Comparative Surface and Molecular Investigations of the Sandfish’S Epidermis (Squamata: Scincidae: Scincus Scincus )“

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Surface and Molecular Investigations of the Sandfish’S Epidermis (Squamata: Scincidae: Scincus Scincus )“ “Comparative surface and molecular investigations of the sandfish’s epidermis (Squamata: Scincidae: Scincus scincus )“ Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Biologe Konrad Staudt aus Erlangen Berichter: Prof. Dr. techn. Werner Baumgartner Prof. Dr. rer. nat. Wolfgang Böhme Tag der mündlichen Prüfung: 09.07.2012 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. „Var försiktig med vad du önskar, för det kan hända att du får det “ Content Content Abstract ............................................................................................................................... 7 1. Introduction ............................................................................................................ 9 1.1 Comparative taxonomy of Scincus scincus ...................................................................................... 9 1.2 Skin properties of Scincus scincus ................................................................................................... 10 1.4 The epidermis of Scincus scincus .................................................................................................... 12 1.3 Biomimetic aim ................................................................................................................................ 15 1.5 Aims of the thesis ............................................................................................................................. 16 2. Materials and Methods ........................................................................................... 17 2.1 Materials .......................................................................................................................................... 17 2.1.1 Chemicals and enzymes ................................................................................................................... 17 2.1.2 Devices ............................................................................................................................................. 20 2.1.3 Kits ................................................................................................................................................... 21 2.1.4 Buffers and solutions ....................................................................................................................... 21 2.1.5 Primers ............................................................................................................................................. 25 2.1.6 Animals and skin samples ................................................................................................................ 26 2.2 Surface investigations ...................................................................................................................... 26 2.2.1 Comparative friction angle measurements ....................................................................................... 26 2.2.2 Scanning electron microscopy ......................................................................................................... 27 2.2.3 Atomic force microscopy ................................................................................................................. 28 2.2.4 Skin replicas ..................................................................................................................................... 28 2.2.5 Abrasion resistance .......................................................................................................................... 28 2.2.6 Other possible functions of dorsal serrations ................................................................................... 29 2.3 DNA analysis ................................................................................................................................... 29 2.3.1 General methods .............................................................................................................................. 30 2.3.2 Rapid amplification of cDNA ends (RACE) .................................................................................... 31 2.3.3 RNA hybridization ........................................................................................................................... 34 2.3.4 T4 RNA ligation .............................................................................................................................. 37 2.3.5 Amplification with semi-specific primers ........................................................................................ 39 2.3.6 Sequencing of a β-keratin coding gene fragment of Meroles anchietae .......................................... 43 2.4 Proteomics........................................................................................................................................ 43 2.4.1 General methods .............................................................................................................................. 43 2.4.2 Visualization of β-keratin proteins through specific antibodies ....................................................... 45 2.4.3 Visualization of glycoproteins ......................................................................................................... 45 2.4.4 Comparative glycosylation intensities ............................................................................................. 45 2.4.5 Enzymatical deglycosylation ........................................................................................................... 46 2.4.6 Chemical deglycosylation through β-elimination ............................................................................ 47 2.5 Glycomics ........................................................................................................................................ 49 2.5.1 Prediction of glycosylation sites ...................................................................................................... 49 2.5.2 Silanisation ...................................................................................................................................... 49 III Content 2.5.3 Surface characteristics of immobilised glycans ............................................................................... 50 2.5.4 Quantification of linked glycans ...................................................................................................... 51 2.5.5 Glycan analysis ................................................................................................................................ 51 2.5.6 Monosaccharide classification ......................................................................................................... 53 2.5.7 Glycopeptide analysis ...................................................................................................................... 53 3. Results ..................................................................................................................... 54 3.1 Surface investigations ...................................................................................................................... 54 3.1.1 Comparative friction angle measurements ....................................................................................... 54 3.1.2 Topography investigation by scanning electron microscopy ........................................................... 55 3.1.3 Surface properties of resin replicas of Scincus scincus .................................................................... 55 3.1.4 Other possible functions of dorsal serrations ................................................................................... 56 3.2 DNA analysis ................................................................................................................................... 58 3.2.1 Rapid amplification of cDNA ends (RACE) .................................................................................... 58 3.2.2 RNA hybridization ........................................................................................................................... 58 3.2.3 T4 RNA ligation .............................................................................................................................. 59 3.2.4 Amplification with semi-specific primers ........................................................................................ 59 3.2.5 Sequencing of a β-keratin coding gene fragment of Meroles anchietae ......................................... 60 3.3 Proteomics........................................................................................................................................ 61 3.3.1 In-silico translation of β-keratin coding DNA sequences ................................................................ 61 3.3.2 Visualization of β-keratin proteins through specific antibodies ....................................................... 63 3.3.3 Comparative glycosylation intensities ............................................................................................. 63 3.3.4 Enzymatical deglycosylation ........................................................................................................... 66 3.3.5 Chemical deglycosylation through β-elimination ............................................................................ 67 3.4 Glycomics .......................................................................................................................................
Recommended publications
  • A Review of Southern Iraq Herpetofauna
    Vol. 3 (1): 61-71, 2019 A Review of Southern Iraq Herpetofauna Nadir A. Salman Mazaya University College, Dhi Qar, Iraq *Corresponding author: [email protected] Abstract: The present review discussed the species diversity of herpetofauna in southern Iraq due to their scientific and national interests. The review includes a historical record for the herpetofaunal studies in Iraq since the earlier investigations of the 1920s and 1950s along with the more recent taxonomic trials in the following years. It appeared that, little is known about Iraqi herpetofauna, and no comprehensive checklist has been done for these species. So far, 96 species of reptiles and amphibians have been recorded from Iraq, but only a relatively small proportion of them occur in the southern marshes. The marshes act as key habitat for globally endangered species and as a potential for as yet unexplored amphibian and reptile diversity. Despite the lack of precise localities, the tree frog Hyla savignyi, the marsh frog Pelophylax ridibunda and the green toad Bufo viridis are found in the marshes. Common reptiles in the marshes include the Caspian terrapin (Clemmys caspia), the soft-shell turtle (Trionyx euphraticus), the Euphrates softshell turtle (Rafetus euphraticus), geckos of the genus Hemidactylus, two species of skinks (Trachylepis aurata and Mabuya vittata) and a variety of snakes of the genus Coluber, the spotted sand boa (Eryx jaculus), tessellated water snake (Natrix tessellata) and Gray's desert racer (Coluber ventromaculatus). More recently, a new record for the keeled gecko, Cyrtopodion scabrum and the saw-scaled viper (Echis carinatus sochureki) was reported. The IUCN Red List includes six terrestrial and six aquatic amphibian species.
    [Show full text]
  • Trade-Offs Between Burrowing and Biting Force in Fossorial Scincid Lizards?
    applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Biological Journal of the Linnean Society, 2020, XX, 1–10. With 2 figures. Downloaded from https://academic.oup.com/biolinnean/advance-article-abstract/doi/10.1093/biolinnean/blaa031/5839769 by Museum National d'Histoire Naturelle user on 19 May 2020 Trade-offs between burrowing and biting force in fossorial scincid lizards? MARGOT LE GUILLOUX1, AURÉLIEN MIRALLES2, JOHN MEASEY3, BIEKE VANHOOYDONCK4, JAMES C. O’REILLY5, AURÉLIEN LOWIE6, and ANTHONY HERREL1,4,6,*, 1UMR 7179 C.N.R.S/M.N.H.N., Département Adaptations du Vivant, Bâtiment d’Anatomie Comparée, 55 rue Buffon, 75005, Paris, France 2Institut de Systématique, Evolution, Biodiversité, (UMR 7205 Muséum national d’Histoire naturelle, CNRS UPMC EPHE, Sorbonne Universités), CP30, 25 rue Cuvier 75005, Paris, France 3Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Private Bag X1, 7602 Matieland, Stellenbosch, South Africa 4Deparment of Biology, University of Antwerp, Universiteitsplein 1, B2610 Antwerpen, Belgium 5Department of Biomedical Sciences, Ohio University, Cleveland Campus, SPS-334C, Cleveland, 45701 Ohio, USA 6Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium Received 27 December 2019; revised 17 February 2020; accepted for publication 19 February 2020 Trade-offs are thought to be important in constraining evolutionary divergence as they may limit phenotypic diversification. The cranial system plays a vital role in many functions including defensive, territorial, predatory and feeding behaviours in addition to housing the brain and sensory systems. Consequently, the morphology of the cranial system is affected by a combination of selective pressures that may induce functional trade-offs.
    [Show full text]
  • Squamata: Lacertidae)
    UNIVERSITY OF CALIFORNIA SANTA CRUZ EVOLUTIONARY CONSEQUENCES OF CENOZOIC CLIMATE CHANGE ON AFRICAN LACERTID LIZARDS (SQUAMATA: LACERTIDAE) A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ECOLOGY AND EVOLUTIONARY BIOLOGY by Christy A. Hipsley September 2012 The Dissertation of Christy Hipsley is approved: _________________________________ Professor Barry Sinervo, Chair _________________________________ Professor Giacomo Bernardi _________________________________ Professor Johannes Müller _________________________________ Tyrus Miller Vice Provost and Dean of Graduate Studies Copyright © by Christy A. Hipsley 2012 TABLE OF CONTENTS LIST OF TABLES AND FIGURES …………………………………………………………. v ABSTRACT ……………………………………………………………………………… vii ACKNOWLEDGEMENTS ………………………………………………………………… ix INTRODUCTION ……………………………………………………………………..……. 1 CHAPTER 1. INTEGRATION OF BAYESIAN MOLECULAR CLOCK METHODS AND FOSSIL-BASED SOFT BOUNDS REVEALS EARLY CENOZOIC ORIGIN OF AFRICAN LACERTIDS LIZARDS…………………………………………………………………… 9 Abstract ………………………………………………………………………… 9 Background …………………………………………………………………….. 10 Methods ………………………………………………………………………… 11 Results ……………………………………………………….…………………. 13 Discussion………………………………………………………….………………16 CHAPTER 2. MORPHOLOGICAL CONVERGENCE IN ARID-DWELLING AFRICAN LACERTID LIZARDS DRIVEN BY ECOLOGICAL AND CLIMATIC FACTORS………………. 22 Abstract ………………………………………………………………………... 22 Introduction ……………………………………………………………………. 23 Materials and Methods ………………………………………………………… 26 Results ……………………………………………………………………..……
    [Show full text]
  • An Overview and Checklist of the Native and Alien Herpetofauna of the United Arab Emirates
    Herpetological Conservation and Biology 5(3):529–536. Herpetological Conservation and Biology Symposium at the 6th World Congress of Herpetology. AN OVERVIEW AND CHECKLIST OF THE NATIVE AND ALIEN HERPETOFAUNA OF THE UNITED ARAB EMIRATES 1 1 2 PRITPAL S. SOORAE , MYYAS AL QUARQAZ , AND ANDREW S. GARDNER 1Environment Agency-ABU DHABI, P.O. Box 45553, Abu Dhabi, United Arab Emirates, e-mail: [email protected] 2Natural Science and Public Health, College of Arts and Sciences, Zayed University, P.O. Box 4783, Abu Dhabi, United Arab Emirates Abstract.—This paper provides an updated checklist of the United Arab Emirates (UAE) native and alien herpetofauna. The UAE, while largely a desert country with a hyper-arid climate, also has a range of more mesic habitats such as islands, mountains, and wadis. As such it has a diverse native herpetofauna of at least 72 species as follows: two amphibian species (Bufonidae), five marine turtle species (Cheloniidae [four] and Dermochelyidae [one]), 42 lizard species (Agamidae [six], Gekkonidae [19], Lacertidae [10], Scincidae [six], and Varanidae [one]), a single amphisbaenian, and 22 snake species (Leptotyphlopidae [one], Boidae [one], Colubridae [seven], Hydrophiidae [nine], and Viperidae [four]). Additionally, we recorded at least eight alien species, although only the Brahminy Blind Snake (Ramphotyplops braminus) appears to have become naturalized. We also list legislation and international conventions pertinent to the herpetofauna. Key Words.— amphibians; checklist; invasive; reptiles; United Arab Emirates INTRODUCTION (Arnold 1984, 1986; Balletto et al. 1985; Gasperetti 1988; Leviton et al. 1992; Gasperetti et al. 1993; Egan The United Arab Emirates (UAE) is a federation of 2007).
    [Show full text]
  • Evolution of the Iguanine Lizards (Sauria, Iguanidae) As Determined by Osteological and Myological Characters David F
    Brigham Young University Science Bulletin, Biological Series Volume 12 | Number 3 Article 1 1-1971 Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters David F. Avery Department of Biology, Southern Connecticut State College, New Haven, Connecticut Wilmer W. Tanner Department of Zoology, Brigham Young University, Provo, Utah Follow this and additional works at: https://scholarsarchive.byu.edu/byuscib Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Avery, David F. and Tanner, Wilmer W. (1971) "Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters," Brigham Young University Science Bulletin, Biological Series: Vol. 12 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/byuscib/vol12/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Brigham Young University Science Bulletin, Biological Series by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. S-^' Brigham Young University f?!AR12j97d Science Bulletin \ EVOLUTION OF THE IGUANINE LIZARDS (SAURIA, IGUANIDAE) AS DETERMINED BY OSTEOLOGICAL AND MYOLOGICAL CHARACTERS by David F. Avery and Wilmer W. Tanner BIOLOGICAL SERIES — VOLUME Xil, NUMBER 3 JANUARY 1971 Brigham Young University Science Bulletin
    [Show full text]
  • Supp Table 1.Pdf
    Supplementary Table S1. GC levels of rRNA from the five classes of vertebrates (a). Mammals Birds Reptiles Amphibians GC GC GC GC M10098 Homo sapiens 56.6 AF173637 Larus glaucoides 56.2 AY217906 Emoia jakati 55.9 EF376089 Hypsiboas raniceps 55.3 AJ311673 Equus caballus 56.2 AF173621 Anthracothorax nigricollis 56.1 AY217894 Acontias percivali 55.4 X04025 Xenopus laevis 53.8 AJ31167 Erinaceus europaeus 56.1 AF173619 Apus affinus 56.1 AY217900 Feylinia grandisquamis 54.7 EF364368 Atelopus flavescens 53.8 DQ222453 Bos taurus 56.1 AF173618 Gallirex porphyreolophus 56.1 AJ311672 Crocodylus niloticus 54.6 AF169014 Hyla chrysoscelis 53.3 X00686 Mus musculus 56.0 AF173617 Urocolius macrourus 56.1 AY217915 Sphenomorphus simus 54.4 AB239574 Cynops pyrrhogaster 53.1 AJ311674 Dasypus novemcinctus 56.0 AF173620 Bubo virginianus 56.0 AY217904 Gehyra mutilata 54.3 AF542043 Rana amurensis 52.8 AJ311679 Ornithorhynchus anatinus 55.9 AF173622 Chordeiles acutipennis 56.0 AY859624 Anolis carolinensis 54.2 AJ279506 Ranodon sibiricus 52.0 M11188 Rattus norvegicus 55.8 AF173636 Ciconia nigra 56.0 AY217939 Eumeces inexpectatus 54.2 DQ235090 Cricetulus griseus 55.7 AF173630 Columba livia 56.0 AY21793 Scelotes kasneri 54.2 AJ311676 Monodelphis domestica 55.7 AF173625 Coracias caudata 56.0 AY217924 Scincus scincus 54.2 AJ311677 Didelphis virginiana 55.7 AF173629 Melopsittacus undulatus 56.0 AY217911 Mabuya hoeschi 54.2 AJ311678 Vombatus ursinus 55.6 AF173633 Neophron percnopterus 56.0 AY217909 Eugongylus rufescens 54.2 X06778 Oryctolagus cuniculus 55.3 AF173613 Ortalis
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • Redalyc.Comparative Studies of Supraocular Lepidosis in Squamata
    Multequina ISSN: 0327-9375 [email protected] Instituto Argentino de Investigaciones de las Zonas Áridas Argentina Cei, José M. Comparative studies of supraocular lepidosis in squamata (reptilia) and its relationships with an evolutionary taxonomy Multequina, núm. 16, 2007, pp. 1-52 Instituto Argentino de Investigaciones de las Zonas Áridas Mendoza, Argentina Disponible en: http://www.redalyc.org/articulo.oa?id=42801601 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto ISSN 0327-9375 COMPARATIVE STUDIES OF SUPRAOCULAR LEPIDOSIS IN SQUAMATA (REPTILIA) AND ITS RELATIONSHIPS WITH AN EVOLUTIONARY TAXONOMY ESTUDIOS COMPARATIVOS DE LA LEPIDOSIS SUPRA-OCULAR EN SQUAMATA (REPTILIA) Y SU RELACIÓN CON LA TAXONOMÍA EVOLUCIONARIA JOSÉ M. CEI † las subfamilias Leiosaurinae y RESUMEN Enyaliinae. Siempre en Iguania Observaciones morfológicas Pleurodonta se evidencian ejemplos previas sobre un gran número de como los inconfundibles patrones de especies permiten establecer una escamas supraoculares de correspondencia entre la Opluridae, Leucocephalidae, peculiaridad de los patrones Polychrotidae, Tropiduridae. A nivel sistemáticos de las escamas específico la interdependencia en supraoculares de Squamata y la Iguanidae de los géneros Iguana, posición evolutiva de cada taxón Cercosaura, Brachylophus,
    [Show full text]
  • Evolution of Limblessness
    Evolution of Limblessness Evolution of Limblessness Early on in life, many people learn that lizards have four limbs whereas snakes have none. This dichotomy not only is inaccurate but also hides an exciting story of repeated evolution that is only now beginning to be understood. In fact, snakes represent only one of many natural evolutionary experiments in lizard limblessness. A similar story is also played out, though to a much smaller extent, in amphibians. The repeated evolution of snakelike tetrapods is one of the most striking examples of parallel evolution in animals. This entry discusses the evolution of limblessness in both reptiles and amphibians, with an emphasis on the living reptiles. Reptiles Based on current evidence (Wiens, Brandley, and Reeder 2006), an elongate, limb-reduced, snakelike morphology has evolved at least twenty-five times in squamates (the group containing lizards and snakes), with snakes representing only one such origin. These origins are scattered across the evolutionary tree of squamates, but they seem especially frequent in certain families. In particular, the skinks (Scincidae) contain at least half of all known origins of snakelike squamates. But many more origins within the skink family will likely be revealed as the branches of their evolutionary tree are fully resolved, given that many genera contain a range of body forms (from fully limbed to limbless) and may include multiple origins of snakelike morphology as yet unknown. These multiple origins of snakelike morphology are superficially similar in having reduced limbs and an elongate body form, but many are surprisingly different in their ecology and morphology. This multitude of snakelike lineages can be divided into two ecomorphs (a are surprisingly different in their ecology and morphology.
    [Show full text]
  • Reptiles and Amphibians of the Goegap Nature Reserve
    their time underground in burrows. These amphibians often leave their burrows after heavy rains that are seldom. Reptiles And Amphibians Of The There are reptiles included in this report, which don’t occur here in Goegap but at the Augrabies Falls NP. So you can find here also the Nile monitor and the flat liz- Goegap Nature Reserve ard. Measuring reptiles By Tanja Mahnkopf In tortoises and terrapins the length is measured at the shell. Straight along the mid- line of the carapace. The SV-Length is the length of head and body (Snout to Vent). In lizards it easier to look for this length because their tail may be a regenerated one Introduction and these are often shorter than the original one. The length that is mentioned for the The reptiles are an ancient class on earth. The earliest reptile fossils are about 315 species in this report is the average to the maximum length. For the snakes I tried to million years old. During the aeons of time they evolved a great diversity of extinct give the total length because it is often impossible to say where the tail begins and and living reptiles. The dinosaurs and their relatives dominated the earth 150 million the body ends without holding the snake. But there was not for every snake a total years ago. Our living reptiles are remnants of that period or from a period after the length available. dinosaurs were extinct. Except of the chameleons (there are only two) you can find all reptiles in the appen- Obviously it looks like reptiles are not as successful as mammals.
    [Show full text]
  • LIVE REPTILE PRICE LIST JULY 2012 Call 07850 054697 Or E-Mail [email protected]
    LIVE REPTILE PRICE LIST JULY 2012 Call 07850 054697 or E-mail [email protected] ALL PRICES EXCLUDE VAT & SHIPPING FREE SHIPPING ON ALL ORDERS OVER £300 TO MAINLAND UK Here at Trade Exotics we only supply the best quality captive bred animals. We do not import any wild caught species and many of our animals are bred right here in our own facility. We specialise in all the most popular pet reptiles including Leopard Geckos, Bearded Dragons, Corn Snakes and Royal Pythons. If you breed your own reptiles and are interested in supplying us your surplus, please let us know what you have and we would be interested to hear from you. SNAKES Amelanistic Corn Snake Pantherophis guttatus guttatus A young breeder male surplus to requirements. Adult Male: £45.00 Kenyan Sand Boa (66% Possible Het Albino) Gongylophis colubrinus loveridgei Produced from breeding a pair of het albinos together. These guys can provide a cheap alternative to breeders with low budgets and want to produce albinos. CB 2012: £35.00 Spider Royal Python Python regius A beautiful and more affordable Royal Python morph, we have just the one female 1 Only left. 2012 Female: £200.00 2012 Males: £300.00 Bumblebee Royal Python Python regius COMING SOON A stunning combination of the Spider and Pastel morphs. 2012 Females: £350.00 Royal Python Python regius COMING SOON Captive bred normal Royal Pythons. CB2012: £35.00 100% Het Albino Royal Python COMING SOON Python regius Males: £45.00 Captive bred normal Royal Pythons. Females: £97.50 LEOPARD GECKOS The majority of the Leopard Geckos on our list are bred by ourselves.
    [Show full text]
  • Microsoft Word
    LIST OF EXTANT INGROUP TAXA: Agamidae: Agama agama, Pogona vitticeps, Calotes emma, Physignathus cocincinus. Chamaeleonidae: Brookesia brygooi, Chamaeleo calyptratus. Corytophanidae: Basiliscus basiliscus, Corytophanes cristatus. Crotaphytidae: Crotaphytus collaris, Gambelia wislizenii. Hoplocercidae: Enyalioides laticeps, Morunasaurus annularis. Iguanidae: Brachylophus fasciatus, Dipsosaurus dorsalis, Sauromalus ater. Leiolepidae: Leiolepis rubritaeniata, Uromastyx hardwicki. Leiosauridae: Leiosaurus catamarcensis, Pristidactylus torquatus, Urostrophus vautieri. Liolaemidae: Liolaemus elongatus, Phymaturus palluma. Opluridae: Chalarodon madagascariensis, Oplurus cyclurus. Phrynosomatidae: Petrosaurus mearnsi, Phrynosoma platyrhinos, Sceloporus variabilis, Uma scoparia, Uta stansburiana. Polychrotidae: Anolis carolinensis, Polychrus marmoratus. Tropiduridae: Leiocephalus barahonensis, Stenocercus guentheri, Tropidurus plica, Uranoscodon superciliosus. Anguidae: Ophisaurus apodus, Anniella pulchra, Diploglossus enneagrammus, Elgaria multicarinata. Cordylidae: Chamaesaura anguina, Cordylus mossambicus. Dibamidae: Anelytropsis papillosus, Dibamus novaeguineae. Eublepharidae: Aeluroscalobates felinus, Coleonyx variegatus, Eublepharis macularius. "Gekkonidae": Teratoscincus przewalski, Diplodactylus ciliaris, Phyllurus cornutus, Rhacodactylus auriculatus, Gekko gecko, Phelsuma lineata. Gonatodes albogularis. Gerrhosauridae: Cordylosaurus subtesselatus, Zonosaurus ornatus. Gymnophthalmidae: Colobosaura modesta, Pholidobolus montium. Helodermatidae:
    [Show full text]