Les orchidées et leurs mycorhizes

M.-A. SELOSSE Muséum nat. d’Histoire naturelle, Paris Universités de Gdansk (Pologne) & Viçosa (Brésil) Les réseaux mycorhiziens

Mycohétérotrophie et réseaux

Mixotrophie et réseaux mycorhiziens

La difficile transition vers l’hétérotrophie

… due à un attachement fatal à la lumière ? MYCORRHIZAL SYMBIOSIS

… a symbiosis between two partners ECTO- MYCORRHIZAE

Asco- and Basidiomycetes on most trees in temperate regions ORCHID MYCORHIZAE

Intracellular pelotons formed within root cells, usually with « rhizoctonias"

(Beyrle et al. 1995) Orchid germination, usually involving rhizoctonias MYCORRHIZAL SYMBIOSIS

>85% of associate with soil fungi

Reciprocal nutrient exchanges + protection:

Sugars FUNGUS Water and N, P, K

Protection against soil stresses ITS BARCODING

genreGenus // ordreorder NiveauTaxonomic de résolution resolution taxonomique : : espèceSpecies / / variétésub-species genetSub-species (individus) / genet ITS

ITS 2 ITS 1 IGS 1 IGS 2 18 S 5.8 S 28 S 5 S 18 S

Ribosomal DNA sub-unit in fungi: circa 10 kpb environ 10 kpb Les réseaux mycorhiziens

Mycohétérotrophie et réseaux

Mixotrophie et réseaux mycorhiziens

La difficile transition vers l’hétérotrophie

… due à un attachement fatal à la lumière ? Mycoheterotrophs

Gentianaceae Ericaceae

Polygalaceae

Geosiridaceae Corsiaceae Lacandoniaceae Burmanniaceae Petrosaviaceae Triuridaceae

(from Brundett, 2004) Mycoheterotrophs

Gentianaceae Ericaceae

Polygalaceae

Geosiridaceae Corsiaceae Lacandoniaceae Burmanniaceae Orchidaceae Petrosaviaceae Triuridaceae

(from Brundett, 2004) nidus-avis

Selosse et al., 2002, Mol. Ecol. 11, 1831 McKendrick et al., 2002, New Phytol. 145, 523 Selosse et al., 2002, New Phytol. 155, 183 ITS BARCODING

genreGenus // ordreorder NiveauTaxonomic de résolution resolution taxonomique : : espèceSpecies / / variétésub-species genetSub-species (individus) / genet ITS

ITS 2 ITS 1 IGS 1 IGS 2 18 S 5.8 S 28 S 5 S 18 S

Ribosomal DNA sub-unit in fungi: circa 10 kpb environ 10 kpb Neottia nidus-avis associated with Sebacinales… Neottia nidus-avis associated with Sebacinales… themselves ectomycorrhizal on nearby tree roots

Epipogium aphyllum

… with Inocybe species Roy et al., Annals Bot., 2009. Epipogium aphyllum Epipogium aphyllum … with Inocybe species Roy et al., Annals Bot., 2009. MYCOHETEROTROPHY

Exploiting the mycorrhizal network...

MYCOHETERO- GREEN TROPHIC PLANT TREE

FUNGUS Mycorrhizal Mycorrhizal association Carbon flow association

… as reflected in their spontaneous stable isotopes (13C and 15N) abundances Mycoheterotrophs

Gentianaceae Ericaceae

Polygalaceae

Geosiridaceae Corsiaceae Lacandoniaceae Burmanniaceae Orchidaceae Petrosaviaceae Triuridaceae

(from Brundett, 2004) Mycoheterotrophic Ericaceae: Hypopitys monotropa Tedersoo et al., 2007, Oecologia Autotrophs: Arctostaphylos uva-ursi, Picea abies, Melampyrum sylvaticum Ectomycorrhizal fungi, including Tricholoma myomyces, mycorrhizal on H. monotropa Wullschlaegelia calcrata Rhizomorphs (groups of hyphae) In 14 individuals from 4 sites: only saprotrophic fungi !

Marasmius Mycena

Other saprobes Gymnopus

All are white rot and litter decaying fungi No strict specificity at individual level d15N ‰

2

0 W. aphylla Green Leaf- plant decaying -2 fungi

-4

-6 -34 -32 -30 -28 -26 -24 -22

13 d C ‰ Martos et al., 2009 New Phytologist 184: 668-681 Les réseaux mycorhiziens

Mycohétérotrophie et réseaux

Mixotrophie et réseaux mycorhiziens

La difficile transition vers l’hétérotrophie

… due à un attachement fatal à la lumière ? Green orchids related to helleborine mycoheterotrophs Epipactis helleborinedistans Epipactis distansatrorubens Epipactis atrorubensmicrophylla Epipactis microphyllapalustris EpipactisAphyllorchis palustriscaudata E.g. the Neottieae tribe, caudatamontana AphyllorchisLimodorum abortivum montana mycoheterotrophy LimodorumNeottia nidus abortivum-avis arose repeatedly, by Neottia ovatanidus-avis convergent evolution NeottiaCephalanthera ovata exigua austinaeexigua among green species Cephalanthera longifoliaaustinae Cephalanthera damasoniumlongifolia Roy et al., BMC Biol. 2009 … that associate with Cephalanthera rubradamasonium CephalantheraThaia saprophytica rubra ectomycorrhizal fungi ThaiaPalmorchis saprophyticasp. abortivum

Russula delica group Girlanda et al., Mol. Ecol., 2006 Ph. P. Pernot Cephalanthera damasonium & Cephalanthera longifolia Cephalanthera damasonium & Cephalanthera longifolia

C. longifolia C. damasonium Julou et al., 2005 Abadie et al., 2006

2 3 2 5 10 5 34 19 6 11

19

« Rhizoctonias » Ectomycorhizal fungi Saprophytes Plant endophytes or parasites Epipactis microphylla

Diverse ectomycorrhizal fungi, mainly truffles spp.

Pernot Selosse et al., Microb. Ph. P. Ph. P. Ecol., 2006 Epipactis microphylla associates with truffles

x 800 Microscopy and antibodies demon- strate that truffles are mycorrhizal (Selosse et al., 2006 x 1 700 Microbial. Ecol.) Tedersoo et al., 2007, Oecologia « Green » orchids: Listera ovata, Platanthera bifolia, Epipactis atrorubens MIXOTROPHY

Exploiting both the mycorrhizal network & photosynthesis...

MYCOHETERO- GREEN TROPHIC PLANT TREE

FUNGUS Mycorrhizal Mycorrhizal association Carbon flow association

… as reflected in their 13C &15N abundances Limodorum abortivum

A green orchid photosynthesizing below the compensation point

light dark 0

1

2

CO2 produced 3 mol.m -2.s-1

Girlanda et al., Mol. Ecol., 2006 In mixotrophic orchid species, achlophyllous variants, the albinos,

… survive as mycoheterotrophs!

Cephalanthera damasonium

(P. Pernot & F. Dusak) Epipactis purpurata

(A. Hasenfratz) A. Soulié

M. Roy

J.C. Claessens

S. Acker Gas exchange in C. damasonium

Net CO2 exchange

green

albino

PAR = photosynthetic active radiations Julou et al. 2005, New Phytol. IsotopesC. longifolia in (C.Abadie longifolia et al., 2006)

green albino green

Green autotrophic plants

Abadie et al. 2006, Botany Some green plants

- are mixotrophic and use mycorrhizal networks

- are predisposed to evolve mycohetero- trophy

- … with albinos as transitions?

Gebauer & Meyer, 2003 Bidartondo et al., 2005 Selosse & Roy, 2009 Some green plants

- are mixotrophic and use mycorrhizal networks

- are predisposed to evolve mycohetero- trophy

- … with albinos as transitions?

Selosse & Roy, 2009 Some green plants

- are mixotrophic and use mycorrhizal networks

- are predisposed to evolve mycohetero- trophy

- … with albinos as transitions?

Selosse & Roy, 2009 Les réseaux mycorhiziens

Mycohétérotrophie et réseaux

Mixotrophie et réseaux mycorhiziens

La difficile transition vers l’hétérotrophie

… due à un attachement fatal à la lumière ? Many mutation could abolish greenness, yet albinos remain very rare in mixotrophic orchid populations…

Why then?

Roy et al. 2013, Ecol. Monographs 83: 95–117 A 4–year monitoring of two Cephalanthera damasonium populations, with 20-70 albinos Dormancy…

Year n n+1 n+2

dormancy Dormancy: more frequent!

Year n n+1 n+2 % of dormant individuals in 2007

12 10 8 6 4 dormancy 2 0 n=110 n=850 n=35 n=46 Montferrier Boigneville

Albinos were 16.5x more often dormant than green individuals Shoot survival…

Number of shoots

Apparition Flowering time of shoots Shoot survival: lower!

Number of shoots

% shoots dried in late June 2007

60 50 40 30 20 10 0

51% albino shoots dry in June (vs 7% for green ones) > no seeds! Seed production and quality: lower…

Number of seeds % of seeds germinating in situ per fruits (x10) in seeds pockets (3 months)

100 100 *** 1400 *** 90 90 1200 80 80 70 70 1000 ns 60 60 800 50 50 600 40 40 30 30 400 20 20 200 10 10 0 0 0 n=7200nombre n=22800 de n=7200 %n=22800 fertilité %n=3960 germination% fertilité n=10800 % germination graines 3 x 3 less viable seeds in albinos! Comparison green ind. / albinos

Patterns of dormancy 6.8x more

Patterns of shoot survival 16.5x less

Seed production 9x less

= 103 x lower fitness

Roy et al. 2013, Ecol. Monographs 83: 95–117 Comparison green ind. / albinos

Patterns of dormancy 6.8x more

Patterns of shoot survival 16.5x less

Seed production 9x less

= 103 x lower fitness WHY DID ALBINOS FAIL THE TRANSITION ? Les réseaux mycorhiziens

Mycohétérotrophie et réseaux

Mixotrophie et réseaux mycorhiziens

La difficile transition vers l’hétérotrophie

… due à un attachement fatal à la lumière ? Allocation of mycoheterotrophic C versus photosynthetic C in mixotrophic orchids

based on δ13C

(and N content) Allocation of fungal versus photosynthetic C

In shoots Shoot C nutrition over the growth season in C. damasonium

-22 δ13C (‰) -24 Albinos (enriched in 13C)

-26

-28

C. vitalba -30 Autotrophs (depleted -32 R. peregrina in 13C)

-34 Growth Mar 23 Apr 12 May 02 May 22 Jun 11 Jul 01 03/26 04/27 05/11 05/24 06/26 season First leaves All leaves First Flowers Ripen opened flowers pollinated fruits Shoot C nutrition over the growth season in C. damasonium

-22 δ13C (‰) -24 Albinos

-26

Green individuals -28

C. vitalba -30 Autotrophs

-32 R. peregrina

-34 Growth Mar 23 Apr 12 May 02 May 22 Jun 11 Jul 01 03/26 04/27 05/11 05/24 06/26 season First leaves All leaves First Flowers Ripen opened flowers pollinated fruits A shift from 80% heterotrophic to 20% at fruiting!

-22 δ13C (‰) -24 Albinos

-26

Green individuals -28

C. vitalba -30 Autotrophs

-32 R. peregrina

-34 Growth Mar 23 Apr 12 May 02 May 22 Jun 11 Jul 01 03/26 04/27 05/11 05/24 06/26 season First leaves All leaves First Flowers Ripen opened flowers pollinated fruits A shift from 100% heterotrophic to 20% in E. helleborine

Albinos Hypopitys monotropa

C. mayalis

Green individuals Autotrophs

S. virgaurea

Growth June 1st June 23rd July15st July 28st season

Gonneau et al. 2014, J. Ecol., in press A decrease of mycorrhizal colonization at fruiting in C. damasonium

Percentage of root sections colonized albinos

*** green individuals

0%

No leaves First leaves First flowers Ripen fruits Roy et al. 2013, Ecol. Monographs Gaz exchange in C. damasonium

Net CO2 exchange

green

albino

Julou et al., 2005, New Phytol. Gaz exchange in C. damasonium

Net CO2 exchange

green

albino 3-4x lower basal metabolism

… a carbon limitation ? Julou et al., 2005, New Phytol. CONCLUSIONS

- Shoot autotrophy increases over the growth season.

- Albinos have lower basal metabolism, and especially lack photosynthetic and fungal C at fruiting. Allocation of fungal versus photosynthetic C

In shoots

In fruits Fruit C nutrition in Cephalanthera damasonium

-22 δ13C (‰) Albino fruits Albinos -24

-26 Green individuals

Green fruits -28 C. vitalba

-30

-32 R. peregrina

-34 Growth Mar 23 Apr 12 May 02 May 22 Jun 11 Jul 01 03/26 04/27 05/11 05/24 06/26 season First leaves All leaves First Flowers Ripen opened flowers pollinated fruits Fruit C nutrition in Epipactis helleborine

Albinos Flowers

C. mayalis

Green individuals Fruits

S. virgaurea

Growth June 1st June 23rd July15st July 28st season

Gonneau et al. 2014, J. Ecol., in press TESTING THE ROLE OF FUNGAL C

Limodorum abortivum, control vs. treated with iprodione

Bellino et al., 2014 Oecologia 175: 875-885 TESTING THE ROLE OF FUNGAL C

Limodorum abortivum, control vs. treated with iprodione twice, during and after anthesis

In situ root of L. abortivum with fungus at fruiting

100%

75%

50%

25% None!

Control Iprodione TESTING THE ROLE OF FUNGAL C

Limodorum abortivum, control vs. treated

Control Iprodione

Fruit length (mm) 25.7 2.3 a 26.7 3.4 a (n=42)

Fruit diam. (mm) 8.4 0.3 a 9.0 0.5 a (n=42)

Seed (mm2) 0.26 0.06 a 0.28 0.07 a (n=713)

Fruit δ13C (‰) -25.06 0.08 a -25.50 0.17 b (n=21)

No impact on seed set, full compensation by photosynthesis CONCLUSIONS

- Shoot autotrophy increases over the growth season.

- Albinos have lower basal metabolism, and especially lack photosynthetic and fungal C at fruiting.

- Fruits use photosynthates, even if fungal C may help (a bit). Allocation of fungal versus photosynthetic C

In shoots

In fruits

In underground parts and emerging shoots RHIZOME FEED ON FUNGAL C

a

Rhizomes Shoots Gonneau et al. 2015 RHIZOME FEED ON FUNGAL C

Rhizomes Shoots Gonneau et al. 2015 PHOTOSYNTHESIS

green leaf fruit

stem

rhizome

roots

MYCOHETEROTROPHY PHOTOSYNTHESIS PHOTOSYNTHESIS stem

green leaf fruit

stem

Fungal C

dormancy (& winter?) rhizome

roots

MYCOHETEROTROPHY FUNGUS PHOTOSYNTHESIS

green leaf fruit

stem

Fungal C

dormancy (& winter?) rhizome at shoot emergence

roots

MYCOHETEROTROPHY FUNGUS PHOTOSYNTHESIS

green leaf fruit

stem

Fungal C

dormancy (& winter?) rhizome at shoot emergence at fruiting (summer) roots

MYCOHETEROTROPHY FUNGUS PHOTOSYNTHESIS

green leaf fruit Plant C at fruiting (summer)

stem

Fungal C

dormancy (& winter?) rhizome at shoot emergence at fruiting (summer) roots

MYCOHETEROTROPHY FUNGUS PHOTOSYNTHESIS

green leaf fruit Plant C -> fitness by seeds stem

Fungal C

rhizome

-> fitness roots by survival

MYCOHETEROTROPHY FUNGUS CONCLUSIONS

- Fruits use mostly photosynthates

- Underground tissues use mostly fungal C

- The resulting optimization of the use of fungal and photosynthetic C is problematic for albino fruiting. CONCLUSIONS

- Fruits use mostly photosynthates

- Underground tissues use mostly fungal C

- The resulting optimization of the use of fungal and photosynthetic C is problematic for albino fruiting.

… due to this fatal addiction to light of mixotrophic plants, you cannot lose photosynthesis in one step! CONCLUSIONS

- Fruits use mostly photosynthates

- Underground tissues use mostly fungal C

- The resulting optimization of the use of fungal and photosynthetic C is likely fatal to albino seed production.

The evolutionary emergence of pure C sinks in mycorrhizal networks is a complex process,

… and mixotrophy is metastable in evolution

My partner network…

Mélanie Roy, Cédric Gonneau

Soc. Française d’Orchidophilie: J.-P. Amardeihl, C. Blanchon, F. Dusak, G. Joseph, J. Koenig, P. Pernot, C. & J. Péternel, D. Prat, G. Scappaticci, R. Souche, J. Villeret Univ. Salerno: A. Bellino, A. Alfani, D. Baldantoni Univ. Ceske-Budejovice: J. Jersakova, T. Malinova, T. Hajcek Univ. Turin: P. Bonfante, A. Faccio, M. Girlanda, S. Perotto Univ. Tartu: U. Koljalg, L. Tedersoo, U. Püttsepp, M. Öpik Acad. Science of Russia: M. Logacheva Univ. Pointe-à-Pitre: A. Ba, M. Dulorme, A. Rousteau Univ. Basel: P.-E. Courty, T. Boller, F. Walder, A. Wiemken

… all papers online on ISYEB website