Cyclotron Produced Radionuclides: Guidelines for Setting up a Facility, Technical Reports Series No
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Contribution to the Chemistry of Rhenium
U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS RESEARCH PAPER RP999 Part of Journal of Research of the J'Xational Bureau of Standards, Volume 18, May 1937 A CONTRIBUTION TO THE CHEMISTRY OF RHENIUM . By C. E. F. Lundell and H. B. Knowles ABSTRACT A study of the behavior of rhenium when dilute solutions of potassium per rhenate are acidified with sulphuric acid, cooled, and passed through the Jones reductor, indicates that rhenium forms a compound in which it has a valency of minus one, and that the rhenium in this compound is oxidized to a valency of plus one if the diluted sulphuric acid solution is protected from oxygen and warmed to approximately 50° C. In the course of the investigation, it was also found (1) that rhenium can be electrodeposited from diluted (5+95) sulphuric acid solution; (2) that deposits are slightly contaminated; and (3) that the deposited metal can be oxidized directly to perrhenic acid by exposure to moist air, oxygen, or by making the deposit the anode in a water solution. CONTENTS Page 1. Introduction ___ _____________________ ____ __ __ _____ ___ ___ _____ _____ 629 II. ExperimentaL _ ___ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ __ ___ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 630 1. Reagents, reductor, and reductor technique ___________________ 630 2. Oxidation of the reduced compound _______________ ___________ 631 3. Potentiometric titrations _______________ ___ ___ ______ ___ _____ 634 4. -
Simulating the Micro Uidic Solvent Extraction of Perrhenate
Simulating the microfluidic solvent extraction of perrhenate Investigating the influence of pH and leakage by Miranda van Duijn to obtain the degree of Bachelor of Science at the Delft University of Technology, to be defended publicly on Tuesday January 23, 2018 at 10:00 AM. Student number: 4355776 Project duration: September, 2017 – January 23, 2018 Thesis committee: Ir. Z. Liu, TU Delft, supervisor Dr. ir. M. Rohde, TU Delft Prof. dr. ir. J.L. Kloosterman TU Delft Abstract Several of the researches conducted at the Reactor Institute Delft (RID) concern the extraction process of perrhenate, ReO4¡. From the perrhenate, rhenium-188 (Re-188) is obtained. Re-188 is medically useful as a high energy ¯ emitter. It can be used as an imaging agent, for in situ tumor treatment and biodistribution. Re-188 is produced via commercially available 188W /188Re radionuclide generators, which have proved their usefulness as a conventional product. Via the production with this generator, the ReO4¡ resides in an aqueous solution together with other compounds such as tungsten-188 (W-188). To medically use the ReO4¡, it needs to be of a certain degree of radionuclidic purity, the proportion of the total radioactivity that is present as a specific radionuclide. [1] A relatively new method to extract the ReO4¡ from the aqueous solution into a liquid organic phase might be microfluidic solvent extraction. This principle is based on the laminar coflowing of two liquid immisci- ble phases between which an interface develops. The ReO4¡ is then transferred through the interface, thus leading to an extraction. Microfluidic solvent extraction offers several inherent advantages, such as the high surface-to-volume ra- tio and short diffusion distances. -
Joints Classification of Joints
Joints Classification of Joints . Functional classification (Focuses on amount of movement) . Synarthroses (immovable joints) . Amphiarthroses (slightly movable joints) . Diarthroses (freely movable joints) . Structural classification (Based on the material binding them and presence or absence of a joint cavity) . Fibrous mostly synarthroses . Cartilagenous mostly amphiarthroses . Synovial diarthroses Table of Joint Types Functional across Synarthroses Amphiarthroses Diarthroses (immovable joints) (some movement) (freely movable) Structural down Bony Fusion Synostosis (frontal=metopic suture; epiphyseal lines) Fibrous Suture (skull only) Syndesmoses Syndesmoses -fibrous tissue is -ligaments only -ligament longer continuous with between bones; here, (example: radioulnar periosteum short so some but not interosseous a lot of movement membrane) (example: tib-fib Gomphoses (teeth) ligament) -ligament is periodontal ligament Cartilagenous Synchondroses Sympheses (bone united by -hyaline cartilage -fibrocartilage cartilage only) (examples: (examples: between manubrium-C1, discs, pubic epiphyseal plates) symphesis Synovial Are all diarthrotic Fibrous joints . Bones connected by fibrous tissue: dense regular connective tissue . No joint cavity . Slightly immovable or not at all . Types . Sutures . Syndesmoses . Gomphoses Sutures . Only between bones of skull . Fibrous tissue continuous with periosteum . Ossify and fuse in middle age: now technically called “synostoses”= bony junctions Syndesmoses . In Greek: “ligament” . Bones connected by ligaments only . Amount of movement depends on length of the fibers: longer than in sutures Gomphoses . Is a “peg-in-socket” . Only example is tooth with its socket . Ligament is a short periodontal ligament Cartilagenous joints . Articulating bones united by cartilage . Lack a joint cavity . Not highly movable . Two types . Synchondroses (singular: synchondrosis) . Sympheses (singular: symphesis) Synchondroses . Literally: “junction of cartilage” . Hyaline cartilage unites the bones . Immovable (synarthroses) . -
Examples of Condyloid Joints in the Body
Examples Of Condyloid Joints In The Body will-lessly,Rahul slubbed templed his heptachord and ungenuine. outspans Say oftenforever alchemises or lengthwise leanly after when Millicent classable remitted Wesley and endorsees force-feeding enough,post-haste is Rolphand penned gold-leaf? her prodromes. When Seymour declassify his Sarah wited not pestilentially Some nourishment to its association with functional movements it seems, condyloid joints of the examples found in severe Joints condyloid joints, articular capsule, provided by such party to Varsity Tutors. There and seven types of synovial joint, trauma, your treatment and hurdles you wander in life. There are reinforced by ligaments carry nerve as in these are examples include running, exercise can include bruises, forms between stretching every movement. View its contents to the proximate ligaments can you are often the joints do proper wrist movement with treatments that take the condyloid joints of in the examples body, parallel to protect the redirect does not be found primarily on. In a condyloid joint a convex condylar surface articulates with a concave condylar surface. Remove the POWr logo from your Social Media Icons. Movement of the head from side to side is an example of rotation. Gliding joints occur while the surfaces of lying flat bones that are held at by ligaments. Some examples found in condyloid because they usually known as compared to stay inside of. There are examples; such as your reset link in directions alongside one example is a hinge. Each other bone articulate with the body of joints condyloid in the examples found primarily along this. -
I. an Improved Procedure for Alkene Ozonolysis. II. Exploring a New Structural Paradigm for Peroxide Antimalarials
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Student Research Projects, Dissertations, and Theses - Chemistry Department Chemistry, Department of 2011 I. An Improved Procedure for Alkene Ozonolysis. II. Exploring a New Structural Paradigm for Peroxide Antimalarials. Charles Edward Schiaffo University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/chemistrydiss Part of the Organic Chemistry Commons Schiaffo, Charles Edward, "I. An Improved Procedure for Alkene Ozonolysis. II. Exploring a New Structural Paradigm for Peroxide Antimalarials." (2011). Student Research Projects, Dissertations, and Theses - Chemistry Department. 23. https://digitalcommons.unl.edu/chemistrydiss/23 This Article is brought to you for free and open access by the Chemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Student Research Projects, Dissertations, and Theses - Chemistry Department by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. I. An Improved Procedure for Alkene Ozonolysis. II. Exploring a New Structural Paradigm for Peroxide Antimalarials. By Charles E. Schiaffo A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Chemistry Under the Supervision of Professor Patrick H. Dussault Lincoln, Nebraska June, 2011 I. An Improved Procedure for Alkene Ozonolysis. II. Exploring a New Structural Paradigm for Peroxide Antimalarials. Charles E. Schiaffo, Ph.D. University of Nebraska-Lincoln, 2011 Advisor: Patrick H. Dussault The use of ozone for the transformation of alkenes to carbonyls has been well established. The reaction of ozone with alkenes in this fashion generates either a 1,2,4- trioxolane (ozonide) or a hydroperoxyacetal, either of which must undergo a separate reduction step to provide the desired carbonyl compound. -
Technetium Chemistry, Oxidation States and Species
J. inorg, nucl. Chem., 1967, Vol, 29, pp. 681 to 691. PergamonPress Ltd. Printedin NorthernIreland TECHNETIUM CHEMISTRY, OXIDATION STATES AND SPECIES C. L. RULFS, R. A. PACER and R. F. HIRSCH Department of Chemistry, The University of Michigan, Ann Arbor, Michigan (Recewed14July1966) Abstraet--Pertechnetic and perrhenic acids behave as very strong acids, Ka ,~ l0 s. Their extensive dehydration to MzO7 in such media as 7 M sulphuric acid complicates a spectrophotometric com- parison of acid strengths. Chloroform extractable TcO~C1 forms from pertechnetate in the presence of chloride ion and concentrated sulphuric acid. The (VII) state of this compound is confirmed and its spectrum described. No evidence of unusual technetium (VII) species, in aqueous media of 1 N base to 1 N acid, has been found. The red colour of concentrated aqueous HTcO4 is ascribed to a lower (VI) or (V) state. The existence in alkaline media of a technetate, TcOsg-, species has been re-examined. Some (IV) and (III) state species are partially characterized, but no Tc~Os could be isolated. INTRODUCTION WHILS the chemistry of technetium closely parallels that of rhenium, any distinctions of behaviour in the sequence Mn-Tc-Re are of great interest. A chronological comparison of recent summaries of technetium chemistry(1-5) shows this to be a rather active area of study. The results of the present study are described in sections associated with species and oxidation states. The conventional techniques and equipment employed are described very concisely. Further detail is available in two recent theses. (6'7) EXPERIMENTAL Reagents. All technetium-99 material was obtained from the Oak Ridge National Laboratory, either as technetium metal powder or as ammonium pertechnetate solutions. -
Biomechanics
BIOMECHANICS SAGAR BIOMECHANICS The study of mechanics in the human body is referred to as biomechanics. Biomechanics Kinematics Kinetics U Kinematics: Kinematics is the area of biomechanics that includes descriptions of motion without regard for the forces producing the motion. [It studies only the movements of the body.] Kinematics variables for a given movement may include following: y Type of motion. y Location of motion. y Direction of motion. y Magnitude of motion. y Rate or Duration of motion. Ö Type of Motion: There are four types of movement that can be attributed to any rigid object or four pathways through which a rigid object can travel. < Rotatory (Angular) Motion: It is movement of an object or segment around a fixed axis in a curved path. Each point on the object or segment moves through the same angle, at the same time, at a constant distance from the axis of rotation. Eg – Each point in the forearm/hand segment moves through the same angle, in the same time, at a constant distance from the axis of rotation during flexion at the elbow joint. < Translatory (Linear) Motion: It is the movement of an object or segment in a straight line. Each point on the object moves through the same distance, at the same time, in parallel paths. Translation of a body segment without some concomitant rotation rarely occurs. EgSAGAR – The movement of the combined forearm/hand segment to grasp an object, in this all points on the forearm/hand segment move through the same distance at the same time but the translation of the forearm/hand segment is actually produced by rotation of both the shoulder and the elbow joints. -
THE PREPARATION of a SOLID RHENIDE by Justo B. Bravo B. S
THE PREPARATION OF A SOLID RHENIDE by Justo B. Bravo B. S. Ch. E., Adamson University Manila, Philippines, 1940 Submitted to the Department of Chemistry and the Faculty of the Graduate School of the University of Kansas 1n partial fulfillment of the requirements for the degree of Doctor of Philosophy. Advisory Committee: Redacted Signature --~--#'·----·-·- ----··-- ----·-- -· ---z._.-- - Chairman 6 . Redacted Signature >< -· ·r >< - -y .... .'-""V "--. Redacted Signature -:;----~-· ~-----· T --- -----· .~ • - • -- ,,,.. -- _. - - ./ Redacted Signature ··ryy l,~ J a.nua.ry, 19 53 Acknowledgement The autho~ wishes to express his sincere appreciation to Dr. Jacob Klein.berg and to Dr. Ernest Griswold for their con- stant encouragement and advice during the course of this work. Thanlts are also due my wife, Aurora, whose understanding ha.s made this work possible. Special thanks are due the Office .of Naval Research for their financial support of this investigation. · TABLE OF CONTENTS I. INTRODUCTION •.•• . l II. HISTORICAL REVIEW 3 III. EXPERIMENTAL • • 9 A. Materials .••. 9 B. Analytical Methods . 10 1. ·Determination of water content of ethylenediamine. 2. Measurement of reducing power of the rhenide compound. 3. Rhenium analysis. 4. Potassium analysis. c. The Reduction of Potassium Perrhenate. 17 l. Preliminary work. 2. Red_uction. of potassium perrhenate with potassium in ethylenediamine- water solutions. 3. Some properties of the white solid. D. The Separation of Potassium Rhe.nide. 29 1. Preliminary work. 2. Extraction of potassium hyd.roxide by isopropyl alcohol. 3~ Analysis of the final product. E. Ma£netic Susceptibility Measurements •• 44 F. Some Properties, of Potassium Rhenide Tetra.hydrate . • 50 IV. Stflvll-'.LARY • . 51 v. SUGGESTIONS FOR FUTURE WORK • . -
The Radiochemistry of Rhenium COMMITTEE on NUCLEAR SCIENCE
Na?ional Academy of Sciences PJational Research Council 9 NUCLEAR SCIENCE SERIES The Radiochemistry of Rhenium COMMITTEE ON NUCLEAR SCIENCE L. F. CURTISS, Chuirman ROBLEY D. EVANS, Vice Chairman National Bureau of Standards Massachusetts Instituteof Technology J. A. DsJUREN, Secyetiwy Westinghouse Electric Corporation C. J. BORKOWSKI J. W. IRVINE, JR. Oak Ridge National Laboratory Massachusetts Instituteof Technology ROBERT G. COCHIUN E. D. KLEMA Texaa Agricultural and Mecbanioal Northwestern UniverslW College W. WAYNE MEINKE University of Michigan SAMUEL EPSTEIN California Institute of Technology J. J. NICKSON Memorial Hospital, New York U. FANO National Bureau of Standarda ROBERT L. PLATZMAN Laboratctre de Chimie Physique HERBERT GOLDSTEIN Nuclear Development Corporation of D. M. VAN PATTER America Bartol Research Foundation LIAISON MEMBERS PAUL C. AEBERSOLD CHARLES K. REED Atomic Energy Commission U. S. Air Force J. HOWARD McMILLEN WILLIAM E. WRIGHT National Science Foundation Office of Naval Researoh SUBCOMMlllEE ON RADIOCHEMISTRY W. WAYNE MEINKE, Chairman HAROLD KfRBY University of Michigan Mound Laboratory GREGORY R. CHOPPIN GEORGE LEDDICOTTE Florida State Unlversi~ Oak Ridge National Laboratory GEORGE A. COWAN JULIAN NIELHEN Los Alarnos Sclentiflc Laboratory Hanfofi Laboratories ARTHUR W. FAIRHALL ELLIS P. STEINBERG IJniverslty of Washington Argonne National Laboratory JEROME HUDIS PETER C, STEVENSON Brcdhaven National Labcmtory University of California (Liverrnore) EARL HYDE LEO YAFFE University of California (Berkeley) McGill University CONSULTANTS NA THAN BALLOU JAMES DeVOE Centre d’Etude de l’Euy@e Nucleaire University of Miohigsn Mol-Donk, Belgiugi’ . WILLIAM MARLOW National Bureau of Standards CHEMISTRY The Radiochemistry of Rhenium G. W.” LEDDICOTTE Analytical Chemistry Division Oak Ridge National Laboratory Oak Ridge, Tennessee Fwuanc-sDate:April1981 Subcommittee on Radiochemistry National Academy of Sciences —National Research Council Printedin USA.Price$0.50.AvailablefromtbeOfficeofTechnical Services,DepartmentofCommerce.Washington25,D.C. -
Heterogeneous Catalytic Reduction of Perchlorate in Water
Heterogeneous Catalytic Reduction of Perchlorate in Water Keith D. Hurley Final Seminar September 19, 2008 - The perchlorate ion, ClO4 , is today widely regarded as a contaminant of ground and surface waters, as well as soil, throughout the United States, with over 400 recognized contaminated sites in 35 states [1]. The chemistry of perchlorate is dominated entirely by kinetics, and its high kinetic barrier to reduction makes it effectively inert to reduction by typical nucleophilic reducing agents or to complexation [2-4]. The argument for perchlorate remediation is based on its known interference with normal thyroid function [5]. The cause of this interference is the preferential uptake of perchlorate over iodide by the thyroid [6]. It is well established that the thyroid regulates neural development in fetuses and infants [7]. Current perchlorate remediation strategies are largely limited to ion exchange (IX) or bioremediation [8, 9]. In 1995 Abu-Omar and Espenson [10] showed that a rhenium(V) complex in aqueous solution, formulated as methylrhenium dioxide (MDO), can react relatively rapidly with perchlorate by an oxygen atom transfer (OAT) reaction to form an rhenium(VII) complex (methylrhenium trioxide, MTO) and chlorate. The cycle could be closed by reducing the Re(VII) complex back to the Re(V) complex with hypophosphorous acid (H3PO2) [11]. Such a homogeneous catalyst with a soluble phosphorus or sulfur reducing agent is not readily compatible with water purification systems. In an effort to make a catalytic system more compatible with water treatment a heterogeneous catalyst has been developed that promotes the reduction by hydrogen of perchlorate ion in water under mild conditions. -
JOINTS / Articulations
TheThe BionicBionic ArmArm ByBy LeslieLeslie ChatawayChataway andand ChristineChristine HoneyHoney BIONICBIONIC ARMARM MechanicsMechanics ControlControl CurrentCurrent NewNew DevelopmentsDevelopments FutureFuture Directions…Directions… 2 JOINTSJOINTS // ArticulationsArticulations Classification Structure/ Examples Movement Synarthrodial Bones fused Cranial bones (immovable) together Amphiarthrodial Slight movement, Vertebrae (slightly moveable) fibrocartilage disk Tibiofibular separates bones joint Sacroiliac joint Diarthrodial Inelastic ligaments All other joints (freely moveable) cross and hold joint in body! in place SynovialSynovial Joints!Joints! Freely moveable joints Important in study of Human Kinetics Cartilage surfaces bone, reduces friction and absorbs shock Joint enclosed by articular capsule that holds synovial fluid. Six types: hinge, ball and socket, pivot, condyloid, plane and saddle. 4 SynovialSynovial JointsJoints inin thethe HumanHuman ArmArm Type Movement Example Pivot Rotation, uniaxial Radioulnar Hinge Uniaxial Elbow movement Condyloid Angular biaxial Wrist movement (metacarpophalangeal joint) Ball and Socket Triaxial Shoulder movement with great ROM ROM: Range Of Motion 5 ClassificationClassification ofof MovementMovement LinearLinear -- simplestsimplest movementmovement thatthat cancan occuroccur inin aa joint.joint. OccursOccurs inin glidinggliding synovialsynovial joints.joints. AngularAngular -- motionmotion occursoccurs betweenbetween thethe longlong bonesbones ofof thethe arm,arm, andand spinalspinal -
(VII) Oxide As a Catalyst for the Substution of Hemiacetals
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Student Research Projects, Dissertations, and Theses - Chemistry Department Chemistry, Department of Fall 11-29-2012 The Use of Rhenium (VII) Oxide as a Catalyst for the Substution of Hemiacetals Michael W. Richardson University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/chemistrydiss Part of the Organic Chemistry Commons Richardson, Michael W., "The Use of Rhenium (VII) Oxide as a Catalyst for the Substution of Hemiacetals" (2012). Student Research Projects, Dissertations, and Theses - Chemistry Department. 37. https://digitalcommons.unl.edu/chemistrydiss/37 This Article is brought to you for free and open access by the Chemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Student Research Projects, Dissertations, and Theses - Chemistry Department by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. THE USE OF RHENIUM (VII) OXIDE AS A CATALYST FOR THE SUBSTITUTION OF HEMIACETALS By Michael W. Richardson A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Chemistry Under the Supervision of Patrick H. Dussault Lincoln, Nebraska November, 2012 THE USE OF RHENIUM (VII) OXIDE AS A CATALYST FOR THE SUBSTITUTION OF HEMIACETALS Michael W. Richardson, M.S. University of Nebraska, 2012 Adviser: Patrick H. Dussault Rhenium (VII) oxides have proven to be mild and versatile catalysts in organic chemistry. They have previously been utilized to catalyze the transposition of allylic aclohols, Prins reaction, and reductive amination to name a few examples.