Current Direction for Improving Structural Engineering and Resiliency in New Zealand
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Mw 6.3 Christchurch, New Zealand Earthquake of 22 February 2011
THE MW 6.3 CHRISTCHURCH, NEW ZEALAND EARTHQUAKE OF 22 FEBRUARY 2011 A FIELD REPORT BY EEFIT THE CHRISTCHURCH, NEW ZEALAND EARTHQUAKE OF 22 FEBRUARY 2011 A FIELD REPORT BY EEFIT Sean Wilkinson Matthew Free Damian Grant David Boon Sarah Paganoni Anna Mason Elizabeth Williams Stuart Fraser Jenny Haskell Earthquake Field Investigation Team Institution of Structural Engineers 47 - 58 Bastwick Street London EC1V 3PS Tel 0207235 4535 Fax 0207235 4294 Email: [email protected] June 2011 The Mw 6.2 Christchurch Earthquake of 22 February 2011 1 CONTENTS ACKNOWLEDGEMENTS 3 1. INTRODUCTION 4 2. REGIONAL TECTONIC AND GEOLOGICAL SETTING 6 3. SEISMOLOGICAL ASPECTS 12 4. NEW ZEALAND BUILDING STOCK AND DESIGN PRACTICE 25 5. PERFORMANCE OF BUILDINGS 32 6. PERFORMANCE OF LIFELINES 53 7. GEOTECHNICAL ASPECTS 62 8. DISASTER MANAGEMENT 96 9. ECONOMIC LOSSES AND INSURANCE 108 10. CONCLUSIONS 110 11. REFERENCES 112 APPENDIX A: DETAILED RESIDENTIAL DAMAGE SURVEY 117 The Mw 6.2 Christchurch Earthquake of 22 February 2011 2 ACKNOWLEDGEMENTS The authors would like to express their thanks to the many individuals and organisations that have assisted with the EEFIT mission to Christchurch and in the preparation of this report. We thank Arup for enabling Matthew Free to attend this mission and the British Geological Survey for allowing David Boon to attend. We would also like to thank the Engineering and Physical Sciences Research Council for providing funding for Sean Wilkinson, Damian Grant, Elizabeth Paganoni and Sarah Paganoni to join the team. Their continued support in enabling UK academics to witness the aftermath of earthquakes and the effects on structures and the communities they serve is gratefully acknowledged. -
Regulations and Consents Committee 18 June 2015
REGULATION AND CONSENTS COMMITTEE AGENDA THURSDAY, 18 JUNE 2015 AT 9AM IN COMMITTEE ROOM 1, CIVIC OFFICES, 53 HEREFORD STREET Committee: Councillor David East (Chair) Councillors Tim Scandrett (Deputy Chair), Ali Jones, Glenn Livingstone and Paul Lonsdale Principal Advisor Committee Adviser Peter Sparrow Barbara Strang Telephone: 941-8462 Telephone: 941-5216 INDEX ITEM DESCRIPTION PAGE NO. NO. PART C 1. APOLOGIES 1 PART B 2. DECLARATION OF INTEREST 1 PART B 3. DEPUTATIONS BY APPOINTMENT 1 PART B 4 BRIEFINGS 1 PART B 5. UPDATE OF THE BUILDING CONTROL AND CITY REBUILD GROUP 3 PART B 6. MONTHLY REPORT ON RESOURCE CONSENTS 11 1 REGULATION AND CONSENTS COMMITTEE 18. 6. 2015 1. APOLOGIES 2. DECLARATION OF INTEREST Members are reminded of the need to be vigilant to stand aside from decision making when a conflict arises between their role as a member and any private or other external interest they might have. 3. DEPUTATIONS BY APPOINTMENT 4. BRIEFINGS 4.1 Councillor Tim Scandrett will provide the Committee with a verbal update from the Mayoral Quality Regulation and Review Taskforce 4.2 Unit Manager from the Building Control and City Rebuild Group will brief the Committee on the Continuous Improvement Programme. 2 3 REGULATION AND CONSENTS COMMITTEE 18 .6. 2015 5. UPDATE OF THE BUILDING CONTROL AND CITY REBUILD GROUP Contact Contact Details Executive Leadership Team Building Control and City Y Peter Sparrow: 5018 Member responsible: Rebuild Director Officer responsible: Residential Consent Unit Y Mark Urlich 8106 Manager Author: Residential Consent Unit Y Mark Urlich 8106 Manager 1. PURPOSE OF REPORT 1.1 The purpose of this report is to provide the Regulation and Consents Committee with the May 2015 update of the Building Control and City Rebuild Group. -
Unsettling Recovery: Natural Disaster Response and the Politics of Contemporary Settler Colonialism
UNSETTLING RECOVERY: NATURAL DISASTER RESPONSE AND THE POLITICS OF CONTEMPORARY SETTLER COLONIALISM A DISSERTATION SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY STEVEN ANDREW KENSINGER IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DR. DAVID LIPSET, ADVISER JULY 2019 Steven Andrew Kensinger, 2019 © Acknowledgements The fieldwork on which this dissertation is based was funded by a Doctoral Dissertation Fieldwork Grant No. 8955 awarded by the Wenner-Gren Foundation for Anthropological Research. I also want to thank Dr. Robert Berdahl and the Berdahl family for endowing the Daphne Berdahl Memorial Fellowship which provided funds for two preliminary fieldtrips to New Zealand in preparation for the longer fieldwork period. I also received funding while in the field from the University of Minnesota Graduate School through a Thesis Research Travel Grant. I want to thank my advisor, Dr. David Lipset, and the members of my dissertation committee, Dr. Hoon Song, Dr. David Valentine, and Dr. Margaret Werry for their help and guidance in preparing the dissertation. In the Department of Anthropology at the University of Minnesota, Dr. William Beeman, Dr. Karen Ho, and Dr. Karen-Sue Taussig offered personal and professional support. I am grateful to Dr. Kieran McNulty for offering me a much-needed funding opportunity in the final stages of dissertation writing. A special thanks to my colleagues Dr. Meryl Puetz-Lauer and Dr. Timothy Gitzen for their support and encouragement. Dr. Carol Lauer graciously offered to read and comment on several of the chapters. My fellow graduate students and writing-accountability partners Dr. -
Gccrs Panel Bios
GCCRS PANEL BIOS Alan Dallas CPEng CMEngNZ Alan was at an engineering forensics and seismic assessment seminar in the Christchurch CBD on 22 February 2011, subsequently serving as a CBD building assessor and team leader. He joined Batchelar McDougall Consulting (BMC) in August 2011 and has since worked on the assessment and repair of a range of buildings. Alan also flew to Kaikoura on 15 November 2016 to inspect buildings and bridges. Ana Pereira CPEng Ana is civil engineer with a geotechnical specialization, with over 10 years of experience in the geotechnical field. In Portugal, Ana was a site engineer managing construction of piles, micropiles and anchors for many different developments. These included residential and commercial buildings, roads and railways in different geological settings, including alluvial soils near waterways. She also managed several excavations for underground car parking in urban areas. Her experience in New Zealand, from 2012 onwards, is based on seismic hazard assessment, foundation, ground improvement design and slope stability analysis for residential and commercial buildings and bridges. Andrew Marriott CPEng CMEngNZ IntPE(NZ) Andrew has more than 30 years’ experience in structural and civil engineering, including designing a wide range of structures in New Zealand and the United Kingdom. He is currently a Principal and Director of Batchelar McDougall Consulting. Andrew has specialised in heritage engineering and temporary works designs as well as maintaining his competency in general structures ranging from residential through to multi-storey commercial developments. Andrew volunteered for Civil Defence as a Chartered Professional Engineer following the 22 February 2011 Christchurch earthquake and was lead engineer in the heritage area. -
A Tale of Missed Chances
A tale of missed chances The Canterbury Earthquakes Royal Commission did not set out to apportion blame for the Canterbury Television building collapse, but several key parties will be uneasy at its findings. The commissioners pointed to errors and problems over many decades which contributed to a under-engineered building and flawed structure. The building collapsed when the magnitude-6.3 quake hit on February 22, 2011. It was a failure that caused the deaths of 115 people. It started with the design of the building and supervision of a relatively inexperienced struc- tural engineer. Further, the building should not have been issued a permit but pressure allegedly applied to consenting staff in the Christ- church City Council meant concerns raised were apparently ignored. The design flaws were missed by those building the CTV structure, and added to some non- conforming construction prac- tices not picked up by the absentee construction manager, fake engineer Gerald Shirtcliff. That alone makes for ‘‘grim and sobering reading’’, as Prime Minister John Key labelled yesterday’s report, but the most frustrating part was yet to come. In 1990, an engineer noticed the floors were not properly connected to the support walls. Here was something structurally wrong. The strengthening work was carried out in November 1991, nearly two years after the weakness was found, but not enough was done. The commissioners noted an opportunity lost: ‘‘It should have been apparent . that the report was not a full review of the struc- tural integrity of the building.’’ The Canterbury Earthquakes Royal Commission report, which STEPS TO TRAGEDY is the result of an eight-week hearing by the commissioners, will be difficult reading for the Victims of the Canterbury Design Consent Construction Retrofit Inspection families of those who died. -
The Impact of Earthquakes on Apartment Owners and Renters in Te Whanganui-A-Tara (Wellington) Aotearoa New Zealand
applied sciences Article The Impact of Earthquakes on Apartment Owners and Renters in Te Whanganui-a-Tara (Wellington) Aotearoa New Zealand Denise Blake 1,*, Julia S. Becker 2, Darrin Hodgetts 3 and Kenneth J. Elwood 4 1 School of Health, Victoria University of Wellington Te Herenga Waka, Wellington 6012, New Zealand 2 School of Psychology, Joint Centre for Disaster Research, Massey University, Wellington 6140, New Zealand; [email protected] 3 School of Psychology, Massey University, Albany Auckland 0632, New Zealand; [email protected] 4 Department of Civil and Environmental Engineering, University of Auckland, Auckland 1010, New Zealand; [email protected] * Correspondence: [email protected] Abstract: Apartment dwelling is on the increase in many cities in Aotearoa New Zealand, including those in earthquake-prone regions. Hence it is important that people working in disaster management and housing improve their understanding on how the living situations of apartment dwellers influence their disaster management practices. This knowledge is crucial for efforts to promote safety and preparedness. This paper explores what enables and constrains apartment dwellers in their ability to prepare for an earthquake. Eighteen people were interviewed who resided in Te Whanganui-a-Tara (Wellington) two years after the 2016 7.8 magnitude (Mw) Kaikoura¯ earthquake. Of central concern was people’s ability to prepare for disasters and access knowledge about building and structural safety and how this knowledge mattered to what apartment dwellers were able to Citation: Blake, D.; Becker, J.S.; prepare for. We found that the agency to prepare was dependent on whether people owned or rented Hodgetts, D.; Elwood, K.J. -
22 February 2011 Christchurch Earthquake and Implications for the Design of Concrete Structures
Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, March 1-4, 2012, Tokyo, Japan 22 FEBRUARY 2011 CHRISTCHURCH EARTHQUAKE AND IMPLICATIONS FOR THE DESIGN OF CONCRETE STRUCTURES Kenneth J. ELWOOD1, Stefano PAMPANIN2, Weng Yuen KAM3 1 Associate Professor, Department of Civil Engineering, University of British Columbia, Vancouver, Canada, [email protected] 2 Associate Professor (Reader), Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch, New Zealand, [email protected] 3 Structural Engineer, Beca Carter, Hollings and Ferner Ltd, Auckland, [email protected] ABSTRACT: At 12:51pm local time on 22 February 2011, a Mw 6.2 aftershock of the September 4, 2010, Darfield Earthquake shook the city of Christchurch, New Zealand. The aftershock occurred on an unmapped fault less than 8 km from the city center resulting in the collapse of two reinforced concrete office buildings and one concrete parking garage, and severe damage to numerous others. This paper summarizes the observed damage to concrete buildings in Central Business District (CBD), with a specific focus on identifying future research to support possible changes to international seismic design codes to address the Christchurch observations. Key Words: Christchurch earthquake, ground motions, concrete buildings, collapse, code changes, shear walls, precast moment frames, repair costs. INTRODUCTION Six months after the 4 September 2010 Mw 7.1 Darfield (Canterbury) earthquake, the Mw 6.2 Christchurch earthquake struck Christchurch, New Zealand on the 22 February 2011. The Mw 6.2 earthquake occurred on a previously unknown fault less than 10km south-east of the Christchurch central business district (CBD), initiating at a shallow depth of 5km. -
USAR Engineering Response to the 2011 Christchurch Earthquake
USAR Engineering Response to the 2011 Christchurch Earthquake Peter McBean, Wallbridge and Gilbert Consulting Engineers John L Wilson, Swinburne University of Technology Abstract This paper provides an overview of the 2011 Christchurch earthquake with particular reference to the Urban Search and Rescue operations. The USAR operations involved some 700 specialist personnel from New Zealand, Australia, Japan, USA, UK, China, Taiwan and Singapore, comprising Technicians, Engineers, Doctors, hazard experts and Police with search dogs. The USAR response lasted some four weeks and the paper describes the three distinct phases comprising; rescue, victim recovery and city/suburb safe operations. The Magnitude 6.3 Lyttelton earthquake struck within 10 kilometres of Christchurch CBD and caused massive damage to buildings and lifelines with some 184 confirmed deaths and a repair bill in the order of $15-20 billion dollars. AEES 2011 Conference 1. Earthquake Overview The Magnitude 6.3 Lyttelton earthquake struck within 10 kilometres of central Christchurch at 12:51pm on Tuesday 22 February, 2011 and caused massive damage and 184 confirmed deaths. This event was a severe aftershock of the Mn7.1 Darfield earthquake that struck on 4 September 2010, some 40 kilometres from the city centre. The city of Christchurch with a population of 350,000 people and 140,000 homes is located on an alluvial plain with around a 50 metre depth of fine silts, sands and gravels and a very high water table. The Mn6.3 event was essentially a ‘bullseye’ event that violently shook the city with peak ground velocities in the order of 400 mm/second and very high vertical accelerations in the order of 1.0g. -
Observations and Implications of Damage from the Magnitude Mw 6.3 Christchurch, New Zealand Earthquake of 22Nd February 2011
Manuscript Click here to download Manuscript: Observations of Damage From Mw 6 Christchurch earthquake_revision1.docClick here to view linked References OBSERVATIONS AND IMPLICATIONS OF DAMAGE FROM THE MAGNITUDE MW 6.3 CHRISTCHURCH, NEW ZEALAND EARTHQUAKE OF 22ND FEBRUARY 2011 Sean Wilkinson, Damian Grant, Elizabeth Williams, Sara Paganoni, Stuart Fraser, David Boon, Anna Mason, Matthew Free ABSTRACT This paper describes the observations made by a reconnaissance team following the 22nd February 2011, Mw 6.3, Christchurch, New Zealand earthquake (GNS Science; 2011). The team comprised of members of the UK based Earthquake Engineering Field Investigation Team (EEFIT) who spent five days collecting observations on damage resulting from the earthquake. Although the magnitude of this earthquake was not particularly high (Mw 6.3), the shallow focus and close proximity resulted in locally very high ground motions, widespread damage and 182 fatalities. The earthquake is also particularly notable for the widespread liquefaction it caused, landslides and rockfalls in the hills south of Christchurch, and the significant damage suffered by unreinforced masonry and historic structures. Over wide areas of central Christchurch, recorded accelerations were in excess of those required by the current New Zealand seismic loadings standard (NZS1170.5:2004): Standards New Zealand (2004), and therefore the earthquake presented a valuable opportunity to assess performance of modern buildings under code-level ground acceleration. INTRODUCTION th At 04:35 (local time) on the 4 September 2010 the province of Canterbury suffered a magnitude Mw 7.1 earthquake. The epicentre of this earthquake was approximately 40 km West of Christchurch near the town of Darfield (GNS Science, 2010). -
Reconstruction in New Zealand Post 2010-11 Christchurch Earthquakes
ReBuilDD Field Trip February 2012 RECONSTRUCTION IN NEW ZEALAND POST 2010-11 CHRISTCHURCH EARTHQUAKES Stephen Platt Christchurch city centre, February 2012 UNIVERSITY OF ImageCat CAMBRIDGE CAR Published by Cambridge Architectural Research Ltd. CURBE was established in 1997 to create a structure for interdisciplinary collaboration for disaster and risk research and application. Projects link the skills and expertise from distinct disciplines to understand and resolve disaster and risk issues, particularly related to reducing detrimental impacts of disasters. CURBE is based at the Martin Centre within the Department of Architecture at the University of Cambridge. About the research This report is one of a number of outputs from a research project funded by the UK Engineering and Physical Sciences Research Council (EPSRC), entitled Indicators for Measuring, Monitoring and Evaluating Post-Disaster Recovery. The overall aim of the research is to develop indicators of recovery by exploiting the wealth of data now available, including that from satellite imagery, internet-based statistics and advanced field survey techniques. The specific aim of this trip report is to describe the planning process after major disaster with a view to understanding the information needs of planners. Project team The project team has included Michael Ramage, Dr Emily So, Dr Torwong Chenvidyakarn and Daniel Brown, CURBE, University of Cambridge Ltd; Professor Robin Spence, Dr Stephen Platt and Dr Keiko Saito, Cambridge Architectural Research; Dr Beverley Adams and Dr John Bevington, ImageCat. Inc; Dr Ratana Chuenpagdee, University of Newfoundland who led the fieldwork team in Thailand; and Professor Amir Khan, University of Peshawar who led the fieldwork team in Pakistan. -
Geoparsing Messages from Microtext
Transactions in GIS, 2011, 15(6): 753–773 Research Article Geo-parsing Messages from Microtext Judith Gelernter Nikolai Mushegian Language Technologies Institute Language Technologies Institute School of Computer Science School of Computer Science Carnegie-Mellon University Carnegie-Mellon University Abstract Widespread use of social media during crises has become commonplace, as shown by the volume of messages during the Haiti earthquake of 2010 and Japan tsunami of 2011. Location mentions are particularly important in disaster messages as they can show emergency responders where problems have occurred. This article explores the sorts of locations that occur in disaster-related social messages, how well off-the- shelf software identifies those locations, and what is needed to improve automated location identification, called geo-parsing. To do this, we have sampled Twitter messages from the February 2011 earthquake in Christchurch, Canterbury, New Zealand. We annotated locations in messages manually to make a gold standard by which to measure locations identified by a Named Entity Recognition software. The Stanford NER software found some locations that were proper nouns, but did not identify locations that were not capitalized, local streets and buildings, or non- standard place abbreviations and mis-spellings that are plentiful in microtext. We review how these problems might be solved in software research, and model a readable crisis map that shows crisis location clusters via enlarged place labels. 1 Introduction 1.1 Why Social Media for Disaster Relief? The use of social media during disasters was established by the time of the Haiti earthquake in January 2010, when local and international posts to Facebook, Flickr, YouTube and Twitter were voluminous (Gao et al. -
An Annotated Bibliography of Published Sources on Christchurch
Local history resources An annotated bibliography of published sources on the history of Christchurch, Lyttelton, and Banks Peninsula. Map of Banks Peninsula showing principal surviving European and Maori place-names, 1927 From: Place-names of Banks Peninsula : a topographical history / by Johannes C. Andersen. Wellington [N.Z.] CCLMaps 536127 Introduction Local History Resources: an annotated bibliography of published sources on the history of Christchurch, Lyttelton and Banks Peninsula is based on material held in the Aotearoa New Zealand Centre (ANZC), Christchurch City Libraries. The classification numbers provided are those used in ANZC and may differ from those used elsewhere in the network. Unless otherwise stated, all the material listed is held in ANZC, but the pathfinder does include material held elsewhere in the network, including local history information files held in some community libraries. The material in the Aotearoa New Zealand Centre is for reference only. Additional copies of many of these works are available for borrowing through the network of libraries that comprise Christchurch City Libraries. Check the catalogue for the classification number used at your local library. Historical newspapers are held only in ANZC. To simplify the use of this pathfinder only author and title details and the publication date of the works have been given. Further bibliographic information can be obtained from the Library's catalogues. This document is accessible through the Christchurch City Libraries’ web site at https://my.christchurchcitylibraries.com/local-history-resources-bibliography/