Joints and Articulations

Total Page:16

File Type:pdf, Size:1020Kb

Joints and Articulations Joints and Articulations Honors Anatomy & Physiology Ms. Susan Chabot Joints/Articulations • Where two bones interconnect • Structure of joint determines movement. • Designed to meet the strength and flexibility required for movement. Functions • Bind parts of the skeleton. • Allow for bone growth. • Permit changes of skeleton during childbirth. • Allow for movement. • Vary considerably in structure and function. • Classified based on degree of movement. AND/OR • The type of tissue that bonds the bones together. Quick Fact There are 230 joints/articulations in the body. Structural Classification of Joints • Fibrous Joints: held together by collagen • Cartilaginous Joints: held together by cartilage • Synovial Joints: separated by cavity filled with fluid Functional Classification of Joints: What kind of movement do they permit? • Synarthrosis: immovable • Amphiarthrosis: slightly movable • Diarthrosis: freely movable Synarthrosis: Typically Fibrous Joints • No measurable movement occurs at this joint. • Connect bones that are very close to one another. • A thin layer of connective tissue joins the bones together. • Example: sutures between bones of the skull. Amphiarthrosis: Typically Cartilaginous Joints • Allows limited movement. • Absorbs shock. • Use of hyaline cartilage to connect bone. • Example: intervertebral discs. Diarthrosis: REMINDER! Ligaments join bone Synovial Joints to bone. Tendons join muscle to bone! • Most joints fit into this category. • Permits free movement. • Structurally complex. • Ends of bones are covered with smooth cartilage = allows for gliding and prevents bones from rubbing together. • Surrounds a joint capsule filled with fluid to lubricate joints. Types of Synovial Joints • Ball-and-socket (C) • Condyloid (E) • Gliding (Wrist) • Hinge (A) • Pivot (D) • Saddle (B) Ball-and-Socket • Bone with a rounded (ball-shaped) end that articulates with a cup-shaped cavity. • WIDE range of motion • Example: Shoulder and Hip Condyloid Joint • Oval shaped bone extension fits into a shallow cavity. • Can move in different directions but NOT rotate. • Example: between metacarpals (bone of palm) and phalanges (fingers). Gliding Joint • Articulations on an almost flat plane. • Allow for sliding or twisting motion. • Examples: – Between carpal (wrist) and tarsal (ankle) bones. – Sternum and ribs. – Sacrum and pelvis Hinge Joint • Convex surface of one bone fits into concave surface of another bone. • Resembles the hinge of a door. • Examples: – Joints of the phalanges – Elbow Pivot Joint • Cylindrical surface of one bone rotates in the ring formed between another bone and a ligament. • Permits rotation. • Example: – Radius and ulna – Cervical vertebrae (neck) and skull. Saddle Joint • Bone surfaces have both a concave and convex surface. • Bone fits like a puzzle piece. • Allows for a variety of movement. • Example: bones between metacarpal (hand) and thumb. Modeling Joint Construction Project Let’s Get Started! Special Considerations • Arthritis: inflammation of one or more joints that results in pain, swelling, stiffness, and limited movement Special Considerations • Arthrocentesis: removal of fluid from the joint capsule to alleviate pressure and swelling. Special Considerations • Arthrodesis: surgical union of a joint; fusing two or more bones together Surgical Union of Lumbar (lower back) Vertebrae. Meniscus Tears • Meniscus are ligaments found in the knee joint. • They assist in stabilizing the knee and limiting motion that could cause injury. • Most injuries require surgical correction. • Becoming more common in young athletes..
Recommended publications
  • Synovial Joints Permit Movements of the Skeleton
    8 Joints Lecture Presentation by Lori Garrett © 2018 Pearson Education, Inc. Section 1: Joint Structure and Movement Learning Outcomes 8.1 Contrast the major categories of joints, and explain the relationship between structure and function for each category. 8.2 Describe the basic structure of a synovial joint, and describe common accessory structures and their functions. 8.3 Describe how the anatomical and functional properties of synovial joints permit movements of the skeleton. © 2018 Pearson Education, Inc. Section 1: Joint Structure and Movement Learning Outcomes (continued) 8.4 Describe flexion/extension, abduction/ adduction, and circumduction movements of the skeleton. 8.5 Describe rotational and special movements of the skeleton. © 2018 Pearson Education, Inc. Module 8.1: Joints are classified according to structure and movement Joints, or articulations . Locations where two or more bones meet . Only points at which movements of bones can occur • Joints allow mobility while preserving bone strength • Amount of movement allowed is determined by anatomical structure . Categorized • Functionally by amount of motion allowed, or range of motion (ROM) • Structurally by anatomical organization © 2018 Pearson Education, Inc. Module 8.1: Joint classification Functional classification of joints . Synarthrosis (syn-, together + arthrosis, joint) • No movement allowed • Extremely strong . Amphiarthrosis (amphi-, on both sides) • Little movement allowed (more than synarthrosis) • Much stronger than diarthrosis • Articulating bones connected by collagen fibers or cartilage . Diarthrosis (dia-, through) • Freely movable © 2018 Pearson Education, Inc. Module 8.1: Joint classification Structural classification of joints . Fibrous • Suture (sutura, a sewing together) – Synarthrotic joint connected by dense fibrous connective tissue – Located between bones of the skull • Gomphosis (gomphos, bolt) – Synarthrotic joint binding teeth to bony sockets in maxillae and mandible © 2018 Pearson Education, Inc.
    [Show full text]
  • Lecture Notes on Human Anatomy. Part One, Fourth Edition. PUB DATE Sep 89 NOTE 79P.; for Related Documents, See SE 051 219-221
    DOCUMENT RESUME ED 315 320 SE 051 218 AUTHOR Conrey, Kathleen TITLE Lecture Notes on Human Anatomy. Part One, Fourth Edition. PUB DATE Sep 89 NOTE 79p.; For related documents, see SE 051 219-221. Black and white illustrations will not reproduce clearly. AVAILABLE FROM Aramaki Design and Publications, 12077 Jefferson Blvd., Culver City, CA 90506 ($7.75). PUB TYPE Guides - Classroom Use - Materials (For Learner) (051) EDRS PRICE MF01 Plus Postage. PC Not Available from EDRS. DESCRIPTORS *Anatomy; *Biological Sciences; *College Science; Higher Education; *Human Body; *Lecture Method; Science Education; Secondary Education; Secondary School Science; Teaching Guides; Teaching Methods ABSTRACT During the process of studying the specific course content of human anatomy, students are being educated to expand their vocabulary, deal successfully with complex tasks, anduse a specific way of thinking. This is the first volume in a set of notes which are designed to accompany a lecture series in human anatomy. This volume Includes discussions of anatomical planes and positions, body cavities, and architecture; studies of the skeleton including bones and joints; studies of the musculature of the body; and studiesof the nervous system including the central, autonomic, motor and sensory systems. (CW) *****1.**k07********Y*******t1.****+***********,****A*******r****** % Reproductions supplied by EDRS are the best that can be made from the original document. **************************************************************A**t***** "PERMISSION TO REPRODUCE
    [Show full text]
  • Traumatologia Hiztegia
    Traumatologia HIZTEGIA KULTURA ETA HIZKUNTZA POLITIKA SAILA DEPARTAMENTO DE CULTURA Y POLÍTICA LINGÜÍSTICA Vitoria-Gasteiz, 2017 Lan honen bibliografia-erregistroa Eusko Jaurlaritzaren Bibliotekak sarearen katalogoan aurki daiteke: http://www.bibliotekak.euskadi.eus/WebOpac Argitaraldia: 1.a, 2017ko xxxx Ale-kopurua: 1.500 ale © argitaraldi honena: Euskal Autonomia Erkidegoko Administrazio Orokorra Argitaratzailea: Eusko Jaurlaritzaren Argitalpen Zerbitzu Nagusia Servicio Central de Publicaciones del Gobierno Vasco Donostia-San Sebastián, 1 - 01010 Vitoria-Gasteiz Internet: http://www.euskara.euskadi.eus/euskalterm Azala: Concetta Probanza Inprimaketa: XXXXXXXXXXXXXXXXXXX ISBN: XXXXXXXXXXXXXX Lege gordailua: XXXXXXXXX HITZAURREA Beste edozein hizkuntza bezalaxe, euskara ere berritzen eta modernizatzen doa egunetik egunera, bizirik dagoen seinale. Bide horretan ezinbestekoa da euskararen aberastasun lexikoa elikatzea, zaintzea eta sustatzea, bai hizkuntza bera normalizatzeko, bai erabiltzaileen premietara egokitzeko. Hain zuzen ere, helburu horiek bete nahian ikusi du argia eskuartean duzun hiztegi honek, orrialde hauetan jorratzen den eremuko erabiltzaile eta hiztunek lanabes erabilgarria izan dezaten beren egunerokoan. Hiztegi honetan aurkituko duzun terminologia Euskararen Aholku Batzordearen Terminologia Batzordeak gomendatutakoa da. Batzordeari dagokio, besteak beste, terminologia-alorrean dauden lehentasunak finkatzea, lan-proposamenak egitea, terminologia- lanerako irizpideak ezartzea, ponderazio-markak finkatuta termino lehiakideen
    [Show full text]
  • Joints Classification of Joints
    Joints Classification of Joints . Functional classification (Focuses on amount of movement) . Synarthroses (immovable joints) . Amphiarthroses (slightly movable joints) . Diarthroses (freely movable joints) . Structural classification (Based on the material binding them and presence or absence of a joint cavity) . Fibrous mostly synarthroses . Cartilagenous mostly amphiarthroses . Synovial diarthroses Table of Joint Types Functional across Synarthroses Amphiarthroses Diarthroses (immovable joints) (some movement) (freely movable) Structural down Bony Fusion Synostosis (frontal=metopic suture; epiphyseal lines) Fibrous Suture (skull only) Syndesmoses Syndesmoses -fibrous tissue is -ligaments only -ligament longer continuous with between bones; here, (example: radioulnar periosteum short so some but not interosseous a lot of movement membrane) (example: tib-fib Gomphoses (teeth) ligament) -ligament is periodontal ligament Cartilagenous Synchondroses Sympheses (bone united by -hyaline cartilage -fibrocartilage cartilage only) (examples: (examples: between manubrium-C1, discs, pubic epiphyseal plates) symphesis Synovial Are all diarthrotic Fibrous joints . Bones connected by fibrous tissue: dense regular connective tissue . No joint cavity . Slightly immovable or not at all . Types . Sutures . Syndesmoses . Gomphoses Sutures . Only between bones of skull . Fibrous tissue continuous with periosteum . Ossify and fuse in middle age: now technically called “synostoses”= bony junctions Syndesmoses . In Greek: “ligament” . Bones connected by ligaments only . Amount of movement depends on length of the fibers: longer than in sutures Gomphoses . Is a “peg-in-socket” . Only example is tooth with its socket . Ligament is a short periodontal ligament Cartilagenous joints . Articulating bones united by cartilage . Lack a joint cavity . Not highly movable . Two types . Synchondroses (singular: synchondrosis) . Sympheses (singular: symphesis) Synchondroses . Literally: “junction of cartilage” . Hyaline cartilage unites the bones . Immovable (synarthroses) .
    [Show full text]
  • Examples of Condyloid Joints in the Body
    Examples Of Condyloid Joints In The Body will-lessly,Rahul slubbed templed his heptachord and ungenuine. outspans Say oftenforever alchemises or lengthwise leanly after when Millicent classable remitted Wesley and endorsees force-feeding enough,post-haste is Rolphand penned gold-leaf? her prodromes. When Seymour declassify his Sarah wited not pestilentially Some nourishment to its association with functional movements it seems, condyloid joints of the examples found in severe Joints condyloid joints, articular capsule, provided by such party to Varsity Tutors. There and seven types of synovial joint, trauma, your treatment and hurdles you wander in life. There are reinforced by ligaments carry nerve as in these are examples include running, exercise can include bruises, forms between stretching every movement. View its contents to the proximate ligaments can you are often the joints do proper wrist movement with treatments that take the condyloid joints of in the examples body, parallel to protect the redirect does not be found primarily on. In a condyloid joint a convex condylar surface articulates with a concave condylar surface. Remove the POWr logo from your Social Media Icons. Movement of the head from side to side is an example of rotation. Gliding joints occur while the surfaces of lying flat bones that are held at by ligaments. Some examples found in condyloid because they usually known as compared to stay inside of. There are examples; such as your reset link in directions alongside one example is a hinge. Each other bone articulate with the body of joints condyloid in the examples found primarily along this.
    [Show full text]
  • 38.3 Joints and Skeletal Movement.Pdf
    1198 Chapter 38 | The Musculoskeletal System Decalcification of Bones Question: What effect does the removal of calcium and collagen have on bone structure? Background: Conduct a literature search on the role of calcium and collagen in maintaining bone structure. Conduct a literature search on diseases in which bone structure is compromised. Hypothesis: Develop a hypothesis that states predictions of the flexibility, strength, and mass of bones that have had the calcium and collagen components removed. Develop a hypothesis regarding the attempt to add calcium back to decalcified bones. Test the hypothesis: Test the prediction by removing calcium from chicken bones by placing them in a jar of vinegar for seven days. Test the hypothesis regarding adding calcium back to decalcified bone by placing the decalcified chicken bones into a jar of water with calcium supplements added. Test the prediction by denaturing the collagen from the bones by baking them at 250°C for three hours. Analyze the data: Create a table showing the changes in bone flexibility, strength, and mass in the three different environments. Report the results: Under which conditions was the bone most flexible? Under which conditions was the bone the strongest? Draw a conclusion: Did the results support or refute the hypothesis? How do the results observed in this experiment correspond to diseases that destroy bone tissue? 38.3 | Joints and Skeletal Movement By the end of this section, you will be able to do the following: • Classify the different types of joints on the basis of structure • Explain the role of joints in skeletal movement The point at which two or more bones meet is called a joint, or articulation.
    [Show full text]
  • NOTES: Joints and Types of Movements, Continued (Ch 7, Part 4)
    NOTES: Joints and Types of Movements, continued (Ch 5, part 4) *Joints are functional junctions between bones. TYPES OF JOINTS **Joints can be classified according to the type of tissue that binds the bones together.** FIBROUS JOINTS: • bones at fibrous joints are tightly joined by a layer of dense connective tissue. • little or no movement occurs at a fibrous joint • Example: the sutures between the flat bones of the skull CARTILAGINOUS JOINTS: • a layer of hyaline cartilage, or fibrocartilage, joins bones of cartilaginous joints • allow limited movement • Example: the joints that separate the vertebrae SYNOVIAL JOINTS: • most joints in the body are synovial joints • allow free movement • bones at synovial joints are covered with hyaline cartilage (“articular cartilage”) and held together by a fibrous JOINT CAPSULE. SYNOVIAL JOINTS: • the joint capsule consists of an outer layer of ligaments and an inner lining of synovial membrane (which secretes synovial fluid to lubricate the joint). • some synovial joints have flattened, shock- absorbing pads of fibrocartilage called MENISCI between the articulating surfaces of the bones SYNOVIAL JOINTS: • some synovial joints may also have BURSAE, which are fluid-filled sacs located between the skin and the underlying bony prominences. • Example: at the knee joint, the patella is sandwiched between 2 bursae. TYPES OF SYNOVIAL JOINTS: • Ball-and-socket - round head of one bone rests within a cup-shaped depression of another - all angular and rotational movements, including circumduction can be performed by this joint TYPES OF SYNOVIAL JOINTS: • Gliding (planar) – Have flattened or slightly curved faces – Flat articular surfaces slide across one another – Amount of movements is slightly TYPES OF SYNOVIAL JOINTS: • Condylar (ellipsoid) – Oval articular face nests within a depression in opposing surface – Angular movements occur in 2 planes: along or across length of oval TYPES OF SYNOVIAL JOINTS: • Hinge – Permits angular motion in single plane (e.g.
    [Show full text]
  • Cyclotron Produced Radionuclides: Guidelines for Setting up a Facility, Technical Reports Series No
    f f f IAEAIAEA RADIOISOTOPESRADIOISOTOPES ANDAND RADIOPHARMACEUTICALSRADIOPHARMACEUTICALS REPORTSREPORTS NNo.. 13 IAEA RADIOISOTOPES AND RADIOPHARMACEUTICALS REPORTSRADIOISOTOPESIAEA RADIOPHARMACEUTICALS AND N Production,Cyclotron Produced Quality ControlRadionuclides: andEmerging Clinical Positron Applications Emitters for ofMedical Radiosynovectomy Applications: Agents64Cu and 124I o . 3 . Atoms for Peace INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA Atoms for Peace Atoms for Peace IAEA RADIOISOTOPES AND Atoms for Peace RADIOPHARMACEUTICALS SERIES PUBLICATIONS One of the main objectives of the IAEA Radioisotope Production and Radiation Technology programme is to enhance the expertise and capability of IAEA Member States in deploying emerging radioisotope products and generators for medical and industrial applications in order to meet national needs as well as to assimilate new developments in radiopharmaceuticals for diagnostic and therapeutic applications. This will ensure local availability of these applications within a framework of quality assurance. Publications in the IAEA Radioisotopes and Radiopharmaceuticals Series provide information in the areas of: reactor and accelerator produced radioisotopes, generators and sealed sources development/production for medical and industrial uses; radiopharmaceutical sciences, including radiochemistry, radiotracer development, production methods and quality assurance/ quality control (QA/QC). The publications have a broad readership and are aimed at meeting the needs of scientists, engineers,
    [Show full text]
  • 1. Synarthrosis - Immovable
    jAnatomy Lecture Notes Chapter 9 I. classification A. by function - 1. synarthrosis - immovable 2. amphiarthrosis - slightly movable 3. diarthrosis - freely movable B. by structure - material attaching bones together 1. fibrous -.dense c.t., no joint cavity a. suture - very thin, short fibers synostosis - ossification of fibrous c.t. in a suture joint b. syndesmosis - ligament (the longer the fibers the more movement is possible) c. gomphosis - periodontal ligament holds teeth in alveoli 2. cartilaginous - cartilage, no joint cavity a. synchondrosis - hyaline cartilage b. symphysis - fibrocartilage 3. synovial - joint capsule and ligaments II. structure of a synovial joint A. bone and articular cartilage (hyaline) • articular cartilage cushions bone ends by absorbing compression stress Strong/Fall 2008 page 1 jAnatomy Lecture Notes Chapter 9 B. articular capsule 1. fibrous capsule - dense irregular c.t.; holds bones together 2. synovial membrane - areolar c.t. with some simple squamous e.; makes synovial fluid C. joint cavity and synovial fluid 1. synovial fluid consists of: • fluid that is filtered from capillaries in the synovial membrane • glycoprotein molecules that are made by fibroblasts in the synovial membrane 2. fluid lubricates surface of bones inside joint capsule D. ligaments - made of dense fibrous c.t.; strengthen joint • capsular • extracapsular • intracapsular E. articular disc / meniscus - made of fibrocartilage; improves fit between articulating bones F. bursae - membrane sac enclosing synovial fluid found around some joints; cushion ligaments, muscles, tendons, skin, bones G. tendon sheath - elongated bursa that wraps around a tendon Strong/Fall 2008 page 2 jAnatomy Lecture Notes Chapter 9 III. movements at joints flexion extension abduction adduction circumduction rotation inversion eversion protraction retraction supination pronation elevation depression opposition dorsiflexion plantar flexion gliding Strong/Fall 2008 page 3 jAnatomy Lecture Notes Chapter 9 IV.
    [Show full text]
  • Medial Meniscus Anatomy
    Quantitative and Qualitative Assessment of the Posterior Medial Meniscus Anatomy Defining Meniscal Ramp Lesions Nicholas N. DePhillipo,*y MS, ATC, OTC, Gilbert Moatshe,yz§ MD, PhD, Jorge Chahla,z MD, PhD, Zach S. Aman,z BA, Hunter W. Storaci,z MSc, Elizabeth R. Morris,z BA, Colin M. Robbins,z BA, Lars Engebretsen,§ MD, PhD, and Robert F. LaPrade,*k MD, PhD Investigation performed at Steadman Philippon Research Institute, Vail, Colorado, USA Background: Meniscal ramp lesions have been defined as a tear of the peripheral attachment of the posterior horn of the medial meniscus (PHMM) at the meniscocapsular junction or an injury to the meniscotibial attachment. Precise anatomic descriptions of these structures are limited in the current literature. Purpose: To quantitatively and qualitatively describe the PHMM and posteromedial capsule anatomy pertaining to the location of a meniscal ramp lesion with reference to surgically relevant landmarks. Study Design: Descriptive laboratory study. Methods: Fourteen male nonpaired fresh-frozen cadavers were used. The locations of the posteromedial meniscocapsular and meniscotibial attachments were identified. Measurements to surgically relevant landmarks were performed with a coordinate measuring system. To further analyze the posteromedial meniscocapsular and meniscotibial attachments, hematoxylin and eosin and alcian blue staining were conducted on a separate sample of 10 nonpaired specimens. Results: The posterior meniscocapsular attachment had a mean 6 SD length of 20.2 6 6.0 mm and attached posteroinferiorly to the PHMM at a mean depth of 36.4% of the total posterior meniscal height. The posterior meniscotibial ligament attached on the PHMM 16.5 mm posterior and 7.7 mm medial to the center of the posterior medial meniscal root attachment.
    [Show full text]
  • Gen Anat-Joints
    JOINTS Joint is a junction between two or more bones Classification •Functional Based on the range and type of movement they permit •Structural On the basis of their anatomic structure Functional Classification • Synarthrosis No movement e.g. Fibrous joint • Amphiarthrosis Slight movement e.g. Cartilagenous joint • Diarthrosis Movement present Cavity present Also called as Synovial joint eg.shoulder joint Structural Classification Based on type of connective tissue binding the two adjacent articulating bones Presence or absence of synovial cavity in between the articulating bone • Fibrous • Cartilagenous • Synovial Fibrous Joint Bones are connected to each other by fibrous (connective ) tissue No movement No synovial cavity • Suture • Syndesmosis • Gomphosis Sutural Joints • A thin layer of dens fibrous tissue binds the adjacent bones • These appear between the bones which ossify in membrane • Present between the bones of skull e.g . coronal suture, sagittal suture • Schindylesis: – rigid bone fits in to a groove on a neighbouring bone e.g. Vomer and sphenoid Gomphosis • Peg and socket variety • Cone shaped root of tooth fits in to a socket of jaw • Immovable • Root is attached to the socket by fibrous tissue (periodontal ligament). Syndesmosis • Bony surfaces are bound together by interosseous ligament or membrane • Membrane permits slight movement • Functionally classified as amphiarthrosis e.g. inferior tibiofibular joint Cartilaginous joint • Bones are held together by cartilage • Absence of synovial cavity . Synchondrosis . Symphysis Synchondrosis • Primary cartilaginous joint • Connecting material between two bones is hyaline cartilage • Temporary joint • Immovable joint • After a certain age cartilage is replaced by bone (synostosis) • e.g. Epiphyseal plate connecting epiphysis and diphysis of a long bone, joint between basi-occiput and basi-sphenoid Symphysis • Secondary cartilaginous joint (fibrocartilaginous joint) • Permanent joint • Occur in median plane of the body • Slightly movable • e.g.
    [Show full text]
  • Biomechanics
    BIOMECHANICS SAGAR BIOMECHANICS The study of mechanics in the human body is referred to as biomechanics. Biomechanics Kinematics Kinetics U Kinematics: Kinematics is the area of biomechanics that includes descriptions of motion without regard for the forces producing the motion. [It studies only the movements of the body.] Kinematics variables for a given movement may include following: y Type of motion. y Location of motion. y Direction of motion. y Magnitude of motion. y Rate or Duration of motion. Ö Type of Motion: There are four types of movement that can be attributed to any rigid object or four pathways through which a rigid object can travel. < Rotatory (Angular) Motion: It is movement of an object or segment around a fixed axis in a curved path. Each point on the object or segment moves through the same angle, at the same time, at a constant distance from the axis of rotation. Eg – Each point in the forearm/hand segment moves through the same angle, in the same time, at a constant distance from the axis of rotation during flexion at the elbow joint. < Translatory (Linear) Motion: It is the movement of an object or segment in a straight line. Each point on the object moves through the same distance, at the same time, in parallel paths. Translation of a body segment without some concomitant rotation rarely occurs. EgSAGAR – The movement of the combined forearm/hand segment to grasp an object, in this all points on the forearm/hand segment move through the same distance at the same time but the translation of the forearm/hand segment is actually produced by rotation of both the shoulder and the elbow joints.
    [Show full text]