Trade-Offs Between Burrowing and Biting Force in Fossorial Scincid Lizards?

Total Page:16

File Type:pdf, Size:1020Kb

Trade-Offs Between Burrowing and Biting Force in Fossorial Scincid Lizards? applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Biological Journal of the Linnean Society, 2020, XX, 1–10. With 2 figures. Downloaded from https://academic.oup.com/biolinnean/advance-article-abstract/doi/10.1093/biolinnean/blaa031/5839769 by Museum National d'Histoire Naturelle user on 19 May 2020 Trade-offs between burrowing and biting force in fossorial scincid lizards? MARGOT LE GUILLOUX1, AURÉLIEN MIRALLES2, JOHN MEASEY3, BIEKE VANHOOYDONCK4, JAMES C. O’REILLY5, AURÉLIEN LOWIE6, and ANTHONY HERREL1,4,6,*, 1UMR 7179 C.N.R.S/M.N.H.N., Département Adaptations du Vivant, Bâtiment d’Anatomie Comparée, 55 rue Buffon, 75005, Paris, France 2Institut de Systématique, Evolution, Biodiversité, (UMR 7205 Muséum national d’Histoire naturelle, CNRS UPMC EPHE, Sorbonne Universités), CP30, 25 rue Cuvier 75005, Paris, France 3Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Private Bag X1, 7602 Matieland, Stellenbosch, South Africa 4Deparment of Biology, University of Antwerp, Universiteitsplein 1, B2610 Antwerpen, Belgium 5Department of Biomedical Sciences, Ohio University, Cleveland Campus, SPS-334C, Cleveland, 45701 Ohio, USA 6Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium Received 27 December 2019; revised 17 February 2020; accepted for publication 19 February 2020 Trade-offs are thought to be important in constraining evolutionary divergence as they may limit phenotypic diversification. The cranial system plays a vital role in many functions including defensive, territorial, predatory and feeding behaviours in addition to housing the brain and sensory systems. Consequently, the morphology of the cranial system is affected by a combination of selective pressures that may induce functional trade-offs. Limbless, head-first burrowers are thought to be constrained in their cranial morphology as narrow heads may provide a functional advantage for burrowing. However, having a wide and large head is likely beneficial in terms of bite performance. We used 15 skink species to test for the existence of trade-offs between maximal push and bite forces, and explored the patterns of covariation between external head and body morphology and performance. Our data show that there is no evidence of a trade-off between bite and burrowing in terms of maximal force. Species that generate high push forces also generate high bite forces. Our data also show that overall head size covaries with both performance traits. However, future studies exploring trade-offs between force and speed or the energetic cost of burrowing may reveal other trade-offs. ADDITIONAL KEYWORDS: covariation – cranial system – divergence – head-first burrowers – morphology – skink. INTRODUCTION anatomical structures (Arnold, 1992; Van Damme et al., 2002, 2003). Previous studies have further suggested The phenotype of an organism reflects the selective that trade-offs may in some cases limit phenotypic pressures exerted by activities that are essential variation by constraining evolutionary divergence to its survival and its reproduction (Arnold, 1993). (Vanhooydonck et al., 2001; Levinton & Allen, 2005; Sometimes, however, the functional demands exerted Konuma & Chiba, 2007; Herrel et al., 2009). The by different performance traits may result in trade- cranial system plays a vital role in many activities offs. Indeed, functional trade-offs arise when different including defensive, territorial, predatory and feeding functions exert conflicting pressures on the same behaviours in addition to housing and protecting the brain and major sensory organs (Andrews et al., 1987; *Corresponding author. E-mail: [email protected] Cooper & Vitt, 1993; Herrel et al., 2007; Kohlsdorf © 2020 The Linnean Society of London, Biological Journal of the Linnean Society, 2020, XX, 1–10 1 2 Burrowing and Biting in Scincid Lizards Downloaded from https://academic.oup.com/biolinnean/advance-article-abstract/doi/10.1093/biolinnean/blaa031/5839769 by Museum National d'Histoire Naturelle user on 19 May 2020 et al., 2008; Dumont et al., 2016). Consequently, the burrowing force. Consequently, trade-offs between these morphology of the cranial system is affected by these two performance traits, if present, are not mediated by combined selective pressures which may potentially direct functional conflict for the optimization of single induce functional trade-offs. functional trait. Rather, burrowers can be expected to The hypothetical trade-off between biting and have narrow heads for efficient soil penetration which borrowing performance is particularly interesting may come at a cost of bite force. in limbless burrowing animals. These organisms are Here, we test for the presence of a trade-off between obligate head-first burrowers and the evolution of maximal bite force and the maximal push force in a their morphology is thought to be constrained. Indeed, range of burrowing and leaf-litter dwelling skinks. because the energy required for burrowing increases Scincid lizards represent an ideal study system as this exponentially with body and head diameter (Navas family includes a variety of ecologies and morphologies et al., 2004), having a thin body and a narrow head with quadrupedal surface-dwelling species, epigeal may provide a functional advantage for burrowing. Yet, serpentiform species with partially reduced front- and/ this is likely detrimental in terms of bite performance or hindlimbs, burrowing completely limbless species, and (Verwaijen et al., 2002; Navas et al., 2004; Herrel & a plethora of intermediate forms (Pianka & Vitt, 2003; O’Reilly, 2006; Vanhooydonck et al., 2011; Baeckens Miralles et al., 2015; Wagner et al., 2018; Bergmann & et al., 2017; Hohl et al., 2017). Maximum bite force has Morinaga, 2019). At least 15 independent evolutions of a been suggested to limit the type and size of food an serpentiform body form have taken place within the group animal can eat (Herrel et al., 1999, 2001, 2008; Aguirre (Benesh & Withers, 2002; Miralles et al., 2012) allowing et al., 2003; McBrayer & Corbin, 2007; Edwards et al., for a robust framework to test for associations between 2013). Consequently, a cranial form optimized for soil life-style, performance and morphology. Consequently, penetration may compromise the types of food an we also explore the patterns of covariation between head animal can eat and vice versa (Andrews et al., 1987; and body morphology and the two performance traits Barros et al., 2011; Baeckens et al., 2017). studied here (bite force and push force). Burrowing is a complex behaviour that remains rather poorly understood in limbless head-first burrowing vertebrates (but see for example Gaymer (1971); Gans (1973); O’Reilly et al. (1997); Teodecki et al. MATERIALS AND METHODS (1998); Navas et al. (2004); De Schepper et al. (2005)). ANIMALS The maximal push force that an animal can generate is likely important as it may allow an animal to penetrate Morphological measurements were performed on 180 a greater variety of soil types, and thus expand its individuals and performance measurements were resource base in terms of potential habitat and food obtained for 171 individuals for bite forces and 159 for resources. As limbless species burrow by recruiting push forces across 14 different species (Table 1). Animals muscles along the long axis of the body (Rieppel, 1981; were sampled between 2000 and 2017. The specimens Navas et al., 2004; Vanhooydonck et al., 2011; Hohl were adults of often unknown sex. Data were collected in et al., 2017), the diameter and size of the body should situ in the field or in the lab for species that were obtained be related to the maximal push force it can generate. through the pet trade. An additional five individuals of However, to facilitate soil penetration the width of the the species Pygomeles braconnieri from the collections of head should rather be narrow as this optimizes the the National Museum of Natural History in Paris were pressure for a given force (e.g. Measey & Herrel, 2006; used for morphological measurements. Herrel & Measey, 2010; Barros et al., 2011). Moreover, the speed by which it can penetrate the soil (and not only MORPHOMETRICS the force generated) is also likely a factor significantly contributing to the burrowing performance (Ducey Each individual was weighed using an electronic et al., 1993; Teodecki et al., 1998; Vanhooydonck et al., balance (Ohaus, ± 0.1 g). Head length, head width, 2011). Although few quantitative data exist, a previous head depth and lower jaw length were measured using study suggested the presence of a trade-off between bite a digital caliper (Mitutoyo, ± 0.01 mm) as described force and burrowing speed in a limbless skink, Acontias previously (Herrel and Holanova, 2008). The snout- percevali, mediated by the conflicting demands on vent length was measured by stretching the animals head dimensions (Vanhooydonck et al., 2011). However, along a ruler (± 1 mm). whether this is more generally the case and whether trade-offs also exist between bite force and push force remains unknown. As burrowing force is dependent MAXIMAL PUSH FORCE on the axial musculature, different anatomical traits Maximal push forces were measured in the field or in the are responsible for the generation of bite force vs. lab following the protocol described in Vanhooydonck © 2020 The Linnean Society of London, Biological Journal of the Linnean Society, 2020, XX, 1–10 © 2020 The Linnean Society of London, The Linnean
Recommended publications
  • A Review of Southern Iraq Herpetofauna
    Vol. 3 (1): 61-71, 2019 A Review of Southern Iraq Herpetofauna Nadir A. Salman Mazaya University College, Dhi Qar, Iraq *Corresponding author: [email protected] Abstract: The present review discussed the species diversity of herpetofauna in southern Iraq due to their scientific and national interests. The review includes a historical record for the herpetofaunal studies in Iraq since the earlier investigations of the 1920s and 1950s along with the more recent taxonomic trials in the following years. It appeared that, little is known about Iraqi herpetofauna, and no comprehensive checklist has been done for these species. So far, 96 species of reptiles and amphibians have been recorded from Iraq, but only a relatively small proportion of them occur in the southern marshes. The marshes act as key habitat for globally endangered species and as a potential for as yet unexplored amphibian and reptile diversity. Despite the lack of precise localities, the tree frog Hyla savignyi, the marsh frog Pelophylax ridibunda and the green toad Bufo viridis are found in the marshes. Common reptiles in the marshes include the Caspian terrapin (Clemmys caspia), the soft-shell turtle (Trionyx euphraticus), the Euphrates softshell turtle (Rafetus euphraticus), geckos of the genus Hemidactylus, two species of skinks (Trachylepis aurata and Mabuya vittata) and a variety of snakes of the genus Coluber, the spotted sand boa (Eryx jaculus), tessellated water snake (Natrix tessellata) and Gray's desert racer (Coluber ventromaculatus). More recently, a new record for the keeled gecko, Cyrtopodion scabrum and the saw-scaled viper (Echis carinatus sochureki) was reported. The IUCN Red List includes six terrestrial and six aquatic amphibian species.
    [Show full text]
  • Freshwater Fishes
    WESTERN CAPE PROVINCE state oF BIODIVERSITY 2007 TABLE OF CONTENTS Chapter 1 Introduction 2 Chapter 2 Methods 17 Chapter 3 Freshwater fishes 18 Chapter 4 Amphibians 36 Chapter 5 Reptiles 55 Chapter 6 Mammals 75 Chapter 7 Avifauna 89 Chapter 8 Flora & Vegetation 112 Chapter 9 Land and Protected Areas 139 Chapter 10 Status of River Health 159 Cover page photographs by Andrew Turner (CapeNature), Roger Bills (SAIAB) & Wicus Leeuwner. ISBN 978-0-620-39289-1 SCIENTIFIC SERVICES 2 Western Cape Province State of Biodiversity 2007 CHAPTER 1 INTRODUCTION Andrew Turner [email protected] 1 “We live at a historic moment, a time in which the world’s biological diversity is being rapidly destroyed. The present geological period has more species than any other, yet the current rate of extinction of species is greater now than at any time in the past. Ecosystems and communities are being degraded and destroyed, and species are being driven to extinction. The species that persist are losing genetic variation as the number of individuals in populations shrinks, unique populations and subspecies are destroyed, and remaining populations become increasingly isolated from one another. The cause of this loss of biological diversity at all levels is the range of human activity that alters and destroys natural habitats to suit human needs.” (Primack, 2002). CapeNature launched its State of Biodiversity Programme (SoBP) to assess and monitor the state of biodiversity in the Western Cape in 1999. This programme delivered its first report in 2002 and these reports are updated every five years. The current report (2007) reports on the changes to the state of vertebrate biodiversity and land under conservation usage.
    [Show full text]
  • An Overview and Checklist of the Native and Alien Herpetofauna of the United Arab Emirates
    Herpetological Conservation and Biology 5(3):529–536. Herpetological Conservation and Biology Symposium at the 6th World Congress of Herpetology. AN OVERVIEW AND CHECKLIST OF THE NATIVE AND ALIEN HERPETOFAUNA OF THE UNITED ARAB EMIRATES 1 1 2 PRITPAL S. SOORAE , MYYAS AL QUARQAZ , AND ANDREW S. GARDNER 1Environment Agency-ABU DHABI, P.O. Box 45553, Abu Dhabi, United Arab Emirates, e-mail: [email protected] 2Natural Science and Public Health, College of Arts and Sciences, Zayed University, P.O. Box 4783, Abu Dhabi, United Arab Emirates Abstract.—This paper provides an updated checklist of the United Arab Emirates (UAE) native and alien herpetofauna. The UAE, while largely a desert country with a hyper-arid climate, also has a range of more mesic habitats such as islands, mountains, and wadis. As such it has a diverse native herpetofauna of at least 72 species as follows: two amphibian species (Bufonidae), five marine turtle species (Cheloniidae [four] and Dermochelyidae [one]), 42 lizard species (Agamidae [six], Gekkonidae [19], Lacertidae [10], Scincidae [six], and Varanidae [one]), a single amphisbaenian, and 22 snake species (Leptotyphlopidae [one], Boidae [one], Colubridae [seven], Hydrophiidae [nine], and Viperidae [four]). Additionally, we recorded at least eight alien species, although only the Brahminy Blind Snake (Ramphotyplops braminus) appears to have become naturalized. We also list legislation and international conventions pertinent to the herpetofauna. Key Words.— amphibians; checklist; invasive; reptiles; United Arab Emirates INTRODUCTION (Arnold 1984, 1986; Balletto et al. 1985; Gasperetti 1988; Leviton et al. 1992; Gasperetti et al. 1993; Egan The United Arab Emirates (UAE) is a federation of 2007).
    [Show full text]
  • Evolution of the Iguanine Lizards (Sauria, Iguanidae) As Determined by Osteological and Myological Characters David F
    Brigham Young University Science Bulletin, Biological Series Volume 12 | Number 3 Article 1 1-1971 Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters David F. Avery Department of Biology, Southern Connecticut State College, New Haven, Connecticut Wilmer W. Tanner Department of Zoology, Brigham Young University, Provo, Utah Follow this and additional works at: https://scholarsarchive.byu.edu/byuscib Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Avery, David F. and Tanner, Wilmer W. (1971) "Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters," Brigham Young University Science Bulletin, Biological Series: Vol. 12 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/byuscib/vol12/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Brigham Young University Science Bulletin, Biological Series by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. S-^' Brigham Young University f?!AR12j97d Science Bulletin \ EVOLUTION OF THE IGUANINE LIZARDS (SAURIA, IGUANIDAE) AS DETERMINED BY OSTEOLOGICAL AND MYOLOGICAL CHARACTERS by David F. Avery and Wilmer W. Tanner BIOLOGICAL SERIES — VOLUME Xil, NUMBER 3 JANUARY 1971 Brigham Young University Science Bulletin
    [Show full text]
  • Evolution of Limblessness
    Evolution of Limblessness Evolution of Limblessness Early on in life, many people learn that lizards have four limbs whereas snakes have none. This dichotomy not only is inaccurate but also hides an exciting story of repeated evolution that is only now beginning to be understood. In fact, snakes represent only one of many natural evolutionary experiments in lizard limblessness. A similar story is also played out, though to a much smaller extent, in amphibians. The repeated evolution of snakelike tetrapods is one of the most striking examples of parallel evolution in animals. This entry discusses the evolution of limblessness in both reptiles and amphibians, with an emphasis on the living reptiles. Reptiles Based on current evidence (Wiens, Brandley, and Reeder 2006), an elongate, limb-reduced, snakelike morphology has evolved at least twenty-five times in squamates (the group containing lizards and snakes), with snakes representing only one such origin. These origins are scattered across the evolutionary tree of squamates, but they seem especially frequent in certain families. In particular, the skinks (Scincidae) contain at least half of all known origins of snakelike squamates. But many more origins within the skink family will likely be revealed as the branches of their evolutionary tree are fully resolved, given that many genera contain a range of body forms (from fully limbed to limbless) and may include multiple origins of snakelike morphology as yet unknown. These multiple origins of snakelike morphology are superficially similar in having reduced limbs and an elongate body form, but many are surprisingly different in their ecology and morphology. This multitude of snakelike lineages can be divided into two ecomorphs (a are surprisingly different in their ecology and morphology.
    [Show full text]
  • Evolution of the Iguanine Lizards (Sauria, Iguanidae) As Determined by Osteological and Myological Characters
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 1970-08-01 Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters David F. Avery Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Life Sciences Commons BYU ScholarsArchive Citation Avery, David F., "Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters" (1970). Theses and Dissertations. 7618. https://scholarsarchive.byu.edu/etd/7618 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. EVOLUTIONOF THE IGUA.NINELI'ZiUIDS (SAUR:U1., IGUANIDAE) .s.S DETEH.MTNEDBY OSTEOLOGICJJJAND MYOLOGIC.ALCHARA.C'l'Efi..S A Dissertation Presented to the Department of Zoology Brigham Yeung Uni ver·si ty Jn Pa.rtial Fillf.LLlment of the Eequ:Lr-ements fer the Dz~gree Doctor of Philosophy by David F. Avery August 197U This dissertation, by David F. Avery, is accepted in its present form by the Department of Zoology of Brigham Young University as satisfying the dissertation requirement for the degree of Doctor of Philosophy. 30 l'/_70 ()k ate Typed by Kathleen R. Steed A CKNOWLEDGEHENTS I wish to extend my deepest gratitude to the members of m:r advisory committee, Dr. Wilmer W. Tanner> Dr. Harold J. Bissell, I)r. Glen Moore, and Dr. Joseph R. Murphy, for the, advice and guidance they gave during the course cf this study.
    [Show full text]
  • Comparative Study of the Osteology and Locomotion of Some Reptilian Species
    International Journal Of Biology and Biological Sciences Vol. 2(3), pp. 040-058, March 2013 Available online at http://academeresearchjournals.org/journal/ijbbs ISSN 2327-3062 ©2013 Academe Research Journals Full Length Research Paper Comparative study of the osteology and locomotion of some reptilian species Ahlam M. El-Bakry2*, Ahmed M. Abdeen1 and Rasha E. Abo-Eleneen2 1Department of Zoology, Faculty of Science, Mansoura University, Egypt. 2 Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt. Accepted 31 January, 2013 The aim of this study is to show the osteological characters of the fore- and hind-limbs and the locomotion features in some reptilian species: Laudakia stellio, Hemidactylus turcicus, Acanthodatylus scutellatus, Chalcides ocellatus, Chamaeleo chamaeleon, collected from different localities from Egypt desert and Varanus griseus from lake Nassir in Egypt. In the studied species, the fore- and hind-feet show wide range of variations and modifications as they play very important roles in the process of jumping, climbing and digging which suit their habitats and their mode of life. The skeletal elements of the hand and foot exhibit several features reflecting the specialized methods of locomotion, and are related to the remarkable adaptations. Locomotion is a fundamental skill for animals. The animals of the present studies can take various forms including swimming, walking as well as some more idiosyncratic gaits such as hopping and burrowing. Key words: Lizards, osteology, limbs, locomotion. INTRODUCTION In vertebrates, the appendicular skeleton provides (Robinson, 1975). In the markedly asymmetrical foot of leverage for locomotion and support on land (Alexander, most lizards, digits one to four of the pes are essentially 1994).
    [Show full text]
  • An Etymological Review of the Lizards of Iran: Families Lacertidae, Scincidae, Uromastycidae, Varanidae
    International Journal of Animal and Veterinary Advances 3(5): 322-329, 2011 ISSN: 2041-2908 © Maxwell Scientific Organization, 2011 Submitted: July 28, 2011 Accepted: September 25, 2011 Published: October 15, 2011 An Etymological Review of the Lizards of Iran: Families Lacertidae, Scincidae, Uromastycidae, Varanidae 1Peyman Mikaili and 2Jalal Shayegh 1Department of Pharmacology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran 2Department of Veterinary Medicine, Faculty of Agriculture and Veterinary, Shabestar Branch, Islamic Azad University, Shabestar, Iran Abstract: The etymology of the reptiles, especially the lizards of Iran has not been completely presented in other published works. Iran is a very active geographic area for any animals, and more especially for lizards, due to its wide range deserts and ecology. We have attempted to ascertain, as much as possible, the construction of the Latin binomials of all Iranian lizard species. We believe that a review of these names is instructive, not only in codifying many aspects of the biology of the lizards, but in presenting a historical overview of collectors and taxonomic work in Iran and Middle East region. We have listed all recorded lizards of Iran according to the order of the scientific names in the book of Anderson, The Lizards of Iran. All lizard species and types have been grouped under their proper Families, and then they have been alphabetically ordered based on their scientific binominal nomenclature. We also examined numerous published works in addition to those included in the original papers presenting each binomial. Key words: Etymology, genera, iran, lizards, Middle East, species, taxonomy. INTRODUCTION comprising the fauna of Iran, including Field guide to the reptiles of Iran, (Vol.
    [Show full text]
  • The Terrestrial Mammals, Reptiles and Amphibians of the Uae – Species List and Status Report
    THE TERRESTRIAL MAMMALS, REPTILES AND AMPHIBIANS OF THE UAE – SPECIES LIST AND STATUS REPORT January 2005 TERRESTRIAL ENVIRONMENT RESEARCH CENTRE ENVIRONMENTAL RESEARCH & WILDLIFE DEVELOPMENT AGENCY P.O. Box 45553 Abu Dhabi DOCUMENT ISSUE SHEET Project Number: 03-31-0001 Project Title: Abu Dhabi Baseline Survey Name Signature Date Drew, C.R. Al Dhaheri, S.S. Prepared by: Barcelo, I. Tourenq, C. Submitted by: Drew, C.R. Approved by: Newby, J. Authorized for Issue by: Issue Status: Final Recommended Circulation: Internal and external File Reference Number: 03-31-0001/WSM/TP007 Drew, C.R.// Al Dhaheri, S.S.// Barcelo, I.// Tourenq, C.//Al Team Members Hemeri, A.A. DOCUMENT REVISION SHEET Revision No. Date Affected Date of By pages Change V2.1 30/11/03 All 29/11/03 CRD020 V2.2 18/9/04 6 18/9/04 CRD020 V2.3 24/10/04 4 & 5 24/10/04 CRD020 V2.4 24/11/04 4, 7, 14 27/11/04 CRD020 V2.5 08/01/05 1,4,11,15,16 08/01/05 CJT207 Table of Contents Table of Contents ________________________________________________________________________________ 3 Part 1 The Mammals of The UAE____________________________________________________________________ 4 1. Carnivores (Order Carnivora) ______________________________________________________________ 5 a. Cats (Family Felidae)___________________________________________________________________ 5 b. Dogs (Family Canidae) __________________________________________________________________ 5 c. Hyaenas (Family Hyaenidae) _____________________________________________________________ 5 d. Weasels (Family Mustelidae) _____________________________________________________________
    [Show full text]
  • Felis Margarita, Sand Cat
    The IUCN Red List of Threatened Species™ ISSN 2307-8235 (online) IUCN 2008: T8541A50651884 Felis margarita, Sand Cat Assessment by: Sliwa, A., Ghadirian, T., Appel, A., Banfield, L., Sher Shah, M. & Wacher, T. View on www.iucnredlist.org Citation: Sliwa, A., Ghadirian, T., Appel, A., Banfield, L., Sher Shah, M. & Wacher, T. 2016. Felis margarita. The IUCN Red List of Threatened Species 2016: e.T8541A50651884. http://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T8541A50651884.en Copyright: © 2016 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale, reposting or other commercial purposes is prohibited without prior written permission from the copyright holder. For further details see Terms of Use. The IUCN Red List of Threatened Species™ is produced and managed by the IUCN Global Species Programme, the IUCN Species Survival Commission (SSC) and The IUCN Red List Partnership. The IUCN Red List Partners are: BirdLife International; Botanic Gardens Conservation International; Conservation International; Microsoft; NatureServe; Royal Botanic Gardens, Kew; Sapienza University of Rome; Texas A&M University; Wildscreen; and Zoological Society of London. If you see any errors or have any questions or suggestions on what is shown in this document, please provide us with feedback so that we can correct or extend the information provided. THE IUCN RED LIST OF THREATENED SPECIES™ Taxonomy Kingdom Phylum Class Order Family Animalia Chordata Mammalia Carnivora Felidae Taxon Name: Felis margarita Loche, 1858 Regional Assessments: • Mediterranean Common Name(s): • English: Sand Cat, Sand Dune Cat • French: Chat des sables • Spanish: Gato de las Arenas, Gato del Sahara Taxonomic Notes: Taxonomy is currently under review by the IUCN SSC Cat Specialist Group (2014).
    [Show full text]
  • "Mimicking the Abrasion Resistant Sandfish Epidermis"
    "Mimicking the abrasion resistant sandfish epidermis" Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation. vorgelegt von Boštjan Vihar, M.Sc. Aus Maribor, Slowenien Berichter: Universitätsprofessor Prof. Dr. Peter Bräunig Universitätsprofessor Prof. Dr. Werner Baumgartner Tag der mündlichen Prüfung: 7. September 2015 Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar. "L'essentiel est invisible pour les yeux." Antoine de Saint-Exup´ery Abstract The sand inhabiting skink Scincus scincus has due to its sand swimming behaviour gained some attention by the research community in recent years. The sand swimming creates ample stress on the outer layers of its skin, generating the prospect of wear. The skin itself is however very resilient towards abrasion and even facilitates smoother movement by reducing friction against the sharp sand particles. Past research has concentrated much on the characterization of structure and surface properties of the skin, however, a complete understanding of its properties is lacking up to date. In this work, a review of known data is done in addition to new measurements concerning surface properties, composition, ultrastructure and mechanics, but also other feats such as optical properties. Replication of "anti-adhesive" properties on existing technical materials was tested along with the development of new techniques for such endeavour. Chemical and structural anal- ysis shows the epidermis of the sandfish is very homogeneous and is mainly composed of compact bundles of β keratins, which are possibly interlinked by a matrix composed of α keratins. Strong glycosylation of the keratins was shown, confirming previous studies, and five glycan structures were observed in the analysis.
    [Show full text]
  • Patterns of Species Richness, Endemism and Environmental Gradients of African Reptiles
    Journal of Biogeography (J. Biogeogr.) (2016) ORIGINAL Patterns of species richness, endemism ARTICLE and environmental gradients of African reptiles Amir Lewin1*, Anat Feldman1, Aaron M. Bauer2, Jonathan Belmaker1, Donald G. Broadley3†, Laurent Chirio4, Yuval Itescu1, Matthew LeBreton5, Erez Maza1, Danny Meirte6, Zoltan T. Nagy7, Maria Novosolov1, Uri Roll8, 1 9 1 1 Oliver Tallowin , Jean-Francßois Trape , Enav Vidan and Shai Meiri 1Department of Zoology, Tel Aviv University, ABSTRACT 6997801 Tel Aviv, Israel, 2Department of Aim To map and assess the richness patterns of reptiles (and included groups: Biology, Villanova University, Villanova PA 3 amphisbaenians, crocodiles, lizards, snakes and turtles) in Africa, quantify the 19085, USA, Natural History Museum of Zimbabwe, PO Box 240, Bulawayo, overlap in species richness of reptiles (and included groups) with the other ter- Zimbabwe, 4Museum National d’Histoire restrial vertebrate classes, investigate the environmental correlates underlying Naturelle, Department Systematique et these patterns, and evaluate the role of range size on richness patterns. Evolution (Reptiles), ISYEB (Institut Location Africa. Systematique, Evolution, Biodiversite, UMR 7205 CNRS/EPHE/MNHN), Paris, France, Methods We assembled a data set of distributions of all African reptile spe- 5Mosaic, (Environment, Health, Data, cies. We tested the spatial congruence of reptile richness with that of amphib- Technology), BP 35322 Yaounde, Cameroon, ians, birds and mammals. We further tested the relative importance of 6Department of African Biology, Royal temperature, precipitation, elevation range and net primary productivity for Museum for Central Africa, 3080 Tervuren, species richness over two spatial scales (ecoregions and 1° grids). We arranged Belgium, 7Royal Belgian Institute of Natural reptile and vertebrate groups into range-size quartiles in order to evaluate the Sciences, OD Taxonomy and Phylogeny, role of range size in producing richness patterns.
    [Show full text]