Notes on Lopharia Mirabilis (Berk. & Broome) Pat. in China

Total Page:16

File Type:pdf, Size:1020Kb

Notes on Lopharia Mirabilis (Berk. & Broome) Pat. in China Fung. Sci. 17(1, 2): 31–38, 2002 Notes on Lopharia mirabilis (Berk. & Broome) Pat. in China Yu-Cheng Dai* Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China (Accepted May 2, 2002) ABSTRACT Lopharia mirabilis was re-collected from Northeast and Southwest China. The species was poorly known in China, and it was earlier known as Licentia yaochanica from Shanxi Province only. Its emended description is given based on the new collections and previous material. Specimens of the species from China, India, Ja- pan and Thailand are studied. The fungus is characterized by resupinate basidiocarps, irregularly poroid to irpicoid and partly labyrinthine hymenophore, dimitic hyphal system, dextrinoid and cyanophilous skeletal hyphae, prominent and distinctly amyloid cystidia, and ellipsoid basidiospores. The relationships between Lopharia and related genera are discussed. Key words: Basidiomycota, China, Lopharia mirabilis, taxonomy, wood-inhabiting fungi. Introduction and illustrations are presented here based on the type specimen of Licentia yaochanica, re- Lopharia mirabilis (Berk. & Broome) Pat. cent collections from China, and many other was re-collected from the temperate forest of specimens from India, Japan and Thailand. In Northeast China and subtropical forest of addition, specimens of Lopharia cinerascens Southwest China. The species was first re- from Kenya, Australia and New Zealand are ported in China as Licentia yaochanica Pilát studied, and relationships between Lopharia (Pilát, 1940). Over the past 60 years it has mirabilis and L. cinerascens are discussed. been cited by Tai (1979), but otherwise has remained almost forgotten in China. Boidin Materials and Methods (1960) treated Licentia as a synonym of Lo- pharia Kalch. & McOwan, and Lopharia mir- The Chinese material for the present study abilis is an earlier name for L. yaochanica. was collected during field trips to China in Hjortstam and Ryvarden (1990) accepted two 1993 and 2000. Type and other important col- species in Lopharia: L. mirabilis and L. cin- lections were studied from herbaria H, NMNS, erascens (Schwein.) G.H. Cunn. Because pre- O and PRM (for herbarium abbreviation, see vious descriptions of L. mirabilis have lacked Holmgren et al., 1990). The studied Chinese some salient features, a modern description material is deposited at the Botanical Museum Email: [email protected] 32 Fung. Sci. 17(1, 2), 2002 of the University of Helsinki (H); duplicates cream or pale straw-coloured to pale brownish are preserved in the Mycological Herbarium of with age, when dry greyish cream, pale Academia Sinica (HMAS), and in National brownish or greyish isabelline; margin white Museum of Natural Science in Taiwan (TNM). or cream when fresh, becoming cream to pale Some specimens from other herbaria are cited greyish cream with age, up to 1 mm wide; in the following text. The microscopic routine hymenophore irregular, poroid when juvenile, used in the study was presented by Dai and pores 0.3–1 per mm, later irregularly poroid to Niemelä (1995). In the text the following ab- irpicoid and partly labyrinthine, dissepiments breviations are used: L = mean spore length thin. Subiculum duplex, the upper layer (close (arithmetical mean of all spores), W = mean to substrate) pale greyish, felty to tomentose, spore width (arithmetical mean of all spores), soft, the lower layer wood-coloured or greyish Q = quotient of the mean spore length and the isabelline, corky, both layers separated by a mean spore width (L/W ratio), n = the number thin dark brown zone; the whole subiculum at of spores measured from given number of most 0.3 mm thick; tube trama corky, tubes specimens. In presenting the variation in the shallow, up to 2.5 mm long. size of spores and cystidia, 5% of the meas- Hyphal system dimitic, generative hyphae urements were excluded from each end of the mostly with clamp connections, occasionally range, and are given in parentheses; the length simple septate in trama, hyaline, thin-walled, of a cystidium was measured from the apex to frequently branched; skeletal hyphae domi- the basal septum. IKI stands for Melzer's re- nant, thick-walled, dextrinoid, CB+, un- agent and KOH for 5% potassium hydroxide, changed in KOH. and CB is the abbreviation of Cotton Blue. Subiculum. Hyphae in the upper felty CB+ means cyanophilous and CB– acyanophi- layer hyaline, thick-walled with a narrow lu- lous; IKI– means both inamyloid and indextri- men or subsolid, bearing no clamp connec- noid. All the studied specimens are listed. tions, unbranched, flexuous, interwoven, 2.5– 4.2 µm in diam; generative hyphae in the Results lower layer hyaline, thin-walled, frequently branched and clamped, 1.5–3.2 µm in diam, Lopharia mirabilis (Berk. & Broome) Pat. skeletal hyphae dominant, hyaline, thick- Bull. Soc. Mycol. France 11: 14, 1895. walled with narrow lumen or subsolid, occa- (Figs. 1−3) sionally branched, sometimes covered by fine Radulum mirabile Berk. & Broome, J. Linn. Soc. Bot. encrustations, flexuous, interwoven, 3–5.5 µm 14: 61, 1873. in diam; hyphae in the dark brown zone simi- Licentia yaochanica Pilát, Ann. Mycol. 38: 66, 1940. lar to those in the lower layer, but pale Basidiocarps annual, resupinate, adnate, brownish and strongly agglutinated. inseparable, soft corky to more or less leathery Tubes. Generative hyphae hyaline, thin- when fresh, without odour or taste, becoming walled, frequently branched, usually bearing corky and light-weight upon drying, up to 45 clamp connections, occasionally simple- cm or more in longest dimension, 25 cm or septate, 1.5–3 µm; skeletal hyphae hyaline, more wide and 3 mm thick. Hymenophore µm in diam. Cystidia abundant, gigantic, aris- cream when juvenile, becoming pale yellowish ing deep from the trama, subulate, straight, Notes on Lopharia mirabilis 33 Fig. 1. Young basidiocarps of Lopharia mirabilis (Berk. & Broome) Pat., specimen Dai 3218, in situ, x ca. 0.5. Fig. 2. A mature basidiocarp of Lopharia mirabilis (Berk. & Broome) Pat., specimen Dai 3219, in situ, x ca. 0.3. 34 Fung. Sci. 17(1, 2), 2002 Fig. 3. Anatomical details of Lopharia mirabilis (Berk. & Broome) Pat. (drawn from Dai 3219). a. Basidiospores. b. Cystidia. c. Basidia and basidioles. d. Generative hyphae from subiculum. e. Skeletal hyphae from subiculum. Notes on Lopharia mirabilis 35 thick-walled with a narrow lumen or subsolid, spores bearing a big guttule. occasionally branched, interwoven, 2.8–4.6 Lopharia mirabilis is closely related to L. strongly covered by crystals, distinctly thick- cinerascens, and has even been merged as a walled, sharp-pointed, IKI+, walls CB+, (75– single species (Welden, 1975), but Boidin )80–130(–150) × (16–)18–35(–38) µm (n = (1960) and Hjortstam and Ryvarden (1990) 40/2); basidia clavate, with a basal clamp and treated them as two independent species. Ac- four sterigmata, 30–44 × 11–14 µm; basidioles cording to my study the two species differ in dominating in hymenium, in shape similar to the following way: L. mirabilis is usually re- basidia, but smaller. supinate; its hymenophore is irregularly poroid Spores. Basidiospores ellipsoid, hyaline, to irpicoid and partly labyrinthine; its cystidia thin-walled, smooth, bearing a large guttule, are frequent, but not abundant; its spores are IKI–, CB–, (8–)9–12(–13) × (5–)5.5–7.2(–8) basically ellipsoid, and the quotients of the µm, L = 10.54 µm, W = 6.40 µm, Q = 1.60– mean spore length and the mean spore width 1.72 (n=101/3). are 1.60 to 1.72. Lopharia cinerascens is usu- Specimens examined. China, Hunan ally effused-reflexed; its hymenophore is Prov., Sangzhi County, Badagongshan Nat. smooth or slightly tuberculate; its cystidia are Nat. Res., angiosperm, 19.IX.2000, Härkönen abundant; its spores are basically cylindrical, 501 ( H). Jilin Prov., Huinan County, on fallen and the quotients of the mean spore length and trunk of angiosperm, 10.X.1993, Dai 1489. the mean spore width are 2.07 to 2.42. Guizhou Prov., Shuiyang County, Kuankou- Hjortstam and Ryvarden (1990) mentioned shui Nature Reserve, on fallen trunk of angio- that Lopharia mirabilis has effused-reflexed sperm, 17.VI.2000, Dai 3218 & 3219. Shanxi basidiocarps, and is a tropical species, but the Prov., Yaochan, alt. 2178 m, 27.VIII.1935, Li- Chinese material is resupinate, and it was cent 4416 (PRM 741039, holotype of Licentia found in temperate and subtropical areas. yaochanica). Japan, Ibaraki Pref., Kasama, Welden (1975) expressed a broad concept 5.XI.1991, Ryvarden 30379 (O). India, Tamil of the genus Lopharia, but Hjortstam and Ry- Nadu, Thirunelveli Distr., Mundanthurai sanc- varden (1990) dealt with the genus by a re- tuary, 18.II.1979, Kolandavelu 748 (O). Thai- stricted sense. The present paper follows the land, Chanwat Chiang Doo, Doi Chiang Doo concept of the latter authors, with emphasis on Nat. Park, 22.II.1979, Ryvarden 17962 (O); some important microscopic characters: Cangwat Chiang Mai, Amphoe Mae Rim, dimitic hyphal system, generative hyphae with 15.II.1979, Ryvarden 17593 (O). clamp connections, dextrinoid and cyanophi- lous skeletal hyphae, prominent and distinctly Discussion amyloid cystidia, and large basidiospores. These characters link the genus to several well Lopharia mirabilis has many distinguishing known genera, in particular Irpex Fr., Stec- characters—resupinate basidiocarps, irregu- cherinum Gray, Basidioradulum Nobles, larly poroid to irpicoid and partly labyrinthine Megasporoporia Ryvarden & Wright, Gram- hymenophore, a dimitic hyphal system, mothele Berk. & M.A. Curtis, and Theleporus cyanophilous and dextrinoid skeletal hyphae, Fr. gigantic and amyloid cystidia, and ellipsoid Lopharia externally resembles Irpex or 36 Fung. Sci. 17(1, 2), 2002 Basidioradulum by having an irregularly por- Venezuela, Amazonas, Yutajé, on dead wood oid to irpicoid and partly labyrinthine hy- of angiosperm, 12-19.VI.1997, Ryvarden menium. 40512 (O). Steccherinum ochraceum (Fr.) The dimitic hyphal system and encrusted Gray: China, Jilin Prov., Antu County, Chang- skeletal cystidia link Lopharia with Irpex, baishan Nat.
Recommended publications
  • Phylogenetic Classification of Trametes
    TAXON 60 (6) • December 2011: 1567–1583 Justo & Hibbett • Phylogenetic classification of Trametes SYSTEMATICS AND PHYLOGENY Phylogenetic classification of Trametes (Basidiomycota, Polyporales) based on a five-marker dataset Alfredo Justo & David S. Hibbett Clark University, Biology Department, 950 Main St., Worcester, Massachusetts 01610, U.S.A. Author for correspondence: Alfredo Justo, [email protected] Abstract: The phylogeny of Trametes and related genera was studied using molecular data from ribosomal markers (nLSU, ITS) and protein-coding genes (RPB1, RPB2, TEF1-alpha) and consequences for the taxonomy and nomenclature of this group were considered. Separate datasets with rDNA data only, single datasets for each of the protein-coding genes, and a combined five-marker dataset were analyzed. Molecular analyses recover a strongly supported trametoid clade that includes most of Trametes species (including the type T. suaveolens, the T. versicolor group, and mainly tropical species such as T. maxima and T. cubensis) together with species of Lenzites and Pycnoporus and Coriolopsis polyzona. Our data confirm the positions of Trametes cervina (= Trametopsis cervina) in the phlebioid clade and of Trametes trogii (= Coriolopsis trogii) outside the trametoid clade, closely related to Coriolopsis gallica. The genus Coriolopsis, as currently defined, is polyphyletic, with the type species as part of the trametoid clade and at least two additional lineages occurring in the core polyporoid clade. In view of these results the use of a single generic name (Trametes) for the trametoid clade is considered to be the best taxonomic and nomenclatural option as the morphological concept of Trametes would remain almost unchanged, few new nomenclatural combinations would be necessary, and the classification of additional species (i.e., not yet described and/or sampled for mo- lecular data) in Trametes based on morphological characters alone will still be possible.
    [Show full text]
  • Short Title: Lentinus, Polyporellus, Neofavolus
    In Press at Mycologia, preliminary version published on February 6, 2015 as doi:10.3852/14-084 Short title: Lentinus, Polyporellus, Neofavolus Phylogenetic relationships and morphological evolution in Lentinus, Polyporellus and Neofavolus, emphasizing southeastern Asian taxa Jaya Seelan Sathiya Seelan Biology Department, Clark University, 950 Main Street, Worcester, Massachusetts 01610, and Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia Alfredo Justo Laszlo G. Nagy Biology Department, Clark University, 950 Main Street, Worcester, Massachusetts 01610 Edward A. Grand Mahidol University International College (Science Division), 999 Phuttamonthon, Sai 4, Salaya, Nakorn Pathom 73170, Thailand Scott A. Redhead ECORC, Science & Technology Branch, Agriculture & Agri-Food Canada, CEF, Neatby Building, Ottawa, Ontario, K1A 0C6 Canada David Hibbett1 Biology Department, Clark University, 950 Main Street Worcester, Massachusetts 01610 Abstract: The genus Lentinus (Polyporaceae, Basidiomycota) is widely documented from tropical and temperate forests and is taxonomically controversial. Here we studied the relationships between Lentinus subg. Lentinus sensu Pegler (i.e. sections Lentinus, Tigrini, Dicholamellatae, Rigidi, Lentodiellum and Pleuroti and polypores that share similar morphological characters). We generated sequences of internal transcribed spacers (ITS) and Copyright 2015 by The Mycological Society of America. partial 28S regions of nuc rDNA and genes encoding the largest subunit of RNA polymerase II (RPB1), focusing on Lentinus subg. Lentinus sensu Pegler and the Neofavolus group, combined these data with sequences from GenBank (including RPB2 gene sequences) and performed phylogenetic analyses with maximum likelihood and Bayesian methods. We also evaluated the transition in hymenophore morphology between Lentinus, Neofavolus and related polypores with ancestral state reconstruction.
    [Show full text]
  • Basidiomycota)
    Mycol Progress DOI 10.1007/s11557-016-1210-z ORIGINAL ARTICLE Leifiporia rhizomorpha gen. et sp. nov. and L. eucalypti comb. nov. in Polyporaceae (Basidiomycota) Chang-Lin Zhao1 & Fang Wu1 & Yu-Cheng Dai1 Received: 21 March 2016 /Revised: 10 June 2016 /Accepted: 14 June 2016 # German Mycological Society and Springer-Verlag Berlin Heidelberg 2016 Abstract A new poroid wood-inhabiting fungal genus, Keywords Phylogenetic analysis . Polypores . Taxonomy . Leifiporia, is proposed, based on morphological and molecular Wood-rotting fungi evidence, which is typified by L. rhizomorpha sp. nov. The genus is characterized by an annual growth habit, resupinate basidiocarps with white to cream pore surface, a dimitic hyphal Introduction system with generative hyphae bearing clamp connections and branching mostly at right angles, skeletal hyphae present in the Polypores are a very important group of wood-inhabiting fungi subiculum only and distinctly thinner than generative hyphae, which have been extensively studied Among them, the IKI–,CB–, and ellipsoid, hyaline, thin-walled, smooth, IKI–, Polyporaceae is a diverse group of Polyporales, including spe- CB– basidiospores. Sequences of ITS and LSU nrRNA gene cies having annual to perennial, resupinate, pileate and stipitate regions of the studied samples were generated, and phyloge- basidiocarps, a monomitic to dimitic or trimitic hyphal structure netic analyses were performed with maximum likelihood, max- with simple septa or clamp connections on generative hyphae, imum parsimony and Bayesian inference methods. The phylo- and thin- to thick-walled, smooth to ornamented, cyanophilous genetic analysis based on molecular data of ITS + nLSU se- to acyanophilous basidiospores (Ryvarden and Johansen 1980; quences showed that Leifiporia belonged to the core Gilbertson and Ryvarden 1986, 1987;Dai2012; Ryvarden and polyporoid clade and was closely related to Diplomitoporus Melo 2014).
    [Show full text]
  • Re-Thinking the Classification of Corticioid Fungi
    mycological research 111 (2007) 1040–1063 journal homepage: www.elsevier.com/locate/mycres Re-thinking the classification of corticioid fungi Karl-Henrik LARSSON Go¨teborg University, Department of Plant and Environmental Sciences, Box 461, SE 405 30 Go¨teborg, Sweden article info abstract Article history: Corticioid fungi are basidiomycetes with effused basidiomata, a smooth, merulioid or Received 30 November 2005 hydnoid hymenophore, and holobasidia. These fungi used to be classified as a single Received in revised form family, Corticiaceae, but molecular phylogenetic analyses have shown that corticioid fungi 29 June 2007 are distributed among all major clades within Agaricomycetes. There is a relative consensus Accepted 7 August 2007 concerning the higher order classification of basidiomycetes down to order. This paper Published online 16 August 2007 presents a phylogenetic classification for corticioid fungi at the family level. Fifty putative Corresponding Editor: families were identified from published phylogenies and preliminary analyses of unpub- Scott LaGreca lished sequence data. A dataset with 178 terminal taxa was compiled and subjected to phy- logenetic analyses using MP and Bayesian inference. From the analyses, 41 strongly Keywords: supported and three unsupported clades were identified. These clades are treated as fam- Agaricomycetes ilies in a Linnean hierarchical classification and each family is briefly described. Three ad- Basidiomycota ditional families not covered by the phylogenetic analyses are also included in the Molecular systematics classification. All accepted corticioid genera are either referred to one of the families or Phylogeny listed as incertae sedis. Taxonomy ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Introduction develop a downward-facing basidioma.
    [Show full text]
  • Acta Botanica Brasilica - 31(4): 566-570
    Acta Botanica Brasilica - 31(4): 566-570. October-December 2017. doi: 10.1590/0102-33062017abb0130 Host-exclusivity and host-recurrence by wood decay fungi (Basidiomycota - Agaricomycetes) in Brazilian mangroves Georgea S. Nogueira-Melo1*, Paulo J. P. Santos 2 and Tatiana B. Gibertoni1 Received: April 7, 2017 Accepted: May 9, 2017 . ABSTRACT Th is study aimed to investigate for the fi rst time the ecological interactions between species of Agaricomycetes and their host plants in Brazilian mangroves. Th irty-two fi eld trips were undertaken to four mangroves in the state of Pernambuco, Brazil, from April 2009 to March 2010. One 250 x 40 m stand was delimited in each mangrove and six categories of substrates were artifi cially established: living Avicennia schaueriana (LA), dead A. schaueriana (DA), living Rhizophora mangle (LR), dead R. mangle (DR), living Laguncularia racemosa (LL) and dead L. racemosa (DL). Th irty-three species of Agaricomycetes were collected, 13 of which had more than fi ve reports and so were used in statistical analyses. Twelve species showed signifi cant values for fungal-plant interaction: one of them was host- exclusive in DR, while fi ve were host-recurrent on A. schauerianna; six occurred more in dead substrates, regardless the host species. Overall, the results were as expected for environments with low plant species richness, and where specifi city, exclusivity and/or recurrence are more easily seen. However, to properly evaluate these relationships, mangrove ecosystems cannot be considered homogeneous since they can possess diff erent plant communities, and thus diff erent types of fungal-plant interactions. Keywords: Fungi, estuaries, host-fungi interaction, host-relationships, plant-fungi interaction Hyde (2001) proposed a redefi nition of these terms.
    [Show full text]
  • A New Morphological Arrangement of the Polyporales. I
    A new morphological arrangement of the Polyporales. I. Phanerochaetineae © Ivan V. Zmitrovich, Vera F. Malysheva,* Wjacheslav A. Spirin** V.L. Komarov Botanical Institute RAS, Prof. Popov str. 2, 197376, St-Petersburg, Russia e-mail: [email protected], *[email protected], **[email protected] Zmitrovich I.V., Malysheva V.F., Spirin W.A. A new morphological arrangement of the Polypo- rales. I. Phanerochaetineae. Mycena. 2006. Vol. 6. P. 4–56. UDC 582.287.23:001.4. SUMMARY: A new taxonomic division of the suborder Phanerochaetineae of the order Polyporales is presented. The suborder covers five families, i.e. Faerberiaceae Pouzar, Fistuli- naceae Lotsy (including Jülich’s Bjerkanderaceae, Grifolaceae, Hapalopilaceae, and Meripi- laceae), Laetiporaceae Jülich (=Phaeolaceae Jülich), and Phanerochaetaceae Jülich. As a basis of the suggested subdivision, features of basidioma micromorphology are regarded, with special attention to hypha/epibasidium ratio. Some generic concepts are changed. New genera Raduliporus Spirin & Zmitr. (type Polyporus aneirinus Sommerf. : Fr.), Emmia Zmitr., Spirin & V. Malysheva (type Polyporus latemarginatus Dur. & Mont.), and Leptochaete Zmitr. & Spirin (type Thelephora sanguinea Fr. : Fr.) are described. The genus Byssomerulius Parmasto is proposed to be conserved versus Dictyonema C. Ag. The genera Abortiporus Murrill and Bjer- kandera P. Karst. are reduced to Grifola Gray. In total, 69 new combinations are proposed. The species Emmia metamorphosa (Fuckel) Spirin, Zmitr. & Malysheva (commonly known as Ceri- poria metamorphosa (Fuckel) Ryvarden & Gilb.) is reported as new to Russia. Key words: aphyllophoroid fungi, corticioid fungi, Dictyonema, Fistulinaceae, homo- basidiomycetes, Laetiporaceae, merulioid fungi, Phanerochaetaceae, phylogeny, systematics I. INTRODUCTORY NOTES There is no general agreement how to outline the limits of the forms which should be called phanerochaetoid fungi.
    [Show full text]
  • Notes, Outline and Divergence Times of Basidiomycota
    Fungal Diversity (2019) 99:105–367 https://doi.org/10.1007/s13225-019-00435-4 (0123456789().,-volV)(0123456789().,- volV) Notes, outline and divergence times of Basidiomycota 1,2,3 1,4 3 5 5 Mao-Qiang He • Rui-Lin Zhao • Kevin D. Hyde • Dominik Begerow • Martin Kemler • 6 7 8,9 10 11 Andrey Yurkov • Eric H. C. McKenzie • Olivier Raspe´ • Makoto Kakishima • Santiago Sa´nchez-Ramı´rez • 12 13 14 15 16 Else C. Vellinga • Roy Halling • Viktor Papp • Ivan V. Zmitrovich • Bart Buyck • 8,9 3 17 18 1 Damien Ertz • Nalin N. Wijayawardene • Bao-Kai Cui • Nathan Schoutteten • Xin-Zhan Liu • 19 1 1,3 1 1 1 Tai-Hui Li • Yi-Jian Yao • Xin-Yu Zhu • An-Qi Liu • Guo-Jie Li • Ming-Zhe Zhang • 1 1 20 21,22 23 Zhi-Lin Ling • Bin Cao • Vladimı´r Antonı´n • Teun Boekhout • Bianca Denise Barbosa da Silva • 18 24 25 26 27 Eske De Crop • Cony Decock • Ba´lint Dima • Arun Kumar Dutta • Jack W. Fell • 28 29 30 31 Jo´ zsef Geml • Masoomeh Ghobad-Nejhad • Admir J. Giachini • Tatiana B. Gibertoni • 32 33,34 17 35 Sergio P. Gorjo´ n • Danny Haelewaters • Shuang-Hui He • Brendan P. Hodkinson • 36 37 38 39 40,41 Egon Horak • Tamotsu Hoshino • Alfredo Justo • Young Woon Lim • Nelson Menolli Jr. • 42 43,44 45 46 47 Armin Mesˇic´ • Jean-Marc Moncalvo • Gregory M. Mueller • La´szlo´ G. Nagy • R. Henrik Nilsson • 48 48 49 2 Machiel Noordeloos • Jorinde Nuytinck • Takamichi Orihara • Cheewangkoon Ratchadawan • 50,51 52 53 Mario Rajchenberg • Alexandre G.
    [Show full text]
  • An Overview of Aphyllophorales (Wood Rotting Fungi) from India
    Int.J.Curr.Microbiol.App.Sci (2013) 2(12): 112-139 ISSN: 2319-7706 Volume 2 Number 12 (2013) pp. 112-139 http://www.ijcmas.com Review Article An overview of Aphyllophorales (wood rotting fungi) from India Kiran Ramchandra Ranadive* Waghire College, Saswad, Tal-Purandar, Dist. Pune, Maharashtra (India) *Corresponding author A B S T R A C T K e y w o r d s During field and literature surveys, a rich mycobiota was observed in the vegetation of India. The heavy rainfall and high humidity favours the growth of Fungi; Aphyllophoraceous fungi. The present work materially adds to our knowledge of Aphyllophorales; Poroid and Non-Poroid Aphyllophorales from all over India. A total of more than Basidiomycetes; 190 genera of 52 families and total 1175 species of from poroid and non-poroid semi-evergreen Aphyllophorales fungi were reported from Indian literature till 2012.The checklist gives the total count of aphyllophoraceous fungal diversity from India which is also forest.. a valued addition for comparing aphyllophoraceous diversity in the world. Introduction Aphyllophorales order was proposed by in culture are recognized by Stalper. Rea, after Patouillard, for Basidiomycetes (Stalper,1978). having macroscopic basidiocarps in which the hymenophore is flattened Much of the literature of the order is based (Thelephoraceae), club-like on the traditional family groupings and as (Clavariaceae), tooth-like (Hydnaceae) or under the current re-arrangements, one has the hymenium lining tubes family may exhibit several different types (Polyporaceae) or some times on lamellae, of hymenophore (e.g. Gomphaceae has the poroid or lamellate hymenophores effuse, clavarioid, hydnoid and being tough and not fleshy as in the cantharelloid hymenophores).
    [Show full text]
  • Genera of Corticioid Fungi: Keys, Nomenclature and Taxonomy Article
    Studies in Fungi 5(1): 125–309 (2020) www.studiesinfungi.org ISSN 2465-4973 Article Doi 10.5943/sif/5/1/12 Genera of corticioid fungi: keys, nomenclature and taxonomy Gorjón SP BIOCONS – Department of Botany and Plant Physiology, University of Salamanca, 37007 Salamanca, Spain Gorjón SP 2020 – Genera of corticioid fungi: keys, nomenclature, and taxonomy. Studies in Fungi 5(1), 125–309, Doi 10.5943/sif/5/1/12 Abstract A review of the worldwide corticioid homobasidiomycetes genera is presented. A total of 620 genera are considered with comments on their taxonomy and nomenclature. Of them, about 420 are accepted and keyed out, described in detail with remarks on their taxonomy and systematics. Key words – Corticiaceae – Crust fungi – Diversity – Homobasidiomycetes Introduction Corticioid fungi are a diverse and heterogeneous group of fungi mainly referred to basidiomycete fungi in which basidiomes are generally resupinate. Basidiome construction is often simple, and in most cases, only generative hyphae are found. In more structured basidiomes, those with a reflexed margin or with a pileate surface, more or less sclerified hyphae are usually found. Even the basidiome structure is apparently not very complex, hymenophore configuration should be highly variable finding smooth surfaces or different variations to increase the spore production area such as rugose, tuberculate, aculeate, merulioid, folded, or poroid hymenial surfaces. It is often thought that corticioid fungi produce unattractive and little variable forms and, in most cases, they go unnoticed by most mycologists as ungraceful forms that ‘cover sticks and look like a paint stain’. Although the macroscopic variability compared to other fungi is, but not always, usually limited, under the microscope they surprise with a great diversity of forms of basidia, cystidia, spores and other microscopic elements (Hjortstam et al.
    [Show full text]
  • Checklist of the Aphyllophoraceous Fungi (Agaricomycetes) of the Brazilian Amazonia
    Posted date: June 2009 Summary published in MYCOTAXON 108: 319–322 Checklist of the aphyllophoraceous fungi (Agaricomycetes) of the Brazilian Amazonia ALLYNE CHRISTINA GOMES-SILVA1 & TATIANA BAPTISTA GIBERTONI1 [email protected] [email protected] Universidade Federal de Pernambuco, Departamento de Micologia Av. Nelson Chaves s/n, CEP 50760-420, Recife, PE, Brazil Abstract — A literature-based checklist of the aphyllophoraceous fungi reported from the Brazilian Amazonia was compiled. Two hundred and sixteen species, 90 genera, 22 families, and 9 orders (Agaricales, Auriculariales, Cantharellales, Corticiales, Gloeophyllales, Hymenochaetales, Polyporales, Russulales and Trechisporales) have been reported from the area. Key words — macrofungi, neotropics Introduction The aphyllophoraceous fungi are currently spread througout many orders of Agaricomycetes (Hibbett et al. 2007) and comprise species that function as major decomposers of plant organic matter (Alexopoulos et al. 1996). The Amazonian Forest (00°44'–06°24'S / 58°05'–68°01'W) covers an area of 7 × 106 km2 in nine South American countries. Around 63% of the forest is located in nine Brazilian States (Acre, Amazonas, Amapá, Pará, Rondônia, Roraima, Tocantins, west of Maranhão, and north of Mato Grosso) (Fig. 1). The Amazonian forest consists of a mosaic of different habitats, such as open ombrophilous, stational semi-decidual, mountain, “terra firme,” “várzea” and “igapó” forests, and “campinaranas” (Amazonian savannahs). Six months of dry season and six month of rainy season can be observed (Museu Paraense Emílio Goeldi 2007). Even with the high biodiversity of Amazonia and the well-documented importance of aphyllophoraceous fungi to all arboreous ecosystems, few studies have been undertaken in the Brazilian Amazonia on this group of fungi (Bononi 1981, 1992, Capelari & Maziero 1988, Gomes-Silva et al.
    [Show full text]
  • Delineations of Forest Fungi: Morphology and Relationships of Vararia
    DELINEATIONS OF FOREST FUNGI: MORPHOLOGY AND RELATIONSHIPS OF VARARIA by PAUL L. LENTZ1 & HAZEL H. McKAY u (with 5 plates) (22.V.1965) INTRODUCTION Vararia includes cortieioid and stereoid species of the basidiomy- cetous order Aphyllophorales (Polyporales). This discussion of the genus is based on a series of collections from Mississippi by LENTZ (1959), on numerous specimens in the National Fungus Collections, on a few borrowed type collections, and on cultures prepared by LENTZ and various others and maintained in the culture collection of the Forest Disease Research Laboratory. Morphological details of individual species and citation of specimens will be provided in a paper now being prepared. BASIDIOCARPS Basidiocarps of Vararia develop in a manner entirely unfami- liar to mycologists a few years ago but now becoming well known from investigations of genera such as Laeticorticium (DoNK, 1956, 1957) and Aleurodiscus (LEMKE, 1964). The essential characteris- tic of this group is formation of basidia at a considerable depth be- neath the hymenial surface and the resultant passage of the apical portion of the basidium through a blanketing hyphal mass in order to reach the surface. DONK (1957) used the term hyphidial hyme- nium for this kind of development, but his "thickening euhymenium" apparently is correlated with the same pattern of basidiaI devel- opment. LEMKE (1964) substituted the term catahymenium for hyphidial hymenium, and DONK (1964) accepted LEMKE'S term be- cause, as he said, the blanketing hyphal mass may also include gloe- ocystidia. 1) Mycologist, Crops Research Division, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland. 2) Botanist, Beltsville Forest Disease Research Laboratory, Forest Service, U.S.
    [Show full text]
  • Polyporales, Basidiomycota)
    https://helda.helsinki.fi Polypores and genus concepts in Phanerochaetaceae (Polyporales, Basidiomycota) Miettinen, Otto 2016 Miettinen , O , Spirin , V , Vlasák , J , Rivoire , B , Stenroos , S & Hibbett , D 2016 , ' Polypores and genus concepts in Phanerochaetaceae (Polyporales, Basidiomycota) ' MycoKeys , vol. 17 , pp. 1-46 . DOI: 10.3897/mycokeys.17.10153 http://hdl.handle.net/10138/170328 https://doi.org/10.3897/mycokeys.17.10153 Downloaded from Helda, University of Helsinki institutional repository. This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Please cite the original version. A peer-reviewed open-access journal MycoKeys 17:Polypores 1–46 (2016) and genus concepts in Phanerochaetaceae (Polyporales, Basidiomycota) 1 doi: 10.3897/mycokeys.17.10153 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Polypores and genus concepts in Phanerochaetaceae (Polyporales, Basidiomycota) Otto Miettinen1, Viacheslav Spirin1, Josef Vlasák2, Bernard Rivoire3, Soili Stenroos1, David S. Hibbett4 1 Finnish Museum of Natural History, University of Helsinki, Finland 2 Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic 3 Société Linnéenne, Lyon, France 4 Biology Department, Clark University, Worcester, Massachusetts, United States of America Corresponding author: Otto Miettinen ([email protected]) Academic editor: R.H. Nilsson | Received 19 August 2016 | Accepted 8 November 2016 | Published 8 December 2016 Citation: Miettinen O, Spirin V, Vlasák J, Rivoire B, Stenroos S, Hibbett DS (2016) Polypores and genus concepts in Phanerochaetaceae (Polyporales, Basidiomycota). MycoKeys 17: 1–46. https://doi.org/10.3897/mycokeys.17.10153 Abstract We explored whether DNA-phylogeny-based and morphology-based genus concepts can be reconciled in the basidiomycete family Phanerochaetaceae.
    [Show full text]