Joint Capsule Collagen in Osteoarthrosis

Total Page:16

File Type:pdf, Size:1020Kb

Joint Capsule Collagen in Osteoarthrosis Ann Rheum Dis: first published as 10.1136/ard.32.6.510 on 1 November 1973. Downloaded from Ann. rheum. Dis. (1973), 32, 510 Joint capsule collagen in osteoarthrosis C. HERBERT, M. I. V. JAYSON, AND A. J. BAILEY From the Department ofMedicine, University ofBristol, the Royal National Hospitalfor Rheumatic Diseases, Bath, and the Agricultural Research Council, Meat Research Institute, Langford, Bristol It has long been recognized that although osteoarth- and stability of the capsular collagen could lead to rosis is characterized by degenerative changes in the the observed symptoms. articular cartilage and bones, changes in the capsule Recent studies have established that the stability play an important part in the symptoms. The capsule of the collagen fibre depends upon the formation of becomes thickened and lacks its normal pliability, inter-molecular cross-links between the tropocollagen thus restricting normal movement (Gade, 1947; molecules making up the fibre (Bailey, 1968; Traub Apley, 1969) and resulting in pain in the joint. and Piez, 1971). These cross-links are formed Similarly, Jayson (1969) described a series of patients extracellularly through reaction of aldehydes derived with arthralgia and increased joint capsule stiffness. from specific lysine and hydroxylysine on the collagen Incision, or partial removal of the osteoarthritic molecule (see Scheme). capsule, relieves the pain and improves the range of There is now a well-documented pattern of evolu- movement and degree of deformity (Lloyd-Roberts, tion of these inter-molecular cross-links. The links 1953; Gade, 1947). The joint cavity and articular initially formed are labile Schiff-bases and may be by copyright. surfaces have no pain receptors whilst the capsule is stabilized and detected by reduction with tritiated richly supplied with pain fibres (Gardner, 1948; borohydride. Using this technique they have now Kellgren and Samuel, 1950), strongly suggesting that been characterized in normal skin, tendon, bone, and the stiffening of the capsule leads to pressure on the cartilage collagen (Fowler and Bailey, 1972), each pain receptors (Apley, 1969). The mechanical tissue revealing a unique distribution of these stiffness of the capsule depends to a large extent on reduciblecross-links. These labile bonds are, however, the fibrous protein collagen. Changes in the quantity only intermediates and are found in highest concen- http://ard.bmj.com/ Scheme Formation ofcross-links Peptide chain CH2 CH2 CH2 CH2 CH2 CH2I CH2 CH2 UCH2 CH2 CH2 CH2 on September 28, 2021 by guest. Protected enzyme II UH2 CH2 CHO> CH2 11 NaBH4 NH2 NH2 N > NH CH2 CH2 CH-OH CH-OH CH-OH CH2 CH2 CH2 CH2I CH2 CH2 I Peptide bound Schiff-base Reduced cross-link hydroxylysine cross-link Hydroxylysinonorleucine (1B2) Accepted for publication April 3, 1973 Paper presented to Heberden Society, November 24, 1972 Ann Rheum Dis: first published as 10.1136/ard.32.6.510 on 1 November 1973. Downloaded from Joint capsule collagen in osteoarthrosis 511 trations during the rapid growth period and have 1970). All the eluent from the column was collected in virtually disappeared by maturity (Bailey and 5-ml. fractions, using an automatic fraction collector. Shimokomaki, 1972) to form stable non-reducible Each fraction was then analysed for tritium activity by cross-links, the structure of which has not yet been taking aliquot (0-2 ml.), adding Bray's (1960) solution (3 ml.), and counting in a Packard Scintillation Counter. elucidated. This pattern has been established with The identity of the radioactive fractions was confirmed by each of the above tissues and it seemed likely that, if analysis of a portion on the Beckman Amino Acid a similar pattern occurred in joint capsule collagen, Analyser, using an extended (60 cm.) basic column. The it would be possible to detect any abnormalities in normal amino acids were located bypaperchromatography the collagen cross-linking in osteoarthrosis. This paper of the fractions against known standards. reports that, in osteoarthritic joints, the changes in the capsules are due to thelaying down ofnew collagen Treatment with D-penicillamine rather than to degeneration or alteration of the Samples of extensively washed osteoarthritic capsules were immersed in a solution of 0-1 or 0-001 M D- collagen already present, suggesting that it may be penicillamine (0 9 per cent NaCI; pH 7-4) for 48 hours at possible to cleave these new bonds and relieve the 380 C. Osteoarthritic capsules incubated under similar pain. conditions, but in the absence of D-penicillamine, acted as controls. To prevent bacterial contamination, the solutions were covered in a layer of toluene. Both the Material and methods treated and control samples were then analysed for Specimens of hip joint capsule were obtained from fifteen reducible cross-links and solubility changes. cadavers within 24 hours of death (age range 0 to 75 yrs). Gross observation, clinical notes, x-rays, and a study of (a) REDUCIBLE CROSS-LINKS the dissected specimens satisfied us that the joints were The treated and control samples were washed in distilled normal. water and reduced with potassium borohydride as Capsules from osteoarthritic joints (12) were specimens described above and the effect on the reducible cross-links obtained at surgery for osteoarthrosis of the hip in adult recorded. subjects (age range 30 to 70 yrs). The material was always by copyright. obtained from the same location in the joint. The hip (b) SOLUBILITY capsule was chosen because osteoarthrosis in this joint The treated and control samples were dialysed overnight frequently demands operation. to remove salt and the insoluble residue which remained Articular cartilage was dissected from the unaffected was freeze-dried and weighed. areas of the surface of the head of the femur from osteo- arthritic subjects. Preparation of intact collagen fibres Results The capsule was cleaned of adhering fat and muscular Changes with age in the reducible cross-links ofcapsule tissue and shredded in an M.S.E. Ato-Mix homogenizer (Fig. 1, overleaf) http://ard.bmj.com/ and washed with copious amounts of isotonic saline (0 9 per cent NaCl; pH 7 4) to remove soluble protein and The chromatographic elution pattern of the radio- glycosaminoglycan. Hydroxyproline determinations active components obtained from borotritide reduced showed the tissue to be over 90 per cent collagen. joint capsule (Fig. la) was found to be very similar to that previously obtained for tendon. The major Reduction of collagen fibres reducible cross-links were shown to be present in Samples (250 mg. freeze-dried tissue) of the intact collagen joint capsule, dehydro-dihydroxylysinonorleucine fibres were suspended in 0 9 per cent NaCl (pH 7 4) and (dehydro-diOH-LNL), and dehydrohydroxylysino- on September 28, 2021 by guest. Protected reduced with tritiated potassium borohydride (KB3H4) norleucine (dehydro-OH-LNL). A smaller but diluted with non-radioactive KBH4 to 10 mCi/mmol. significant proportion of an additional cross-link (30-1 weight ratio collagen: KBH4). For direct comparison present was the as yet uncharacterized Fraction C. of tissue of different ages, all samples were reduced With increasing age of the capsule, the proportion of concurrently, the KB3H4 being dissolved in the saline (0°C) these Schiff-base cross-links was found to decrease, and equal portions of the solutions being used for the whilst the reduction. The reaction was allowed to proceed for 1 hr, lysyl carbohydrate components (Fraction after which time acetic acid was added to a final pH 4 and A) increased until, at about 20 to 25 years of age, the the mixture dialysed against distilled water overnight, Schiff-bases had virtually disappeared (Fig. lb). freeze-dried, and weighed. Analysis of reducible cross-links in osteoarthritic Identification of the cross-links capsule collagen The weighed samples were hydrolysed in boiling 6N HCI Capsules obtained from patients covering the age for 24 hr. The HCI was removed by evaporation in vacuo, range 30 to 70 yrs were found (Fig. 1 c) to possess a and the hydrolysate then analysed by ion-exchange high proportion of the two reduced cross-links, chromatography, using the Technicon analyser with diOH-LNL and OH-LNL previously shown to be pyridine-formate buffers (Bailey, Peach, and Fowler, absent in all normal subjects over the age of 20 yrs. 512 Annals of the Rheumatic Diseases Ann Rheum Dis: first published as 10.1136/ard.32.6.510 on 1 November 1973. Downloaded from B1 A 2X10- B2 5X103 A A A A A AA A Ilxl0. A2PeTX103 AA E A Al C- 0 C~1 IA A A IA Phe Tyr Hylys Lys 3X10 v 2X10. 0 A2 c- -.r_ Al v2X10O lX10- E A A A' Phe Tyr Hylys Lys > - 1 0 20 40 60 80 Age (years) FIG. 2 Variation inproduction ofreducible intermolecular by copyright. cross-links (B1 + B2) in relation to the total amount of collagen with increasing age in normal subjects (o-*) and osteoarthritic subjects (A). 0 100 200 300 400 500 Elution volume (ml) 2X103 an B1 FIG. 1 Typical distribution of radioactive components c obtainedfrom an acid hydrolysate ofjoint capsule collagen reduced with tritiated borohydride and separated on a Technicon Amino Acid Analyser. (a) Normal joint capsule CL 2 X103 from subject 8 yrs old. (b) Normal joint capsule collagen http://ard.bmj.com/ over 30 yrs old. (c) Osteoarthritic joint capsule from subject 2 collagenfrom subject over 30 yrs old. Positions ofreducible B12 8 intermolecular crosslinks B1, B2, and C shown in relation u to the usual amino acids. A A A A 100 2001 I 300 t 400 '00 0- Elution volume (ml) All osteoarthritic joints so far examined have Phe Tyr Hylys Lys exhibited this unusual pattern. Obviously the t- >I_10 proportion of these is dependent on the age at onset on September 28, 2021 by guest.
Recommended publications
  • Synovial Joints Permit Movements of the Skeleton
    8 Joints Lecture Presentation by Lori Garrett © 2018 Pearson Education, Inc. Section 1: Joint Structure and Movement Learning Outcomes 8.1 Contrast the major categories of joints, and explain the relationship between structure and function for each category. 8.2 Describe the basic structure of a synovial joint, and describe common accessory structures and their functions. 8.3 Describe how the anatomical and functional properties of synovial joints permit movements of the skeleton. © 2018 Pearson Education, Inc. Section 1: Joint Structure and Movement Learning Outcomes (continued) 8.4 Describe flexion/extension, abduction/ adduction, and circumduction movements of the skeleton. 8.5 Describe rotational and special movements of the skeleton. © 2018 Pearson Education, Inc. Module 8.1: Joints are classified according to structure and movement Joints, or articulations . Locations where two or more bones meet . Only points at which movements of bones can occur • Joints allow mobility while preserving bone strength • Amount of movement allowed is determined by anatomical structure . Categorized • Functionally by amount of motion allowed, or range of motion (ROM) • Structurally by anatomical organization © 2018 Pearson Education, Inc. Module 8.1: Joint classification Functional classification of joints . Synarthrosis (syn-, together + arthrosis, joint) • No movement allowed • Extremely strong . Amphiarthrosis (amphi-, on both sides) • Little movement allowed (more than synarthrosis) • Much stronger than diarthrosis • Articulating bones connected by collagen fibers or cartilage . Diarthrosis (dia-, through) • Freely movable © 2018 Pearson Education, Inc. Module 8.1: Joint classification Structural classification of joints . Fibrous • Suture (sutura, a sewing together) – Synarthrotic joint connected by dense fibrous connective tissue – Located between bones of the skull • Gomphosis (gomphos, bolt) – Synarthrotic joint binding teeth to bony sockets in maxillae and mandible © 2018 Pearson Education, Inc.
    [Show full text]
  • Joints Classification of Joints
    Joints Classification of Joints . Functional classification (Focuses on amount of movement) . Synarthroses (immovable joints) . Amphiarthroses (slightly movable joints) . Diarthroses (freely movable joints) . Structural classification (Based on the material binding them and presence or absence of a joint cavity) . Fibrous mostly synarthroses . Cartilagenous mostly amphiarthroses . Synovial diarthroses Table of Joint Types Functional across Synarthroses Amphiarthroses Diarthroses (immovable joints) (some movement) (freely movable) Structural down Bony Fusion Synostosis (frontal=metopic suture; epiphyseal lines) Fibrous Suture (skull only) Syndesmoses Syndesmoses -fibrous tissue is -ligaments only -ligament longer continuous with between bones; here, (example: radioulnar periosteum short so some but not interosseous a lot of movement membrane) (example: tib-fib Gomphoses (teeth) ligament) -ligament is periodontal ligament Cartilagenous Synchondroses Sympheses (bone united by -hyaline cartilage -fibrocartilage cartilage only) (examples: (examples: between manubrium-C1, discs, pubic epiphyseal plates) symphesis Synovial Are all diarthrotic Fibrous joints . Bones connected by fibrous tissue: dense regular connective tissue . No joint cavity . Slightly immovable or not at all . Types . Sutures . Syndesmoses . Gomphoses Sutures . Only between bones of skull . Fibrous tissue continuous with periosteum . Ossify and fuse in middle age: now technically called “synostoses”= bony junctions Syndesmoses . In Greek: “ligament” . Bones connected by ligaments only . Amount of movement depends on length of the fibers: longer than in sutures Gomphoses . Is a “peg-in-socket” . Only example is tooth with its socket . Ligament is a short periodontal ligament Cartilagenous joints . Articulating bones united by cartilage . Lack a joint cavity . Not highly movable . Two types . Synchondroses (singular: synchondrosis) . Sympheses (singular: symphesis) Synchondroses . Literally: “junction of cartilage” . Hyaline cartilage unites the bones . Immovable (synarthroses) .
    [Show full text]
  • NOTES: Joints and Types of Movements, Continued (Ch 7, Part 4)
    NOTES: Joints and Types of Movements, continued (Ch 5, part 4) *Joints are functional junctions between bones. TYPES OF JOINTS **Joints can be classified according to the type of tissue that binds the bones together.** FIBROUS JOINTS: • bones at fibrous joints are tightly joined by a layer of dense connective tissue. • little or no movement occurs at a fibrous joint • Example: the sutures between the flat bones of the skull CARTILAGINOUS JOINTS: • a layer of hyaline cartilage, or fibrocartilage, joins bones of cartilaginous joints • allow limited movement • Example: the joints that separate the vertebrae SYNOVIAL JOINTS: • most joints in the body are synovial joints • allow free movement • bones at synovial joints are covered with hyaline cartilage (“articular cartilage”) and held together by a fibrous JOINT CAPSULE. SYNOVIAL JOINTS: • the joint capsule consists of an outer layer of ligaments and an inner lining of synovial membrane (which secretes synovial fluid to lubricate the joint). • some synovial joints have flattened, shock- absorbing pads of fibrocartilage called MENISCI between the articulating surfaces of the bones SYNOVIAL JOINTS: • some synovial joints may also have BURSAE, which are fluid-filled sacs located between the skin and the underlying bony prominences. • Example: at the knee joint, the patella is sandwiched between 2 bursae. TYPES OF SYNOVIAL JOINTS: • Ball-and-socket - round head of one bone rests within a cup-shaped depression of another - all angular and rotational movements, including circumduction can be performed by this joint TYPES OF SYNOVIAL JOINTS: • Gliding (planar) – Have flattened or slightly curved faces – Flat articular surfaces slide across one another – Amount of movements is slightly TYPES OF SYNOVIAL JOINTS: • Condylar (ellipsoid) – Oval articular face nests within a depression in opposing surface – Angular movements occur in 2 planes: along or across length of oval TYPES OF SYNOVIAL JOINTS: • Hinge – Permits angular motion in single plane (e.g.
    [Show full text]
  • 1. Synarthrosis - Immovable
    jAnatomy Lecture Notes Chapter 9 I. classification A. by function - 1. synarthrosis - immovable 2. amphiarthrosis - slightly movable 3. diarthrosis - freely movable B. by structure - material attaching bones together 1. fibrous -.dense c.t., no joint cavity a. suture - very thin, short fibers synostosis - ossification of fibrous c.t. in a suture joint b. syndesmosis - ligament (the longer the fibers the more movement is possible) c. gomphosis - periodontal ligament holds teeth in alveoli 2. cartilaginous - cartilage, no joint cavity a. synchondrosis - hyaline cartilage b. symphysis - fibrocartilage 3. synovial - joint capsule and ligaments II. structure of a synovial joint A. bone and articular cartilage (hyaline) • articular cartilage cushions bone ends by absorbing compression stress Strong/Fall 2008 page 1 jAnatomy Lecture Notes Chapter 9 B. articular capsule 1. fibrous capsule - dense irregular c.t.; holds bones together 2. synovial membrane - areolar c.t. with some simple squamous e.; makes synovial fluid C. joint cavity and synovial fluid 1. synovial fluid consists of: • fluid that is filtered from capillaries in the synovial membrane • glycoprotein molecules that are made by fibroblasts in the synovial membrane 2. fluid lubricates surface of bones inside joint capsule D. ligaments - made of dense fibrous c.t.; strengthen joint • capsular • extracapsular • intracapsular E. articular disc / meniscus - made of fibrocartilage; improves fit between articulating bones F. bursae - membrane sac enclosing synovial fluid found around some joints; cushion ligaments, muscles, tendons, skin, bones G. tendon sheath - elongated bursa that wraps around a tendon Strong/Fall 2008 page 2 jAnatomy Lecture Notes Chapter 9 III. movements at joints flexion extension abduction adduction circumduction rotation inversion eversion protraction retraction supination pronation elevation depression opposition dorsiflexion plantar flexion gliding Strong/Fall 2008 page 3 jAnatomy Lecture Notes Chapter 9 IV.
    [Show full text]
  • Medial Meniscus Anatomy
    Quantitative and Qualitative Assessment of the Posterior Medial Meniscus Anatomy Defining Meniscal Ramp Lesions Nicholas N. DePhillipo,*y MS, ATC, OTC, Gilbert Moatshe,yz§ MD, PhD, Jorge Chahla,z MD, PhD, Zach S. Aman,z BA, Hunter W. Storaci,z MSc, Elizabeth R. Morris,z BA, Colin M. Robbins,z BA, Lars Engebretsen,§ MD, PhD, and Robert F. LaPrade,*k MD, PhD Investigation performed at Steadman Philippon Research Institute, Vail, Colorado, USA Background: Meniscal ramp lesions have been defined as a tear of the peripheral attachment of the posterior horn of the medial meniscus (PHMM) at the meniscocapsular junction or an injury to the meniscotibial attachment. Precise anatomic descriptions of these structures are limited in the current literature. Purpose: To quantitatively and qualitatively describe the PHMM and posteromedial capsule anatomy pertaining to the location of a meniscal ramp lesion with reference to surgically relevant landmarks. Study Design: Descriptive laboratory study. Methods: Fourteen male nonpaired fresh-frozen cadavers were used. The locations of the posteromedial meniscocapsular and meniscotibial attachments were identified. Measurements to surgically relevant landmarks were performed with a coordinate measuring system. To further analyze the posteromedial meniscocapsular and meniscotibial attachments, hematoxylin and eosin and alcian blue staining were conducted on a separate sample of 10 nonpaired specimens. Results: The posterior meniscocapsular attachment had a mean 6 SD length of 20.2 6 6.0 mm and attached posteroinferiorly to the PHMM at a mean depth of 36.4% of the total posterior meniscal height. The posterior meniscotibial ligament attached on the PHMM 16.5 mm posterior and 7.7 mm medial to the center of the posterior medial meniscal root attachment.
    [Show full text]
  • Gen Anat-Joints
    JOINTS Joint is a junction between two or more bones Classification •Functional Based on the range and type of movement they permit •Structural On the basis of their anatomic structure Functional Classification • Synarthrosis No movement e.g. Fibrous joint • Amphiarthrosis Slight movement e.g. Cartilagenous joint • Diarthrosis Movement present Cavity present Also called as Synovial joint eg.shoulder joint Structural Classification Based on type of connective tissue binding the two adjacent articulating bones Presence or absence of synovial cavity in between the articulating bone • Fibrous • Cartilagenous • Synovial Fibrous Joint Bones are connected to each other by fibrous (connective ) tissue No movement No synovial cavity • Suture • Syndesmosis • Gomphosis Sutural Joints • A thin layer of dens fibrous tissue binds the adjacent bones • These appear between the bones which ossify in membrane • Present between the bones of skull e.g . coronal suture, sagittal suture • Schindylesis: – rigid bone fits in to a groove on a neighbouring bone e.g. Vomer and sphenoid Gomphosis • Peg and socket variety • Cone shaped root of tooth fits in to a socket of jaw • Immovable • Root is attached to the socket by fibrous tissue (periodontal ligament). Syndesmosis • Bony surfaces are bound together by interosseous ligament or membrane • Membrane permits slight movement • Functionally classified as amphiarthrosis e.g. inferior tibiofibular joint Cartilaginous joint • Bones are held together by cartilage • Absence of synovial cavity . Synchondrosis . Symphysis Synchondrosis • Primary cartilaginous joint • Connecting material between two bones is hyaline cartilage • Temporary joint • Immovable joint • After a certain age cartilage is replaced by bone (synostosis) • e.g. Epiphyseal plate connecting epiphysis and diphysis of a long bone, joint between basi-occiput and basi-sphenoid Symphysis • Secondary cartilaginous joint (fibrocartilaginous joint) • Permanent joint • Occur in median plane of the body • Slightly movable • e.g.
    [Show full text]
  • MRI of the Posterolateral Corner of the Knee, Please Have a Look
    Alexandria Journal of Medicine (2017) 53, 261–270 HOSTED BY Alexandria University Faculty of Medicine Alexandria Journal of Medicine http://www.elsevier.com/locate/ajme ORIGINAL ARTICLE MRI of the posterolateral corner of the knee, please have a look Mahmoud Agha * Diagnostic Imaging, Medical Research Institute, Alexandria University, Egypt Diagnostic Imaging, Almana Hospital, Saudi Arabia Received 13 May 2016; revised 19 August 2016; accepted 6 September 2016 Available online 23 September 2016 KEYWORDS Abstract The knee PLC injuries are frequently seen, with other major knee injuries, such as ACL posterolateral corner; and PCL. Objective: This article aimed to clarify PLC injuries that could be diagnosed by MRI, and ITB band; may have an impact on the management of the associated major knee injuries. Patient and methods: biceps tendon; It was conducted through retrospective MRI revision of 1000 patients who were presented with FCL; post-traumatic knee complaints, from January 2011 to March 2016. Results: ITB band injuries were Popliteus; seen in 113 patients (11.3%), biceps tendon injury in 59 patients (5.9%), FCL injuries in 223 PFL patients (22.3%), popliteus muscle injury in 53 patients (5.3%), PFL in 17 (1.7%), arcuate ligament injury in 38 patients (3.8%) and arcuate bone fracture (fibular styloid fracture) in 22 patients (2.2%). Overall PLC injuries recorded 283 patients, either as separate or combined PLC items. Of these 283 patients, 96 patients had associated ACL tear (33.9%), 19 had PCL tear (6.7%), 73 had medial corner injury (25.7%), 55 combined injuries (19.4%) and 40 isolated PLC injuries (14.1%).
    [Show full text]
  • Connections of Bones
    Connections of bones Reinitz László Z. Arthrologia generales- general arthrology Classification based on the freedom of movement • Synarthrosis [Articulationes fibrosae] • limited movement, connection through connective tissue • Amphiarthrosis • limited movement • narrow articular gap • may be through cartilage or ligaments • art. carpometacarpea • Diarthrosis – [Articulationes synoviales] • unlimited movement • (Synsarcosis) • connection via muscles Synarthrosis [Articulationes fibrosae] • No joint gap • Synostosis - ossification • Ru McIII-IV. • Gomphosis – penetration • alveolus-tooth • Suturae - suture • Sutura serrata – saw suture • Ossa parietalia • Sutura foliata – leaf suture • Sutura frontonasalis • Sutura squamosa –squamosal suture • Sutura squamosofrontalis • Sutura plana – flat suture • Sutura internasalis • Syndesmosis – through connective tissue, ligament • Car: radius-ulna Amphiarthrosis [Articulationes cartilagineae] • minimal joint gap • able to move in every directions • but those are very limited • Art. carpometacarpea • Synchondrosis • hyalin cartilage • Art. sternocostalis • Symphysis • fibrous cartilage • Symphysis pelvis Diarthrosis [Articulationes synovialis] • Joint gap • Free movement • General description of joints [drawing] • [video] • Ligaments of joints • Ligg. Intracapsularia – part of the joint capsule • Ligg. Extracapsularia – outside the joint capsule • Ligg. Intercapsularia - within the joint cavity • If the surfaces do not match (incongruent surfaces) • Cartilage supplement • discus – separates the joint
    [Show full text]
  • Medial Meniscus Anatomy—From Basic Science to Treatment
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/270004929 Medial meniscus anatomy—from basic science to treatment Article in Knee Surgery Sports Traumatology Arthroscopy · December 2014 DOI: 10.1007/s00167-014-3476-5 · Source: PubMed CITATIONS READS 40 1,012 4 authors, including: Robert Smigielski Roland Becker Medical University of Warsaw Hospital Brandenburg, Teaching Hospital of the Charite University of Berlin 55 PUBLICATIONS 408 CITATIONS 206 PUBLICATIONS 2,659 CITATIONS SEE PROFILE SEE PROFILE Urszula Zdanowicz Carolina Medical Center 31 PUBLICATIONS 196 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Surgical Anatomy of the Knee Joint View project vitamys VEPE View project All content following this page was uploaded by Urszula Zdanowicz on 28 August 2016. The user has requested enhancement of the downloaded file. Medial meniscus anatomy—from basic science to treatment Robert Śmigielski, Roland Becker, Urszula Zdanowicz & Bogdan Ciszek Knee Surgery, Sports Traumatology, Arthroscopy ISSN 0942-2056 Knee Surg Sports Traumatol Arthrosc DOI 10.1007/s00167-014-3476-5 1 23 Your article is protected by copyright and all rights are held exclusively by European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA). This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website.
    [Show full text]
  • 4 Anat 35 Articulations
    Human Anatomy Unit 1 ARTICULATIONS In Anatomy Today Classification of Joints • Criteria – How bones are joined together – Degree of mobility • Minimum components – 2 articulating bones – Intervening tissue • Fibrous CT or cartilage • Categories – Synarthroses – no movement – Amphiarthrosis – slight movement – Diarthrosis – freely movable Synarthrosis • Immovable articulation • Types – Sutures – Schindylesis – Gomphosis – Synchondrosis Synarthrosis Sutures • Found only in skull • Immovable articulation • Flat bones joined by thin layer of fibrous CT • Types – Serrate – Squamous (lap) – Plane Synarthrosis Sutures • Serrate • Serrated edges of bone interlock • Two portions of frontal bones • Squamous (lap) • Overlapping beveled margins forms smooth line • Temporal and parietal bones • Plane • Joint formed by straight, nonoverlapping edges • Palatine process of maxillae Synarthrosis Schindylesis • Immovable articulation • Thin plate of bone into cleft or fissure in a separation of the laminae in another bone • Articulation of sphenoid bone and perpendicular plate of ethmoid bone with vomer Synarthrosis Gomphosis • Immovable articulation • Conical process into a socket • Articulation of teeth with alveoli of maxillary bone • Periodontal ligament = fibrous CT Synarthrosis Synchondrosis • Cartilagenous joints – Ribs joined to sternum by hyaline cartilage • Synostoses – When joint ossifies – Epiphyseal plate becomes epiphyseal line Amphiarthrosis • Slightly moveable articulation • Articulating bones connected in one of two ways: – By broad flattened
    [Show full text]
  • Musculoskeletal System
    4 Musculoskeletal System Learning Objectives Upon completion of this chapter, you will be able to • Identify and define the combining forms, prefixes, and suffixes introduced in this chapter. • Correctly spell and pronounce medical terms and major anatomical structures relating to the musculoskeletal system. • Locate and describe the major organs of the musculoskeletal system and their functions. • Correctly place bones in either the axial or the appendicular skeleton. • List and describe the components of a long bone. • Identify bony projections and depressions. • Identify the parts of a synovial joint. • Describe the characteristics of the three types of muscle tissue. • Use movement terminology correctly. • Identify and define musculoskeletal system anatomical terms. • Identify and define selected musculoskeletal system pathology terms. • Identify and define selected musculoskeletal system diagnostic procedures. • Identify and define selected musculoskeletal system therapeutic procedures. • Identify and define selected medications relating to the musculoskeletal system. • Define selected abbreviations associated with the musculoskeletal system. 83 M04_FREM0254_06_SE_C04.indd 83 18/12/14 10:12 pm Section I: Skeletal System at a Glance Function The skeletal system consists of 206 bones that make up the internal framework of the body, called the skeleton. The skeleton supports the body, protects internal organs, serves as a point of attachment for skeletal muscles for body movement, produces blood cells, and stores minerals. Organs Here
    [Show full text]
  • A Proposal for a New Morphological Classification of the Popliteus
    www.nature.com/scientificreports OPEN A proposal for a new morphological classifcation of the popliteus muscle tendon with potential clinical and biomechanical signifcance Łukasz Olewnik1*, Robert F. LaPrade2, Friedrich Paulsen3,4, Bartosz Gonera1, Konrad Kurtys1, Michał Podgórski5, Paloma Aragonés6, J. Ramón Sanudo7 & Michał Polguj8 The purpose of this study was to characterize the morphological variations in the proximal attachments and create an accurate classifcation of the PPM for use in planning surgical procedures in this area, for evaluating radiological imaging and rehabilitation. One hundred and thirty-four lower limbs of body donors (52 woman and 82 man) fxed in 10% formalin solution were examined. The popliteus muscle was present in all 134 limbs. Four main types were identifed with subtypes. The most common type was Type I (34.3%), characterized by a single tendon in the popliteus sulcus. Type II (30.6%) characterized by a main tendon in the popliteus sulcus and accessory bands. This type was divided into fve subtypes (A–E) based on presence of specifc accessory bands. Type III (15.3%) was characterized by two tendons in the popliteal sulcus. Type IV (19.4%) was characterized by two tendons in the popliteus sulcus and additional bands. This type was also divided into fve subtypes (A–E) based on presence of specifc accessory bands. The popliteofbular ligament was present in 90.3% of cases. A new classifcation based on a proximal attachment is proposed. The popliteus tendon is characterized by a very high morphological variability, which can afect posterolateral knee stability and the natural rotation of the tibia.
    [Show full text]