OPTIMIZATION OF BURNISHING PROCESS PARAMETERS ON DIFFERENTLY HARDENED 20MnCr5 STEEL 1HIMANSHU KHANNA, 2HARISH PUNGOTRA, 3SANDEEP GANDOTRA 1M.TECH. STUDENT, BEANT COLLEGE OF ENGINEERING AND TECHNOLOGY GURDASPUR, PUNJAB 2ASSOCIATE PROFESSOR, DEPARTMENT OF MECHANICAL ENGINEERING, BEANT COLLEGE OF ENGINEERING & TECHNOLOGY, GURDASPUR - 143521, PUNJAB, INDIA 3ASSISTANT PROFESSOR, DEPARTMENT OF MECHANICAL ENGINEERING, BEANT COLLEGE OF ENGINEERING & TECHNOLOGY, GURDASPUR - 143521, PUNJAB, INDIA E-mail:
[email protected],
[email protected],
[email protected] Abstract: Surface finish designates the geometry and microstructural superiority of the machined surface. Different operations such as grinding, lapping, honing, buffing, barrel rolling, polishing, super finishing, and burnishing are required to be performed to achieve the high surface finish. Amongst all, burnishing is a process where the hard roller or a ball tool is engaged to the workpiece to get the better surface finish. In the present study, using Taguchi approach preliminary plan is made for the experimentation then according to it a roller burnishing of the 20MnCr5 workpiece at different input conditions is performed. From the analysis, it is concluded that the hardness of the material is the main contributing factor for burnishing process. Keywords - Burnishing, Depth of penetration, Feed, Speed, Hardness, Surface roughness. I. INTRODUCTION Morimoto & Tamamura (1991) compared different types of ball burnishing tools and concluded that the For reliable performance and prolonged life of cemented carbide and silicon nitride ceramic ball-tool contemporary machinery, its components require not tool showed best results regarding surface roughness. only high geometrical and dimensional geometrical Hassan et al. (1996) compared machined and accuracy but also with low surface roughness. The burnished specimens of commercially pure surface roughness has a vital role in functional aluminium and brass material.