in. wide) associated with fetterbush (Lyonia lucida) and coastal appear (as illustrated) and turn gray by late autumn/ sweetbells (Leucothoe axillaris). -
The Occurrence of Red and Yellow Autumn Leaves Explained by Regional Differences in Insolation and Temperature
Review Tansley review The occurrence of red and yellow autumn leaves explained by regional differences in insolation and temperature Authors for correspondence: Susanne S. Renner1 and Constantin M. Zohner2 Susanne S. Renner 1 2 Tel: +49 89 17861 250 Systematic Botany and Mycology, University of Munich (LMU), Menzinger Str. 67, Munich 80638, Germany ; Institute of Email: [email protected] Integrative Biology, Department of Environmental Systems Science, ETH Zurich, Zurich 8092, Switzerland Constantin M. Zohner Email: [email protected] Received: 19 January 2019 Accepted: 24 April 2019 Contents Summary 1464 IV. The adaptive value of colour-changing leaves 1468 I. Introduction 1464 V. Outlook 1469 II. Phylogenetic and geographical occurrence of autumn colour Acknowledgements 1469 change 1465 References 1470 III. Physiological functions of autumnal leaf xanthophylls and anthocyanins 1466 Summary New Phytologist (2019) 224: 1464–1471 Red or yellow autumn leaves have long fascinated biologists, but their geographical doi: 10.1111/nph.15900 concentration in trees in Eastern North America (ENA) has defied evolutionary explanations. In this review, anthocyanins and xanthophylls are discussed in relation to their occurrence in Key words: adaptive explanation, different regions of the Northern Hemisphere, phylogenetic distribution and photoprotective anthocyanins, photo-oxidative damage, function during the breakdown of chlorophylls. Pigments in senescing leaves that intercept regional climates, solar irradiation, incident light and dissipate the absorbed energy extend the time available for nutrient resorption. xanthophylls. Experiments with Arabidopsis have revealed greatest anthocyanin photoprotective function at low temperatures and high light intensities, and high-resolution solar irradiation maps reveal that ENA and Asia receive higher irradiation than does Europe. -
The Natural Communities of South Carolina
THE NATURAL COMMUNITIES OF SOUTH CAROLINA BY JOHN B. NELSON SOUTH CAROLINA WILDLIFE & MARINE RESOURCES DEPARTMENT FEBRUARY 1986 INTRODUCTION The maintenance of an accurate inventory of a region's natural resources must involve a system for classifying its natural communities. These communities themselves represent identifiable units which, like individual plant and animal species of concern, contribute to the overall natural diversity characterizing a given region. This classification has developed from a need to define more accurately the range of natural habitats within South Carolina. From the standpoint of the South Carolina Nongame and Heritage Trust Program, the conceptual range of natural diversity in the state does indeed depend on knowledge of individual community types. Additionally, it is recognized that the various plant and animal species of concern (which make up a significant remainder of our state's natural diversity) are often restricted to single natural communities or to a number of separate, related ones. In some cases, the occurrence of a given natural community allows us to predict, with some confidence, the presence of specialized or endemic resident species. It follows that a reasonable and convenient method of handling the diversity of species within South Carolina is through the concept of these species as residents of a range of natural communities. Ideally, a nationwide classification system could be developed and then used by all the states. Since adjacent states usually share a number of community types, and yet may each harbor some that are unique, any classification scheme on a national scale would be forced to recognize the variation in a given community from state to state (or region to region) and at the same time to maintain unique communities as distinctive. -
1 Exotic Tree List Tree Number Botanical Name Afrikaanse Naam
Exotic tree list Tree Botanical Name Afrikaanse Naam English Name Origin Number X58 Abies concolor Witden White Fir N.Amer X59 Abies magnifica Rooiden Red Fir N.Amer X60 Abies nordmanniana Kaukasiese Den Caucasian Fir Turkey, Iran X61 Abies pinsapo Spaanse Den Spanish Fir Spain X62 Abies procera Edelden Noble Fir N.Amer Raspberry X486 Acacia acuminata Frambosewattel Aust Wattle X487 Acacia baileyana Bailey-se-wattel Bailey's Wattle Aust Knife-leaved X488 Acacia cultriformis Mesblaarwattel Aust Wattle X489 Acacia cyclops Rooikrans Red Eye Aust X490 Acacia dealbata Silwerwattel Silver Wattle Aust X491 Acacia decurrens Groenwattel Green Wattle Aust Gossamer X492 Acacia floribunda Spinnerakwattel Aust Wattle X493 Acacia longifolia Bleekwattel Sallow Wattle Aust X494 Acacia mearnsii Swartwattel Black Wattle Aust X495 Acacia melanoxylon Swarthout Blackwood Aust X496 Acacia pendula Treurwattel Weeping Myall Aust X497 Acacia podalyriifolia Vaalmimosa Pearl Acacia Aust X498 Acacia pycnantha Gouewattel Golden Wattle Aust Port Jackson X499 Acacia saligna Goudwilger Aust Willow Peppertree X500 Acacia terminalis Peperboomwattel Aust Wattle X658 Acer buergerianum Chinese Ahorn Chinese Maple China X659 Acer campestre Veldahorn Field Maple Eur, Turk, Iran X660 Acer circinatum Wingerdahorn Vine Maple N Amer Ash-leaved X661 Acer negundo Essenblaarahorn N & C Amer Maple X662 Acer palmatum Japanse Ahorn Japanese Maple Japan, China X663 Acer platanoides Noorse Ahorn Norway Maple Eur, Turk, Iran X664 Acer pseudo-platanus Valsplataan Sycamore Maple Eur, Asia -
Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M. -
Phylogenetic Relationships in the Order Ericales S.L.: Analyses of Molecular Data from Five Genes from the Plastid and Mitochondrial Genomes1
American Journal of Botany 89(4): 677±687. 2002. PHYLOGENETIC RELATIONSHIPS IN THE ORDER ERICALES S.L.: ANALYSES OF MOLECULAR DATA FROM FIVE GENES FROM THE PLASTID AND MITOCHONDRIAL GENOMES1 ARNE A. ANDERBERG,2,5 CATARINA RYDIN,3 AND MARI KAÈ LLERSJOÈ 4 2Department of Phanerogamic Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden; 3Department of Systematic Botany, University of Stockholm, SE-106 91 Stockholm, Sweden; and 4Laboratory for Molecular Systematics, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden Phylogenetic interrelationships in the enlarged order Ericales were investigated by jackknife analysis of a combination of DNA sequences from the plastid genes rbcL, ndhF, atpB, and the mitochondrial genes atp1 and matR. Several well-supported groups were identi®ed, but neither a combination of all gene sequences nor any one alone fully resolved the relationships between all major clades in Ericales. All investigated families except Theaceae were found to be monophyletic. Four families, Marcgraviaceae, Balsaminaceae, Pellicieraceae, and Tetrameristaceae form a monophyletic group that is the sister of the remaining families. On the next higher level, Fouquieriaceae and Polemoniaceae form a clade that is sister to the majority of families that form a group with eight supported clades between which the interrelationships are unresolved: Theaceae-Ternstroemioideae with Ficalhoa, Sladenia, and Pentaphylacaceae; Theaceae-Theoideae; Ebenaceae and Lissocarpaceae; Symplocaceae; Maesaceae, Theophrastaceae, Primulaceae, and Myrsinaceae; Styr- acaceae and Diapensiaceae; Lecythidaceae and Sapotaceae; Actinidiaceae, Roridulaceae, Sarraceniaceae, Clethraceae, Cyrillaceae, and Ericaceae. Key words: atpB; atp1; cladistics; DNA; Ericales; jackknife; matR; ndhF; phylogeny; rbcL. Understanding of phylogenetic relationships among angio- was available for them at the time, viz.