USAR Engineering Response to the 2011 Christchurch Earthquake
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Mw 6.3 Christchurch, New Zealand Earthquake of 22 February 2011
THE MW 6.3 CHRISTCHURCH, NEW ZEALAND EARTHQUAKE OF 22 FEBRUARY 2011 A FIELD REPORT BY EEFIT THE CHRISTCHURCH, NEW ZEALAND EARTHQUAKE OF 22 FEBRUARY 2011 A FIELD REPORT BY EEFIT Sean Wilkinson Matthew Free Damian Grant David Boon Sarah Paganoni Anna Mason Elizabeth Williams Stuart Fraser Jenny Haskell Earthquake Field Investigation Team Institution of Structural Engineers 47 - 58 Bastwick Street London EC1V 3PS Tel 0207235 4535 Fax 0207235 4294 Email: [email protected] June 2011 The Mw 6.2 Christchurch Earthquake of 22 February 2011 1 CONTENTS ACKNOWLEDGEMENTS 3 1. INTRODUCTION 4 2. REGIONAL TECTONIC AND GEOLOGICAL SETTING 6 3. SEISMOLOGICAL ASPECTS 12 4. NEW ZEALAND BUILDING STOCK AND DESIGN PRACTICE 25 5. PERFORMANCE OF BUILDINGS 32 6. PERFORMANCE OF LIFELINES 53 7. GEOTECHNICAL ASPECTS 62 8. DISASTER MANAGEMENT 96 9. ECONOMIC LOSSES AND INSURANCE 108 10. CONCLUSIONS 110 11. REFERENCES 112 APPENDIX A: DETAILED RESIDENTIAL DAMAGE SURVEY 117 The Mw 6.2 Christchurch Earthquake of 22 February 2011 2 ACKNOWLEDGEMENTS The authors would like to express their thanks to the many individuals and organisations that have assisted with the EEFIT mission to Christchurch and in the preparation of this report. We thank Arup for enabling Matthew Free to attend this mission and the British Geological Survey for allowing David Boon to attend. We would also like to thank the Engineering and Physical Sciences Research Council for providing funding for Sean Wilkinson, Damian Grant, Elizabeth Paganoni and Sarah Paganoni to join the team. Their continued support in enabling UK academics to witness the aftermath of earthquakes and the effects on structures and the communities they serve is gratefully acknowledged. -
Unsettling Recovery: Natural Disaster Response and the Politics of Contemporary Settler Colonialism
UNSETTLING RECOVERY: NATURAL DISASTER RESPONSE AND THE POLITICS OF CONTEMPORARY SETTLER COLONIALISM A DISSERTATION SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY STEVEN ANDREW KENSINGER IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DR. DAVID LIPSET, ADVISER JULY 2019 Steven Andrew Kensinger, 2019 © Acknowledgements The fieldwork on which this dissertation is based was funded by a Doctoral Dissertation Fieldwork Grant No. 8955 awarded by the Wenner-Gren Foundation for Anthropological Research. I also want to thank Dr. Robert Berdahl and the Berdahl family for endowing the Daphne Berdahl Memorial Fellowship which provided funds for two preliminary fieldtrips to New Zealand in preparation for the longer fieldwork period. I also received funding while in the field from the University of Minnesota Graduate School through a Thesis Research Travel Grant. I want to thank my advisor, Dr. David Lipset, and the members of my dissertation committee, Dr. Hoon Song, Dr. David Valentine, and Dr. Margaret Werry for their help and guidance in preparing the dissertation. In the Department of Anthropology at the University of Minnesota, Dr. William Beeman, Dr. Karen Ho, and Dr. Karen-Sue Taussig offered personal and professional support. I am grateful to Dr. Kieran McNulty for offering me a much-needed funding opportunity in the final stages of dissertation writing. A special thanks to my colleagues Dr. Meryl Puetz-Lauer and Dr. Timothy Gitzen for their support and encouragement. Dr. Carol Lauer graciously offered to read and comment on several of the chapters. My fellow graduate students and writing-accountability partners Dr. -
Cathedral Working Group Recommendation Report
CATHEDRAL WORKING GROUP RECOMMENDATION REPORT NOVEMBER 2016 Released by the Minister supporting Greater Christchurch Regeneration This document and its contents are confidential and shall not be distributed, published, copied or reproduced without the express written permission of the Minister Supporting Greater Christchurch Regeneration and the Church Property Trustees. VERSION ISSUE DATE REASON FOR ISSUE AUTHOR APPROVED FOR ISSUE 1 28.10.16 Draft for Review Bianca Hurrell, RCP Marcus Read, RCP 2 31.10.16 Draft to include Bianca Hurrell, RCP Marcus Read, RCP comments from Working Group Chair Regeneration 3 01.11.16 Edited and Proofed Anna Komink, Axiom Marcus Read, RCP Final Draft to CWG / Bianca Hurrell, RCP 4 07.11.16 Updates following Bianca Hurrell, RCP / Marcus Read, RCP / CWG meeting Anna Komink, Axiom Geoff Dangerfield, CWG Christchurch 5 21.11.16 Updates as Geoff Dangerfield, Geoff Dangerfield, provided to CWG CWG / Marcus Read, CWG / Marcus Read, for review RCP RCP 6 24.11.16 Final Draft providedGreater Geoff Dangerfield, Marcus Read, RCP / to CWG for review CWG / Marcus Read, Geoff Dangerfield, RCP CWG 7 25.11.16 Final Copy Geoff Dangerfield, Geoff Dangerfield, CWG / Marcus Read, CWG / Marcus Read, RCP RCP supporting Minister the by Released ii CONTENTS 1.0 Executive Summary 1 2.0 Recommendations 7 3.0 Introduction 9 4.0 Background and Context 12 5.0 Values and Requirements of the ChristChurch Cathedral 13 6.0 Heritage and Archaeological Review Regeneration16 7.0 Structural Review 21 8.0 Regeneration of the Square 27 9.0 Delivery -
Gccrs Panel Bios
GCCRS PANEL BIOS Alan Dallas CPEng CMEngNZ Alan was at an engineering forensics and seismic assessment seminar in the Christchurch CBD on 22 February 2011, subsequently serving as a CBD building assessor and team leader. He joined Batchelar McDougall Consulting (BMC) in August 2011 and has since worked on the assessment and repair of a range of buildings. Alan also flew to Kaikoura on 15 November 2016 to inspect buildings and bridges. Ana Pereira CPEng Ana is civil engineer with a geotechnical specialization, with over 10 years of experience in the geotechnical field. In Portugal, Ana was a site engineer managing construction of piles, micropiles and anchors for many different developments. These included residential and commercial buildings, roads and railways in different geological settings, including alluvial soils near waterways. She also managed several excavations for underground car parking in urban areas. Her experience in New Zealand, from 2012 onwards, is based on seismic hazard assessment, foundation, ground improvement design and slope stability analysis for residential and commercial buildings and bridges. Andrew Marriott CPEng CMEngNZ IntPE(NZ) Andrew has more than 30 years’ experience in structural and civil engineering, including designing a wide range of structures in New Zealand and the United Kingdom. He is currently a Principal and Director of Batchelar McDougall Consulting. Andrew has specialised in heritage engineering and temporary works designs as well as maintaining his competency in general structures ranging from residential through to multi-storey commercial developments. Andrew volunteered for Civil Defence as a Chartered Professional Engineer following the 22 February 2011 Christchurch earthquake and was lead engineer in the heritage area. -
GEOTECHNICAL RECONNAISSANCE of the 2011 CHRISTCHURCH, NEW ZEALAND EARTHQUAKE Version 1: 15 August 2011
GEOTECHNICAL RECONNAISSANCE OF THE 2011 CHRISTCHURCH, NEW ZEALAND EARTHQUAKE Version 1: 15 August 2011 (photograph by Gillian Needham) EDITORS Misko Cubrinovski – NZ Lead (University of Canterbury, Christchurch, New Zealand) Russell A. Green – US Lead (Virginia Tech, Blacksburg, VA, USA) Liam Wotherspoon (University of Auckland, Auckland, New Zealand) CONTRIBUTING AUTHORS (alphabetical order) John Allen – (TRI/Environmental, Inc., Austin, TX, USA) Brendon Bradley – (University of Canterbury, Christchurch, New Zealand) Aaron Bradshaw – (University of Rhode Island, Kingston, RI, USA) Jonathan Bray – (UC Berkeley, Berkeley, CA, USA) Misko Cubrinovski – (University of Canterbury, Christchurch, New Zealand) Greg DePascale – (Fugro/WLA, Christchurch, New Zealand) Russell A. Green – (Virginia Tech, Blacksburg, VA, USA) Rolando Orense – (University of Auckland, Auckland, New Zealand) Thomas O’Rourke – (Cornell University, Ithaca, NY, USA) Michael Pender – (University of Auckland, Auckland, New Zealand) Glenn Rix – (Georgia Tech, Atlanta, GA, USA) Donald Wells – (AMEC Geomatrix, Oakland, CA, USA) Clint Wood – (University of Arkansas, Fayetteville, AR, USA) Liam Wotherspoon – (University of Auckland, Auckland, New Zealand) OTHER CONTRIBUTORS (alphabetical order) Brady Cox – (University of Arkansas, Fayetteville, AR, USA) Duncan Henderson – (University of Canterbury, Christchurch, New Zealand) Lucas Hogan – (University of Auckland, Auckland, New Zealand) Patrick Kailey – (University of Canterbury, Christchurch, New Zealand) Sam Lasley – (Virginia Tech, Blacksburg, VA, USA) Kelly Robinson – (University of Canterbury, Christchurch, New Zealand) Merrick Taylor – (University of Canterbury, Christchurch, New Zealand) Anna Winkley – (University of Canterbury, Christchurch, New Zealand) Josh Zupan – (University of California at Berkeley, Berkeley, CA, USA) TABLE OF CONTENTS 1.0 INTRODUCTION 2.0 SEISMOLOGICAL ASPECTS 3.0 GEOLOGICAL ASPECTS 4.0 LIQUEFACTION AND LATERAL SPREADING 5.0 IMPROVED GROUND 6.0 STOPBANKS 7.0 BRIDGES 8.0 LIFELINES 9.0 LANDSLIDES AND ROCKFALLS 1. -
Current Direction for Improving Structural Engineering and Resiliency in New Zealand
CURRENT DIRECTION FOR IMPROVING STRUCTURAL ENGINEERING AND RESILIENCY IN NEW ZEALAND Mike Stannard Chief Engineer Ministry of Business Innovation & Employment, New Zealand Abstract The 2010 to 2011 Canterbury Earthquake sequence has been the most destructive earthquake New Zealand has experienced in recent times. Rebuild costs are estimated at $40 billion or 20% of New Zealand’s GDP, 185 people died, and much of the Christchurch Central Business District, New Zealand’s second largest city, needs to be rebuilt. Approximately 170,000 houses have needed to be repaired or rebuilt and some eight thousand properties have been red zoned. It has been one of the most complex insurance events world-wide. While the social and economic consequences have been very significant and sometimes tragic, it has presented a real opportunity to learn from the event and better understand building and land performance during earthquake shaking. Generally modern buildings performed well from a life-safety perspective with New Zealand having been a leader in capacity design principles. However, plastic hinging, uncertainty about the residual capacity of buildings and poor ground performance have led to high demolition numbers. The New Zealand Government initiated a Canterbury Earthquakes Royal Commission of Inquiry after the February 2011 damaging event. Their final report presented 189 recommendations, providing an important direction towards improving structural engineering and resiliency. Changes are being made to structural design standards where under-performance has been observed. Earthquake-prone building legislation has been changed, requiring retrofitting or removal of the most vulnerable buildings throughout New Zealand. Reviews of the Building Code requirements are also underway which may test the societal appetite for changes to code settings. -
Christchurch Cathedral of the Blessed Sacrament: Lessons Learnt on the Stabilisation of a Significant Heritage Building
Christchurch Cathedral of the Blessed Sacrament: Lessons learnt on the Stabilisation of a Significant Heritage Building J. Lester & A. Brown Opus International Consultants Ltd, Christchurch, New Zealand. J. Ingham 2012 NZSEE Conference University of Auckland, Auckland, New Zealand. ABSTRACT: The Catholic Cathedral of the Blessed Sacrament is a category 1 listed heritage building constructed largely of unreinforced stone masonry, and was significantly damaged in the recent Canterbury earthquakes. The building experienced ground shaking in excess of its capacity leading to block failures and partial collapse of parts of the building, which left the building standing but still posing a significant hazard. In this paper we discuss the approach to securing the building, and the interaction of the structural, heritage and safety demands involved in a dynamic seismic risk environment. We briefly cover the types of failures observed and the behaviour of the structure, and investigate the performance of both strengthened and un-strengthened parts of the building. Seismic strengthening options are investigated at a conceptual level. We draw conclusions as to how the building performed in the earthquakes, comment on the effectiveness of the strengthening and securing work and discuss the potential seismic strengthening methods. 1 INTRODUCTION As a result of the 4 September 2010 Canterbury earthquake and the more damaging 22 February 2011 Christchurch earthquake, considerable damage occurred to a significant number of buildings in Christchurch. In this paper the damage that occurred to the Catholic Cathedral (Basilica) following the 22 February 2011 event is considered, the approach taken to securing the building is outlined, and the performance of the building and the securing work undertaken is evaluated. -
Case Study the Cardboard Cathedral in Christchurch, New Zealand, Is the Transitional Pro‑Cathedral of the Anglican Church Opened in August 2013
Case Study The Cardboard Cathedral in Christchurch, New Zealand, is the transitional pro-cathedral of the Anglican Church opened in August 2013. The site, on the Cardboard corner of Hereford and Madras Streets in Latimer Square, is several blocks from the Cathedral, permanent location of Christchurch Cathedral, which was significantly damaged in the 2011 Christchurch earthquake. The Cardboard Cathedral was designed by New Zealand architect Shigeru Ban and seats around 700 people. In addition to serving as a cathedral, the building serves as a conference venue. The cathedral measures 70 feet (21 m) above the altar. Materials used in its construction include 2 feet (0.61 m) diameter cardboard tubes, timber and steel. The roof is of polycarbonate and is held up by eight shipping containers which form the walls. The foundation is heavily reinforced concrete slab. A Univox SLS No-Stop-Loop design was decided to be the best option, given the heavily reinforced concrete slab in the area where the loop was being installed. Simulation in Univox Loop Designer confirmed that it would meet IEC 60118-4 requirements for frequency response and field strength. The design offers a very uniform field strength level across the listening plane. All loop design work was done by Univox’ Australia/New Zealand distributor Audio Products Group. Christian Resource Centre in New Zealand was responsible for the installation. Univox® products used SLS-300XF, Super Loop System® 25 mm Copper foil Responsible companies Audio Products Group, Australia Christian Resource Centre, New Zealand Bo Edin AB Sweden and International Sales +46 (0)8 767 18 18 [email protected] www.univox.eu UnivoxAudio Ltd. -
"A Distressing Lack of Regularity": New Zealand Architecture in the 1850S Date
"a distressing lack of regularity": New Zealand architecture in the 1850s Date: Friday 7th December 2012 Venue: School of Architecture/Te Wāhanga Waihanga, Victoria University/Te Whare Wānanga o te Ūpoko o te Ika a Māui, Wellington Convener: Christine McCarthy ([email protected]) When Colonel Mould of the Royal Engineers at Auckland reported on behalf of the New Zealand Government on Ben Mountfort's proposed accommodation for Governor Thomas Gore Browne, he queried the design's ability to be ""lastingly pleasing to the eye,"" and identified the building's "distressing lack of regularity." This conference asks whether this phrase, describing Mould's discomfort with Mountfort's picturesque design, might also describe New Zealand's built environment in the 1850s more broadly as it negotiated architectural cultural exchanges, largely resulting from incoming British settlers' "flight from flunkeydom and formality." Philippa Mein Smith refers to a William Strutt drawing to indicate its cultural hybridity, as well as "the power of the "pioneer legend,"" unpinned by the religious ideology of western commerce: "Pioneers tamed the land and, they believed, made it productive as God intended." Provincial Government and a General Assembly were established, following the British Parliament's New Zealand Constitution Act (1852), which also seemingly prompted the originator of New Zealand's systematic colonisation, Edward Gibbon Wakefield, to arrive in New Zealand in 1853. Wakefield, according to Smith, was hopeful of a political career in the colonial government, now made possible by the Act. In the 1850s significant changes to the mechanism of British government in New Zealand occurred: the end of the Crown colony (1841-1853), when a Governor, with an executive council, "ruled" the colony, the appointment of a Resident Magistrate (Archibald Shand) to the Chathams (1855), and the conclusion of George Grey's first governorship in 1853. -
Canterbury Museum Trust Board, Christchurch, New Zealand
CANTERBURY MUSEUM TRUST BOARD, CHRISTCHURCH, NEW ZEALAND Notice is given of a meeting of the Canterbury Museum Trust Board to be held at 3.30 pm on Monday 12 July 2021 in the Boardroom at Canterbury Museum AGENDA Agenda number Page number at top right bottom right 1 WELCOME 2 APOLOGIES 3 CONFLICTS OF INTEREST & UPDATES OF MEMBERS’ INTERESTS (Attached p 1) PUBLIC EXCLUDED SECTION Resolution to exclude the public I move that the public be excluded from the following parts of the proceedings of this meeting. The general subject of each matter to be considered while the public is excluded, the reason for passing this resolution in relation to each matter, and the specific grounds under section 48(1) of the Local Government Official Information and Meetings Act 1987 for the passing of its resolution are as follows: Agenda General subject of Reason for passing Ground(s) Item each matter to be this resolution in under section considered relation to each matter 48(1) for the passing of this resolution 4 The Museum Project S7(2)(h) To enable the Museum to carry out, 5 Investment without prejudice or committee disadvantage, commercial activities and 6 Executive s7(2)(i) To enable to Committee Museum to carry on, without prejudice or 7 Board and CEO only disadvantage, Section 48(1)(a) negotiations (including – The public 8 Board only commercial and conduct of this industrial negotiations) matter would be s7(2)(f) To enable the likely to result in Museum to maintain the disclosure of effective conduct of information for public affairs through – which -
A Tale of Missed Chances
A tale of missed chances The Canterbury Earthquakes Royal Commission did not set out to apportion blame for the Canterbury Television building collapse, but several key parties will be uneasy at its findings. The commissioners pointed to errors and problems over many decades which contributed to a under-engineered building and flawed structure. The building collapsed when the magnitude-6.3 quake hit on February 22, 2011. It was a failure that caused the deaths of 115 people. It started with the design of the building and supervision of a relatively inexperienced struc- tural engineer. Further, the building should not have been issued a permit but pressure allegedly applied to consenting staff in the Christ- church City Council meant concerns raised were apparently ignored. The design flaws were missed by those building the CTV structure, and added to some non- conforming construction prac- tices not picked up by the absentee construction manager, fake engineer Gerald Shirtcliff. That alone makes for ‘‘grim and sobering reading’’, as Prime Minister John Key labelled yesterday’s report, but the most frustrating part was yet to come. In 1990, an engineer noticed the floors were not properly connected to the support walls. Here was something structurally wrong. The strengthening work was carried out in November 1991, nearly two years after the weakness was found, but not enough was done. The commissioners noted an opportunity lost: ‘‘It should have been apparent . that the report was not a full review of the struc- tural integrity of the building.’’ The Canterbury Earthquakes Royal Commission report, which STEPS TO TRAGEDY is the result of an eight-week hearing by the commissioners, will be difficult reading for the Victims of the Canterbury Design Consent Construction Retrofit Inspection families of those who died. -
The Impact of Earthquakes on Apartment Owners and Renters in Te Whanganui-A-Tara (Wellington) Aotearoa New Zealand
applied sciences Article The Impact of Earthquakes on Apartment Owners and Renters in Te Whanganui-a-Tara (Wellington) Aotearoa New Zealand Denise Blake 1,*, Julia S. Becker 2, Darrin Hodgetts 3 and Kenneth J. Elwood 4 1 School of Health, Victoria University of Wellington Te Herenga Waka, Wellington 6012, New Zealand 2 School of Psychology, Joint Centre for Disaster Research, Massey University, Wellington 6140, New Zealand; [email protected] 3 School of Psychology, Massey University, Albany Auckland 0632, New Zealand; [email protected] 4 Department of Civil and Environmental Engineering, University of Auckland, Auckland 1010, New Zealand; [email protected] * Correspondence: [email protected] Abstract: Apartment dwelling is on the increase in many cities in Aotearoa New Zealand, including those in earthquake-prone regions. Hence it is important that people working in disaster management and housing improve their understanding on how the living situations of apartment dwellers influence their disaster management practices. This knowledge is crucial for efforts to promote safety and preparedness. This paper explores what enables and constrains apartment dwellers in their ability to prepare for an earthquake. Eighteen people were interviewed who resided in Te Whanganui-a-Tara (Wellington) two years after the 2016 7.8 magnitude (Mw) Kaikoura¯ earthquake. Of central concern was people’s ability to prepare for disasters and access knowledge about building and structural safety and how this knowledge mattered to what apartment dwellers were able to Citation: Blake, D.; Becker, J.S.; prepare for. We found that the agency to prepare was dependent on whether people owned or rented Hodgetts, D.; Elwood, K.J.