Supplementary Information
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Research on Ancient DNA in the Near East Mateusz Baca*1, Martyna Molak2 1 Center for Precolumbian Studies, University of Warsaw, Ul
Bioarchaeology of the Near East, 2:39–61 (2008) Research on ancient DNA in the Near East Mateusz Baca*1, Martyna Molak2 1 Center for Precolumbian Studies, University of Warsaw, ul. Krakowskie Przedmieście 26/28, 00-927 Warsaw, Poland email: [email protected] (corresponding author) 2 Institute of Genetics and Biotechnology, University of Warsaw, ul. Pawińskiego 5a, 05-106 Warsaw, Poland Abstract: In the early 1990s, when studies of ancient DNA became possible, new perspectives of analyzing archaeological data also developed. Nowadays, because the methodology related to ancient DNA research is well developed, it has been used to reveal several aspects of human history and interaction. Here we review the basic concepts, methodologies, and recent developments in the fi eld of ancient DNA studies with a special refe- rence to the Near East. Th is includes not only human but also animal and bacterial DNA. Key words: archaeogenetics, aDNA, mtDNA, tuberculosis, animal domestication Introduction Human genomes accumulate mutations gradually over time. Th e forces of genetic drift and natural selection either cause these changes to disappear or to become established in the popu- lation. By the end of the 1990s, Amorim (1999) introduced the term “archaeogenetics” in reference to using information regarding genetic diff erences between humans to understand demographic events that took place in the past. Pioneering studies of human genetic diversity date back to 1970s when Cavalli-Sforza published a report on the diversity of European populations based on classic protein mark- ers (see Cavalli-Sforza et al. 1994 for a review). In the mid-eighties, great opportunities for studying human diversity arose with the invention of polymerase chain reaction (PCR). -
Germanic Origins from the Perspective of the Y-Chromosome
Germanic Origins from the Perspective of the Y-Chromosome By Michael Robert St. Clair A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor in Philosophy in German in the Graduate Division of the University of California, Berkeley Committee in charge: Irmengard Rauch, Chair Thomas F. Shannon Montgomery Slatkin Spring 2012 Abstract Germanic Origins from the Perspective of the Y-Chromosome by Michael Robert St. Clair Doctor of Philosophy in German University of California, Berkeley Irmengard Rauch, Chair This dissertation holds that genetic data are a useful tool for evaluating contemporary models of Germanic origins. The Germanic languages are a branch of the Indo-European language family and include among their major contemporary representatives English, German, Dutch, Danish, Swedish, Norwegian and Icelandic. Historically, the search for Germanic origins has sought to determine where the Germanic languages evolved, and why the Germanic languages are similar to and different from other European languages. Both archaeological and linguist approaches have been employed in this research direction. The linguistic approach to Germanic origins is split among those who favor the Stammbaum theory and those favoring language contact theory. Stammbaum theory posits that Proto-Germanic separated from an ancestral Indo-European parent language. This theoretical approach accounts for similarities between Germanic and other Indo- European languages by posting a period of mutual development. Germanic innovations, on the other hand, occurred in isolation after separation from the parent language. Language contact theory posits that Proto-Germanic was the product of language convergence and this convergence explains features that Germanic shares with other Indo-European languages. -
Victoria En Nubia
^J ^K FEBRERO/ MARZO 1980 7 francos (España: 150 pesetas) El Correo*la unesco 1a3 » Victoria Mí en IMubia fe 4.000 años de historia '/, salvados de las aguas ^W^W^Íi I t Foto Ù- Museo Nacional de Varsovia Caballo nubio TESOROS Este caballo pertenece a una pintura mural de la catedral de Faras que actualmente se con¬ DEL ARTE serva en el Museo de Varsovia como regalo del Gobierno sudanés. (Los gobiernos de Sudón y de Egipto donaron a cada uno de los países que participaron en la campaña de Nubia una parte MUNDIAL de los tesoros descubiertos por sus misiones arqueológicas). Faras, o Pachoras, según su nom¬ bre preérabe, era un importante centro de la Nubia sudanesa, situado muy cerca de la frontera con Egipto. De su excavación se encargó la expedición arqueológica polaca. El sitio fue uno de ^% los primeros de la Nubia sudanesa en quedar sumergidos por las aguas de la gran presa de Asuán. La catedral de Faras tuvo gran importancia en la historia del cristianismo en la Nubia inferior. En esta pintura el artista del siglo XII imita perfectamente los movimientos del caballo Sudán que se encabrita. Los dos apéndices bajo la pata delantera derecha parecen indicar que lo aquí reproducido era un ornamento que podía clavarse o colgarse. páginas ei Correo ^e ^a unesc° "LA HISTORIA DE LOS HOMBRES.. por Amadou-Mahtar M'Bow Una ventana abierta al mundo Lanzada por la Unesco, la mayor operación de salvamento arqueológico de todos los tiempos (1960-1980) FEBRERO-MARZO 1979 AÑO XXXII 5 VICTORIA EN NUBIA: EGIPTO por Shehata Adam Mohamed PUBLICADO EN 20 IDIOMAS 16 VICTORIA EN NUBIA: SUDAN por Negm-EI-Dln Mohamed Sherif Español Italiano Turco Inglés Hindi Urdu 14 MONUMENTOS SALVADOS DEL NILO Mapa Francés Tamul Catalán Ruso Hebreo Malayo 20 NUBIA REDESCUBIERTA Alemán Persa Coreano De la prehistoria a los tiempos faraónicos por Torgny Säve-Söderbergh Arabe Portugués Swahili Japonés Neerlandés 25 VICISITUDES DE UNA HISTORIA Del Imperio de Kush al Islam por William Y. -
Genetic Diversity of North Ethiopian Indigenous Sheep Populations Using Mitochondrial DNA
Genetic Diversity of North Ethiopian Indigenous Sheep Populations Using Mitochondrial DNA Mulata H Adhena ___________________________________________________________________________ Swedish University of Agricultural Sciences Department of Animal Breeding and Genetics Uppsala 2018 Examensarbete / Swedish University of Agriculture Sciences, Department of Animal Breeding and Genetics, no 541 Master’s Thesis, 30 ECTS Agricultural Science programme –Animal Science 0 Genetic Diversity of North Ethiopian Indigenous Sheep Populations Using Mitochondrial DNA Genetisk diversitet i mitokondrie-dna hos lokala fårpopulationer i norra Etiopien Mulata H Adhena Main supervisor: Anna M Johansson, SLU, Department of Animal Breeding and Genetics Assisting supervisor: Getinet Mekuriaw Tarekegn, SLU, Department of Animal Breeding and Genetics; Bahir Dar University, Ethiopia Examiner: Erling Strandberg, SLU, Department of Animal Breeding and Genetics Credits: 30 hp Course title: Degree project in Animal Science Course code: EX0556 Course coordinating department: Department of Animal Breeding and Genetics Programme: Master’s Programme – Animal Science Level: Advanced, A2E Place of publication: Uppsala Year of publication: 2018 Name of series: Examensarbete / Swedish University of Agriculture Sciences, Department of Animal Breeding and Genetics, no 541 On-line publication: http://epsilon.slu.se Key words: sheep, mitochondria, Ethiopia i Table of contents Contents Page Acknowledgements ............................................................................................................................... -
HUMAN MITOCHONDRIAL DNA HAPLOGROUP J in EUROPE and NEAR EAST M.Sc
UNIVERSITY OF TARTU FACULTY OF BIOLOGY AND GEOGRAPHY, INSTITUTE OF MOLECULAR AND CELL BIOLOGY, DEPARTMENT OF EVOLUTIONARY BIOLOGY Piia Serk HUMAN MITOCHONDRIAL DNA HAPLOGROUP J IN EUROPE AND NEAR EAST M.Sc. Thesis Supervisors: Ph.D. Ene Metspalu, Prof. Richard Villems Tartu 2004 Table of contents Abbreviations .............................................................................................................................3 Definition of basic terms used in the thesis.........................................................................3 Introduction................................................................................................................................4 Literature overview ....................................................................................................................5 West–Eurasian mtDNA tree................................................................................................5 Fast mutation rate of mtDNA..............................................................................................9 Estimation of a coalescence time ......................................................................................10 Topology of mtDNA haplogroup J....................................................................................12 Geographic spread of mtDNA haplogroup J.....................................................................20 The aim of the present study ....................................................................................................22 -
Ancient Mitochondrial DNA from Pre-Historic
Grand Valley State University ScholarWorks@GVSU Masters Theses Graduate Research and Creative Practice 4-30-2011 Ancient Mitochondrial DNA From Pre-historic Southeastern Europe: The rP esence of East Eurasian Haplogroups Provides Evidence of Interactions with South Siberians Across the Central Asian Steppe Belt Jeremy R. Newton Grand Valley State University Follow this and additional works at: http://scholarworks.gvsu.edu/theses Part of the Cell Biology Commons, and the Molecular Biology Commons Recommended Citation Newton, Jeremy R., "Ancient Mitochondrial DNA From Pre-historic Southeastern Europe: The rP esence of East Eurasian Haplogroups Provides Evidence of Interactions with South Siberians Across the Central Asian Steppe Belt" (2011). Masters Theses. 5. http://scholarworks.gvsu.edu/theses/5 This Thesis is brought to you for free and open access by the Graduate Research and Creative Practice at ScholarWorks@GVSU. It has been accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@GVSU. For more information, please contact [email protected]. ANCIENT MITOCHONDRIAL DNA FROM PRE-HISTORIC SOUTH- EASTERN EUROPE: THE PRESENCE OF EAST EURASIAN HAPLOGROUPS PROVIDES EVIDENCE OF INTERACTIONS WITH SOUTH SIBERIANS ACROSS THE CENTRAL ASIAN STEPPE BELT A thesis submittal in partial fulfillment of the requirements for the degree of Master of Science By Jeremy R. Newton To Cell and Molecular Biology Department Grand Valley State University Allendale, MI April, 2011 “Not all those who wander are lost.” J.R.R. Tolkien iii ACKNOWLEDGEMENTS I would like to extend my sincerest thanks to every person who has motivated, directed, and encouraged me throughout this thesis project. I especially thank my graduate advisor, Dr. -
Mitochondrial DNA Haplogroups Observed in Iraqi Population
International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 Mitochondrial DNA Haplogroups Observed in Iraqi Population Nihad A.M. Al-Rashedi1, Mohammed A. Jebor2, Talib AH Mousa3, Ali H. Al-Saadi4 1, 3 Science College- Muthanna University; 2, 4Science Colleges- Babylon University Abstract: Mitochondrial DNA hypervariable regions I and II of control region were sequenced from 100 random healthy unrelated individuals of three sequential generations belong to the Arab ethnic of Iraqi population. The aim of this study was to detection the mtDNA haplotypes and classifying it into mtDNA haplogroups will be useful in forensic genetics applications and determining the Iraqi population history. The sequence variation within D-loop control region were analyzed the composition of haplogroups that showed high frequency of haplogroups U, H, J,M, D,T and N (18%, 14%,10%, 9%, 7%, 7% and 7%, respectively, moderate frequency of haplogroups L and I was (4%) and B, A, R and K (2%), and low frequency of haplogroup pre-HV (1%) . This study was indicated lack of V, P, Y, X, O, Z, Q, G, E and C haplogroups. Keywords: mitochondrial DNA, haplogroups, DNA Sequencing, Arabic Iraqi population 1. Introduction find it http://mtmanager.yonsei.ac.kr that enables automatically estimate the most mtDNA haplogroups Iraq is located in the Middle East which bordered by Saudi according to control‐region mutation variations and scanning Arabia, Iran, Jordan, Kuwait and Turkey. The Iraqi of similar sequences from the database which includes over population consists of 75–80% Arabs and 20-25% others. -
Graffiti-As-Devotion.Pdf
lsa.umich.edu/kelsey/ i lsa.umich.edu/kelsey/ lsa.umich.edu/kelsey/ iii Edited by Geoff Emberling and Suzanne Davis Along the Nile and Beyond Kelsey Museum Publication 16 Kelsey Museum of Archaeology University of Michigan, 2019 lsa.umich.edu/kelsey/ iv Graffiti as Devotion along the Nile and Beyond The Kelsey Museum of Archaeology, Ann Arbor 48109 © 2019 by The Kelsey Museum of Archaeology and the individual authors All rights reserved Published 2019 ISBN-13: 978-0-9906623-9-6 Library of Congress Control Number: 2019944110 Kelsey Museum Publication 16 Series Editor Leslie Schramer Cover design by Eric Campbell This book was published in conjunction with the special exhibition Graffiti as Devotion along the Nile: El-Kurru, Sudan, held at the Kelsey Museum of Archaeology in Ann Arbor, Michigan. The exhibition, curated by Geoff Emberling and Suzanne Davis, was on view from 23 August 2019 through 29 March 2020. An online version of the exhibition can be viewed at http://exhibitions.kelsey.lsa.umich.edu/graffiti-el-kurru Funding for this publication was provided by the University of Michigan College of Literature, Science, and the Arts and the University of Michigan Office of Research. This book is available direct from ISD Book Distributors: 70 Enterprise Drive, Suite 2 Bristol, CT 06010, USA Telephone: (860) 584-6546 Email: [email protected] Web: www.isdistribution.com A PDF is available for free download at https://lsa.umich.edu/kelsey/publications.html Printed in South Korea by Four Colour Print Group, Louisville, Kentucky. ♾ This paper meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper). -
The Preservation of DNA from Saliva Samples in Suboptimal Conditions
A comparative ancestry analysis of Y-chromosome DNA haplogroups using high resolution melting Adria Michelle Burrows November 2018 A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biotechnology, University of the Western Cape. Supervisor: Prof. Maria Eugenia D’Amato; Co-Supervisor: Dr Peter Ristow Keywords Y-Chromosome Single nucleotide polymorphism Deoxyribonucleic acid High resolution melting Haplogroups Ancestry Multiplex i http://etd.uwc.ac.za/ Abstract The objective of this study is to deduce paternal ancestry using ancestry informative single nucleotide polymorphisms (SNPs) by means of High Resolution Melting (HRM). This was completed by producing a multiplex system that was designed in a hierarchical manner according to the YSNP tree. This project mainly focused on African ancestry and was used to infer paternal ancestral lineages on the Johannesburg Coloured population. South Africa has a diverse population that has ancestral history from across the globe. The South African Coloured population is the most admixed population as it is derived from at least five different population groups: these being Khoisan, Bantu, Europeans, Indians and Southeast Asians. There have been studies done on the Western Cape/ Cape Town Coloured populations before but this study focused on the Johannesburg Coloured population. The first step was to design the multiplex system. This was done by using in- house SNPs. A total of seven multiplexes were designed and optimised, each consisting of two, three or four different SNPs respectively. A total of 143 saliva and buccal samples were collected from male Johannesburg Coloureds. DNA was extracted from the saliva samples using an optimised organic method. -
Carriers of Mitochondrial DNA Macrohaplogroup L3 Basal Lineages Migrated Back to Africa from Asia Around 70,000 Years Ago Vicente M
Cabrera et al. BMC Evolutionary Biology (2018) 18:98 https://doi.org/10.1186/s12862-018-1211-4 RESEARCHARTICLE Open Access Carriers of mitochondrial DNA macrohaplogroup L3 basal lineages migrated back to Africa from Asia around 70,000 years ago Vicente M. Cabrera1* , Patricia Marrero2, Khaled K. Abu-Amero3,4 and Jose M. Larruga1 Abstract Background: The main unequivocal conclusion after three decades of phylogeographic mtDNA studies is the African origin of all extant modern humans. In addition, a southern coastal route has been argued for to explain the Eurasian colonization of these African pioneers. Based on the age of macrohaplogroup L3, from which all maternal Eurasian and the majority of African lineages originated, the out-of-Africa event has been dated around 60-70 kya. On the opposite side, we have proposed a northern route through Central Asia across the Levant for that expansion and, consistent with the fossil record, we have dated it around 125 kya. To help bridge differences between the molecular and fossil record ages, in this article we assess the possibility that mtDNA macrohaplogroup L3 matured in Eurasia and returned to Africa as basal L3 lineages around 70 kya. Results: The coalescence ages of all Eurasian (M,N) and African (L3 ) lineages, both around 71 kya, are not significantly different. The oldest M and N Eurasian clades are found in southeastern Asia instead near of Africa as expected by the southern route hypothesis. The split of the Y-chromosome composite DE haplogroup is very similar to the age of mtDNA L3. An Eurasian origin and back migration to Africa has been proposed for the African Y-chromosome haplogroup E. -
Rare Human Mitochondrial HV Lineages Spread from the Near East
www.nature.com/scientificreports OPEN Rare human mitochondrial HV lineages spread from the Near East and Caucasus during post-LGM and Received: 11 January 2019 Accepted: 21 June 2019 Neolithic expansions Published: xx xx xxxx Michel Shamoon-Pour1, Mian Li2 & D. Andrew Merriwether1 Of particular signifcance to human population history in Eurasia are the migratory events that connected the Near East to Europe after the Last Glacial Maximum (LGM). Utilizing 315 HV*(xH,V) mitogenomes, including 27 contemporary lineages frst reported here, we found the genetic signatures for distinctive movements out of the Near East and South Caucasus both westward into Europe and eastward into South Asia. The parallel phylogeographies of rare, yet widely distributed HV*(xH,V) subclades reveal a connection between the Italian Peninsula and South Caucasus, resulting from at least two (post-LGM, Neolithic) waves of migration. Many of these subclades originated in a population ancestral to contemporary Armenians and Assyrians. One such subclade, HV1b-152, supports a postexilic, northern Mesopotamian origin for the Ashkenazi HV1b2 lineages. In agreement with ancient DNA fndings, our phylogenetic analysis of HV12 and HV14, the two exclusively Asian subclades of HV*(xH,V), point to the migration of lineages originating in Iran to South Asia before and during the Neolithic period. With HV12 being one of the oldest HV subclades, our results support an origin of HV haplogroup in the region defned by Western Iran, Mesopotamia, and the South Caucasus, where the highest prevalence of HV has been found. Te major subclade of R0, haplogroup HV has a pivotal position in human mitochondrial (mtDNA) phylogeny as the ancestral clade to haplogroup H-the most common clade in Europe1 and the best-defned mtDNA hap- logroup according to Phylotree2. -
Western Eurasian Ancestry in Modern Siberians Based on Mitogenomic Data
Derenko et al. BMC Evolutionary Biology 2014, 14:217 http://www.biomedcentral.com/1471-2148/14/217 RESEARCH ARTICLE Open Access Western Eurasian ancestry in modern Siberians based on mitogenomic data Miroslava Derenko1*, Boris Malyarchuk1, Galina Denisova1, Maria Perkova1, Andrey Litvinov1, Tomasz Grzybowski2, Irina Dambueva3, Katarzyna Skonieczna2, Urszula Rogalla2, Iosif Tsybovsky4 and Ilya Zakharov5 Abstract Background: Although the genetic heritage of aboriginal Siberians is mostly of eastern Asian ancestry, a substantial western Eurasian component is observed in the majority of northern Asian populations. Traces of at least two migrations into southern Siberia, one from eastern Europe and the other from western Asia/the Caucasus have been detected previously in mitochondrial gene pools of modern Siberians. Results: We report here 166 new complete mitochondrial DNA (mtDNA) sequences that allow us to expand and re-analyze the available data sets of western Eurasian lineages found in northern Asian populations, define the phylogenetic status of Siberian-specific subclades and search for links between mtDNA haplotypes/subclades and events of human migrations. From a survey of 158 western Eurasian mtDNA genomes found in Siberia we estimate that nearly 40% of them most likely have western Asian and another 29% European ancestry. It is striking that 65 of northern Asian mitogenomes, i.e. ~41%, fall into 19 branches and subclades which can be considered as Siberian-specific being found so far only in Siberian populations. From the coalescence analysis it is evident that the sequence divergence of Siberian-specific subclades was relatively small, corresponding to only 0.6-9.5 kya (using the complete mtDNA rate) and 1–6kya(codingregionrate).