Western Eurasian Ancestry in Modern Siberians Based on Mitogenomic Data
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Origin and Spread of Haplogroup N Clyde Winters Uthman Dan Fodio Institute Chicago, Illinois 60643 Email: [email protected]
ADVANCES IN BIORESEARCH, Vol 1 [1] JUNE 2010: 61 - 65 Society of Education, India RESEARCH ARTICLE http://www.soeagra.com ISSN 0976-4585 Origin and Spread of Haplogroup N Clyde Winters Uthman dan Fodio Institute Chicago, Illinois 60643 Email: [email protected] ABSTRACT Haplogroup N is a common genome in Africa. Here we use Archaeogenetics to discuss and explain the rise and spread of haplogroup N from the Great Lakes Region of East Africa to Nigeria and the Senegambia region. The paper uses craniometric and molecular evidence to explain how haplogroup N was probably taken to western Eurasia across the Straits of Gibratar by the Khoisan people who established the Aurignacian culture in Europe. KEY WORDS: Haplogroup N, Africa. ORIGIN AND SPREAD OF HAPLOGROUP N Controversy surrounds the existence of haplogroup N in Africa. Some researchers have suggested that haplogroups N probably originated in Africa [1,2]. Quintana-Murci et al [1] has suggested that haplogroup N probably originated in Ethiopia before the out of Africa migration. Other researchers believe that haplogroup N in Africa is the result of a back migration. The craniofacial and molecular evidence does not support this conclusion. The molecular evidence indicates that haplogroup N is found across Africa from East to West [3]. Archaeogenetics is the use of genetics, archaeology and linguistics to explain and discuss the origin and spread of homo sapiens. Using this methodology we can gain valuable insight into human history and population movements in prehistoric times. In this paper we will examine the spread of haplogroup N from Africa to Eurasia. -
Ancient Mitochondrial DNA from Pre-Historic
Grand Valley State University ScholarWorks@GVSU Masters Theses Graduate Research and Creative Practice 4-30-2011 Ancient Mitochondrial DNA From Pre-historic Southeastern Europe: The rP esence of East Eurasian Haplogroups Provides Evidence of Interactions with South Siberians Across the Central Asian Steppe Belt Jeremy R. Newton Grand Valley State University Follow this and additional works at: http://scholarworks.gvsu.edu/theses Part of the Cell Biology Commons, and the Molecular Biology Commons Recommended Citation Newton, Jeremy R., "Ancient Mitochondrial DNA From Pre-historic Southeastern Europe: The rP esence of East Eurasian Haplogroups Provides Evidence of Interactions with South Siberians Across the Central Asian Steppe Belt" (2011). Masters Theses. 5. http://scholarworks.gvsu.edu/theses/5 This Thesis is brought to you for free and open access by the Graduate Research and Creative Practice at ScholarWorks@GVSU. It has been accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@GVSU. For more information, please contact [email protected]. ANCIENT MITOCHONDRIAL DNA FROM PRE-HISTORIC SOUTH- EASTERN EUROPE: THE PRESENCE OF EAST EURASIAN HAPLOGROUPS PROVIDES EVIDENCE OF INTERACTIONS WITH SOUTH SIBERIANS ACROSS THE CENTRAL ASIAN STEPPE BELT A thesis submittal in partial fulfillment of the requirements for the degree of Master of Science By Jeremy R. Newton To Cell and Molecular Biology Department Grand Valley State University Allendale, MI April, 2011 “Not all those who wander are lost.” J.R.R. Tolkien iii ACKNOWLEDGEMENTS I would like to extend my sincerest thanks to every person who has motivated, directed, and encouraged me throughout this thesis project. I especially thank my graduate advisor, Dr. -
Mitochondrial DNA Haplogroups Observed in Iraqi Population
International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2014): 5.611 Mitochondrial DNA Haplogroups Observed in Iraqi Population Nihad A.M. Al-Rashedi1, Mohammed A. Jebor2, Talib AH Mousa3, Ali H. Al-Saadi4 1, 3 Science College- Muthanna University; 2, 4Science Colleges- Babylon University Abstract: Mitochondrial DNA hypervariable regions I and II of control region were sequenced from 100 random healthy unrelated individuals of three sequential generations belong to the Arab ethnic of Iraqi population. The aim of this study was to detection the mtDNA haplotypes and classifying it into mtDNA haplogroups will be useful in forensic genetics applications and determining the Iraqi population history. The sequence variation within D-loop control region were analyzed the composition of haplogroups that showed high frequency of haplogroups U, H, J,M, D,T and N (18%, 14%,10%, 9%, 7%, 7% and 7%, respectively, moderate frequency of haplogroups L and I was (4%) and B, A, R and K (2%), and low frequency of haplogroup pre-HV (1%) . This study was indicated lack of V, P, Y, X, O, Z, Q, G, E and C haplogroups. Keywords: mitochondrial DNA, haplogroups, DNA Sequencing, Arabic Iraqi population 1. Introduction find it http://mtmanager.yonsei.ac.kr that enables automatically estimate the most mtDNA haplogroups Iraq is located in the Middle East which bordered by Saudi according to control‐region mutation variations and scanning Arabia, Iran, Jordan, Kuwait and Turkey. The Iraqi of similar sequences from the database which includes over population consists of 75–80% Arabs and 20-25% others. -
Rare Human Mitochondrial HV Lineages Spread from the Near East
www.nature.com/scientificreports OPEN Rare human mitochondrial HV lineages spread from the Near East and Caucasus during post-LGM and Received: 11 January 2019 Accepted: 21 June 2019 Neolithic expansions Published: xx xx xxxx Michel Shamoon-Pour1, Mian Li2 & D. Andrew Merriwether1 Of particular signifcance to human population history in Eurasia are the migratory events that connected the Near East to Europe after the Last Glacial Maximum (LGM). Utilizing 315 HV*(xH,V) mitogenomes, including 27 contemporary lineages frst reported here, we found the genetic signatures for distinctive movements out of the Near East and South Caucasus both westward into Europe and eastward into South Asia. The parallel phylogeographies of rare, yet widely distributed HV*(xH,V) subclades reveal a connection between the Italian Peninsula and South Caucasus, resulting from at least two (post-LGM, Neolithic) waves of migration. Many of these subclades originated in a population ancestral to contemporary Armenians and Assyrians. One such subclade, HV1b-152, supports a postexilic, northern Mesopotamian origin for the Ashkenazi HV1b2 lineages. In agreement with ancient DNA fndings, our phylogenetic analysis of HV12 and HV14, the two exclusively Asian subclades of HV*(xH,V), point to the migration of lineages originating in Iran to South Asia before and during the Neolithic period. With HV12 being one of the oldest HV subclades, our results support an origin of HV haplogroup in the region defned by Western Iran, Mesopotamia, and the South Caucasus, where the highest prevalence of HV has been found. Te major subclade of R0, haplogroup HV has a pivotal position in human mitochondrial (mtDNA) phylogeny as the ancestral clade to haplogroup H-the most common clade in Europe1 and the best-defned mtDNA hap- logroup according to Phylotree2. -
Most of the Extant Mtdna Boundaries in South and Southwest Asia Were
BMC Genetics BioMed Central Research article Open Access Most of the extant mtDNA boundaries in South and Southwest Asia were likely shaped during the initial settlement of Eurasia by anatomically modern humans Mait Metspalu*1, Toomas Kivisild1, Ene Metspalu1, Jüri Parik1, Georgi Hudjashov1, Katrin Kaldma1, Piia Serk1, Monika Karmin1, DoronMBehar2, M Thomas P Gilbert6, Phillip Endicott7, Sarabjit Mastana4, Surinder S Papiha5, Karl Skorecki2, Antonio Torroni3 and Richard Villems1 Address: 1Institute of Molecular and Cell Biology, Tartu University, Tartu, Estonia, 2Bruce Rappaport Faculty of Medicine and Research Institute, Technion and Rambam Medical Center, Haifa, Israel, 3Dipartimento di Genetica e Microbiologia, Università di Pavia, Pavia, Italy, 4Department of Human Sciences, Loughborough University, Loughborough, United Kingdom, 5Department of Human Genetics, University of Newcastle-upon- Tyne, United Kingdom, 6Ecology and Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA and 7Henry Wellcome Ancient Biomolecules Centre, Department of Zoology, University of Oxford, Oxford OX1 3PS,United Kingdom Email: Mait Metspalu* - [email protected]; Toomas Kivisild - [email protected]; Ene Metspalu - [email protected]; Jüri Parik - [email protected]; Georgi Hudjashov - [email protected]; Katrin Kaldma - [email protected]; Piia Serk - [email protected]; Monika Karmin - [email protected]; Doron M Behar - [email protected]; M Thomas P Gilbert - [email protected]; Phillip Endicott - [email protected]; Sarabjit Mastana - [email protected]; Surinder S Papiha - [email protected]; Karl Skorecki - [email protected]; Antonio Torroni - [email protected]; Richard Villems - [email protected] * Corresponding author Published: 31 August 2004 Received: 07 May 2004 Accepted: 31 August 2004 BMC Genetics 2004, 5:26 doi:10.1186/1471-2156-5-26 This article is available from: http://www.biomedcentral.com/1471-2156/5/26 © 2004 Metspalu et al; licensee BioMed Central Ltd. -
Next Generation Sequencing of DNA Extracted from Mummified Tissue
Next generation sequencing of DNA extracted from mummified tissue Dissertation der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Rabab Khairat Ibrahim Abd Elhay aus Tanta, Ägypten Tübingen 2013 Tag der mündlichen Qualifikation: 06.08.2013 Dekan: Prof. Dr. Wolfgang Rosenstiel 1. Berichterstatter: Prof. Dr. rer. nat. h. c. N. Blin 2. Berichterstatter: Prof. Dr. rer. nat. J. Tomiuk بسم الله الرحمن الرحيم الحمد لله الذي هدانا لهذا وما ك"نا لنهتدي لول أن هدانا الله صدق الله العظيم [العراف:43] In the name of Allah, the Beneficent, the Merciful The praise to Allah, Who hath guided us to this. We could not truly have been led aright if Allah had not guided us. God Almighty has spoken the truth [Surah Al-Araf: 43] To My beloved parents, my sweetheart sisters and their families my beloved country Egypt Acknowledgment First of all, I would like to thank God for his help and guidance to finish this work in satisfactory way, and for everything that i had. At the end, I would pray to him to guide and bless my way all the time. I am nothing without your guidance my Allah!! I would like to express my deep gratitude to my supervisors Prof. Dr. Nikolaus Blin and PD. Dr. Carsten Pusch for their guidance, support and that they gave me such a great chance to be a part of their team and all the possibilities for evolving as a junior scientist. A special gratitude i give to my supervisor PD. -
Ancient DNA Suggests the Leading Role Played by Men in the Neolithic Dissemination
Ancient DNA suggests the leading role played by men in the Neolithic dissemination Marie Lacana,b,1, Christine Keyserb, François-Xavier Ricauta, Nicolas Brucatoc, Josep Tarrúsd, Angel Boschd, Jean Guilainee, Eric Crubézya, and Bertrand Ludesb aLaboratoire d’Anthropologie Moléculaire et Imagerie de Synthèse, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5288, 31073 Toulouse, France; bLaboratoire d’Anthropologie Moléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5288, Institute of Legal Medicine, University of Strasbourg, 67085 Strasbourg, France; cLanguage and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD, Nijmegen, The Netherlands; dMuseu Arqueològic Comarcal de Banyoles, 17820 Catalonia, Spain; and eCollège de France, Centre de Recherche sur la Préhistoire et la Protohistoire de la Méditerranée, École des Hautes Etudes en Sciences Sociales, 31000 Toulouse, France Edited by Ofer Bar-Yosef, Harvard University, Cambridge, MA, and approved September 29, 2011 (received for review August 9, 2011) The impact of the Neolithic dispersal on the western European with the Linear Pottery Culture, a Neolithic culture found in the populations is subject to continuing debate. To trace and date central European plains (2), and of 22 men buried in a late genetic lineages potentially brought during this transition and so Neolithic French necropolis (6) permitted data to be obtained understand the origin of the gene pool of current populations, we on the paternal lineages existing before the Cooper and Bronze studied DNA extracted from human remains excavated in a Span- age migrations. Interestingly, they all revealed the importance of ish funeral cave dating from the beginning of the fifth millennium the G2a haplogroup, which is rare in modern European pop- B.C. -
Mitochondrial DNA in Ancient Human Populations of Europe
Mitochondrial DNA in Ancient Human Populations of Europe Clio Der Sarkissian Australian Centre for Ancient DNA Ecology and Evolutionary Biology School of Earth and Environmental Sciences The University of Adelaide South Australia A thesis submitted for the degree of Doctor of Philosophy at The University of Adelaide July 2011 TABLE OF CONTENTS Abstract .................................................................................................... 10 Thesis declaration .................................................................................... 11 Acknowledgments ................................................................................... 12 General Introduction .............................................................................. 14 RECONSTRUCTING PAST HUMAN POPULATION HISTORY USING MODERN MITOCHONDRIAL DNA .................................................................... 15 Mitochondrial DNA: presentation ........................................................................ 15 Studying mitochondrial variation ......................................................................... 16 Genetic variation ........................................................................................ 16 Phylogenetics and phylogeography ........................................................... 16 Dating using molecular data, and its limits ............................................... 17 Population genetics .................................................................................... 19 The coalescent -
Ancient Human Mitochondrial Genomes from Bronze Age
www.nature.com/scientificreports OPEN Ancient human mitochondrial genomes from Bronze Age Bulgaria: new insights into the Received: 26 July 2018 Accepted: 20 March 2019 genetic history of Thracians Published: xx xx xxxx Alessandra Modi1, Desislava Nesheva2, Stefania Sarno3, Stefania Vai 1, Sena Karachanak- Yankova2, Donata Luiselli4, Elena Pilli1, Martina Lari1, Chiara Vergata1, Yordan Yordanov5, Diana Dimitrova6, Petar Kalcev7, Rada Staneva2, Olga Antonova2, Savina Hadjidekova2, Angel Galabov8, Draga Toncheva2 & David Caramelli1 One of the best documented Indo-European civilizations that inhabited Bulgaria is the Thracians, who lasted for more than fve millennia and whose origin and relationships with other past and present- day populations are debated among researchers. Here we report 25 new complete mitochondrial genomes of ancient individuals coming from three necropolises located in diferent regions of Bulgaria – Shekerdja mogila, Gabrova mogila and Bereketska mogila – dated to II-III millennium BC. The identifed mtDNA haplogroup composition refects the mitochondrial variability of Western Eurasia. In particular, within the ancient Eurasian genetic landscape, Thracians locate in an intermediate position between Early Neolithic farmers and Late Neolithic-Bronze Age steppe pastoralists, supporting the scenario that the Balkan region has been a link between Eastern Europe and the Mediterranean since the prehistoric time. Spatial Principal Component Analysis (sPCA) performed on Thracian and modern mtDNA sequences, confrms the pattern highlighted on ancient populations, overall indicating that the maternal gene pool of Thracians refects their central geographical position at the gateway of Europe. Bulgaria is situated in the eastern part of the Balkan Peninsula, at the connection point between Southeastern Europe, Eurasian steppe, Anatolia and the Aegean islands. -
Haplogroup I1 (Y-DNA) Facts About Genetics Y-DNA Haplogroups Haplogroup E1b1b Haplogroup G2a
3/13/2016 10:11 AM http://www.eupedia.com/europe/Haplogroup_I1_Y-DNA.shtml DNA Tutorials Eupedia Home > Genetics > Haplogroups (home) > Haplogroup I1 Video Tutorials @ DNA Haplogroup I1 (Y-DNA) Facts about Genetics Y-DNA haplogroups Haplogroup E1b1b Haplogroup G2a Haplogroup I1 Haplogroup I2 Haplogroup J1 Haplogroup J2 Contents Haplogroup N1c Haplogroup Q 1. Geographic distribution Author: Maciamo Haplogroup R1a Last update February 2015 (updated phylogeny). Haplogroup R1b 2. Origins & History Haplogroup T 2.1 How did I1 become Nordic? Famous Y-DNA 2.2 How did I1 become Germanic? Y-DNA by country 2.3 I1 in Finland 2.4 Germanic migrations Y-DNA Maps MtDNA haplogroups 3. Subclades & Haplotypes Haplogroup H 3.1 Grouping by STR Haplogroup HV 3.2 SNP Analysis Haplogroup I 4. Famous I1 individuals Haplogroup J Haplogroup K Haplogroup T Haplogroup U2 Haplogroup U3 Haplogroup U4 Geographic distribution Haplogroup U5 Haplogroup U6 Haplogroup I1 is the most common I subclade in northern Europe. It is found mostly in Scandinavia and Finland, where it typically represent over 35% of the male Y-chromosomes. Associated with the Norse ethnicity, I1 is found in all places Haplogroup V invaded by ancient Germanic tribes and the Vikings. Other parts of Europe speaking Germanic languages come next in Haplogroup W frequency. Germany, Austria, the Low Countries, England and the Scottish Lowlands all have between 10% and 20% of I1 Haplogroup X lineages. MtDNA by country Distribution of haplogroup I1 in Europe MtDNA Maps Diseases linked to mtDNA Regional history -
New Light on Human Prehistory in the Arabo-Persian Gulf Oasis Author(S): Jeffrey I
New Light on Human Prehistory in the Arabo-Persian Gulf Oasis Author(s): Jeffrey I. Rose Reviewed work(s): Source: Current Anthropology, Vol. 51, No. 6 (December 2010), pp. 849-883 Published by: The University of Chicago Press on behalf of Wenner-Gren Foundation for Anthropological Research Stable URL: http://www.jstor.org/stable/10.1086/657397 . Accessed: 13/07/2012 10:43 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and Wenner-Gren Foundation for Anthropological Research are collaborating with JSTOR to digitize, preserve and extend access to Current Anthropology. http://www.jstor.org Current Anthropology Volume 51, Number 6, December 2010 849 New Light on Human Prehistory in the Arabo-Persian Gulf Oasis by Jeffrey I. Rose The emerging picture of prehistoric Arabia suggests that early modern humans were able to survive periodic hyperarid oscillations by contracting into environmental refugia around the coastal margins of the peninsula. This paper reviews new paleoenvironmental, archaeological, and genetic evidence from the Arabian Peninsula and southern Iran to explore the possibility of a demographic refugium dubbed the “Gulf Oasis,” which is posited to have been a vitally significant zone for populations residing in southwest Asia during the Late Pleistocene and Early Holocene. -
Ancient DNA Reveals Male Diffusion Through the Neolithic Mediterranean Route
Ancient DNA reveals male diffusion through the Neolithic Mediterranean route Marie Lacana,b,1, Christine Keysera,b, François-Xavier Ricauta, Nicolas Brucatoa, Francis Duranthona, Jean Guilainec, Eric Crubézya, and Bertrand Ludesa,b aLaboratoire d’Anthropologie Moléculaire et Imagerie de Synthèse, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5288, 31073 Toulouse, France; bLaboratoire d’Anthropologie Moléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5288, Institute of Legal Medicine, University of Strasbourg, 67085 Strasbourg, France; and cCentre de Recherche sur la Préhistoire et la Protohistoire de la Méditerranée, École des Hautes Etudes en Sciences Sociales, 31500 Toulouse, France Edited by Colin Renfrew, University of Cambridge, Cambridge, United Kingdom, and approved May 2, 2011 (received for review January 19, 2011) The Neolithic is a key period in the history of the European ular polymorphism associated with lactase persistence (i.e., ability to settlement. Although archaeological and present-day genetic data digest raw milk at adulthood) probably carried in western Europe suggest several hypotheses regarding the human migration with the Linearbandkeramic culture during the Neolithic (15). patterns at this period, validation of these hypotheses with the use of ancient genetic data has been limited. In this context, we Results studied DNA extracted from 53 individuals buried in a necropolis Necropolis Recruitment. Partial autosomal profiles were obtained used by a French local community 5,000 y ago. The relatively good for 24 of the 53 specimens under study (Table S1). The amelo- DNA preservation of the samples allowed us to obtain autosomal, genin locus indicates that 22 individuals were male and two were fi Y-chromosomal, and/or mtDNA data for 29 of the 53 samples female (subjects 573 and 614).