Revisiting the Taxonomy of Phanerochaete (Polyporales, Basidiomycota) Using a Four Gene Dataset and Extensive ITS Sampling
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fungi) in Brazilian Mangroves Influenced by Temporal and Spatial Variations
The community structure of macroscopic basidiomycetes (Fungi) in Brazilian mangroves influenced by temporal and spatial variations Georgea Santos Nogueira-Melo1, Paulo Jorge Parreira Santos2 & Tatiana Baptista Gibertoni1 1. Departamento de Micologia, Universidade Federal de Pernambuco, Av. Nelson Chaves s/n, CEP 50760-420, Recife, PE, Brazil; [email protected], [email protected] 2. Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Nelson Chaves s/n, CEP 50760-420, Recife, PE, Brazil; [email protected] Received 12-XII-2013. Corrected 22-V-2014. Accepted 24-VI-2014. Abstract: Mangroves are transitional ecosystems between terrestrial and marine environments, and are dis- tinguished by a high abundance of animals, plants, and fungi. Although macrofungi occur in different types of habitat, including mangroves, little is known about their community structure and dynamic. Therefore the aim of this study was to analyze the diversity of macrofungi in a number of Brazilian mangroves, and the relation- ship between such diversity, precipitation and area of collection. A total of 32 field trips were undertaken from 2009 to 2010, and macrofungi were studied in four 250×40m transects: Timbó and Santa Cruz Channel on the Northern coast, and Maracaípe and Ariquindá on the Southern coast. All basidiomata found along the transects were placed in paper bags, air-dried and identified using existing literature. It was found that Northern areas predominantly featured Avicennia schaueriana mangroves, while Rhizophora mangle dominated in Southern transects. A total of 275 specimens were collected, and 33 species, 28 genera, 14 families and six orders were represented. Overall abundance and species richness did not vary significantly among areas, but varied accord- ing to time, being higher during the rainy season. -
Identification of Three Wood Decay Fungi in Yeoninsan Provincial Park, Korea
Journal240 of Species Research 7(3):240-247, 2018JOURNAL OF SPECIES RESEARCH Vol. 7, No. 3 Identification of three wood decay fungi in Yeoninsan Provincial Park, Korea Sun Lul Kwon1, Seokyoon Jang1, Min-Ji Kim2, Kyeongwon Kim1, Chul-Whan Kim1, Yeongseon Jang3, Young Woon Lim2, Changmu Kim4 and Jae-Jin Kim1,* 1Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Republic of Korea 2School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea 3Division of Wood Chemistry and Microbiology, National Institute of Forest Science, Seoul 02455, Republic of Korea 4Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea *Correspondent: [email protected] Though several wood decay fungi have been reported in the world-wide, only about 600 wood decay fungi have been reported in Korea to date. Thus, the objective of this study was to secure resources for the wood decay fungi in Korea. We investigated wood decay fungi in Yeoninsan Provincial Park, Korea, and the collected specimens were identified based on ITS sequence analysis. Two species were unrecorded species in Korea: Postia hirsuta (Polyporales, Basidiomycota) and Hyphodontia reticulata (Hymenochaetales, Basidiomycota). Another species was previously reported without detailed description: Ceriporia alachuana (Polyporales, Basidiomycota). Here, we provided additional detailed microscopic features and phylogenetic analysis of these species. Keywords: Basidiomycota, ITS, morphology, phylogeny, taxonomy Ⓒ 2018 National Institute of Biological Resources DOI:10.12651/JSR.2018.7.3.240 INTRODUCTION ITS show low species resolution for some fungi (Hong et al., 2015), it is suitable for most wood decay fungi (Jang Wood decay fungi play a significant role in forest eco- et al., 2016b). -
(63) Continuation Inspart of Application No. PCT RE"SE SEN"I", "ES"E"NE
US 2010.0086647A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0086647 A1 Kristiansen (43) Pub. Date: Apr. 8, 2010 (54) FEED OR FOOD PRODUCTS COMPRISING filed on Jan. 25, 2006, provisional application No. FUNGALMATERAL 60/690,496, filed on Jun. 15, 2005. (75) Inventor: Bjorn Kristiansen, Frederikstad (30) Foreign Application Priority Data (NO) May 13, 2005 (DK) ........................... PA 2005 00710 Correspondence Address: Jun. 15, 2005 (DK). ... PA 2005 OO88O BROWDY AND NEIMARK, P.L.L.C. Jul. 15, 2005 (DK) ....................... PCTFDKO5/OO498 624 NINTH STREET, NW Jan. 25, 2006 (DK)........................... PA 2006 OO117 SUTE 300 WASHINGTON, DC 20001-5303 (US) Publication Classification 51) Int. Cl. (73)73) AssigneeA : MEDMUSHAS(DK) s HORSHOLM ( A2.3L I/28 (2006.01) A23K L/18 (2006.01) (21) Appl. No.: 11/914,318 A23K L/6 (2006.01) CI2P 19/04 (2006.01) (22) PCT Filed: May 11, 2006 AOIK 6L/00 (2006.01) (86). PCT NO. PCT/DKO6/OO2S3 (52) U.S. Cl. ................................ 426/62: 426/2: 119/230 S371 (c)(1) (57) ABSTRACT (2), (4) Date: Dec. 1, 2009 The present invention relates to feed and food compositions comprising material obtained by fermenting fungi of the Related U.S. Application Data Basidiomycetes family in a liquid medium. Interestingly, (63) DK2005/000498,continuation inspart filed onof Jul.application 15, 2005. No. PCT enhanceRE"SE Survival SEN"I",and/or support "ES"E"NE growth of normal, healthy (60) Provisional application No. 60/690,496, filed on Jun. animals. Furthermore, the compounds may modulate the 15, 2005, provisional application No. -
Gymnosperms) of New York State
QK 129 . C667 1992 Pinophyta (Gymnosperms) of New York State Edward A. Cope The L. H. Bailey Hortorium Cornell University Contributions to a Flora of New York State IX Richard S. Mitchell, Editor 1992 Bulletin No. 483 New York State Museum The University of the State of New York THE STATE EDUCATION DEPARTMENT Albany, New York 12230 V A ThL U: ESTHER T. SVIERTZ LIBRARY THI-: ?‘HW YORK BOTANICAL GARDEN THE LuESTHER T. MERTZ LIBRARY THE NEW YORK BOTANICAL GARDEN Pinophyta (Gymnosperms) of New York State Edward A. Cope The L. H. Bailey Hortorium Cornell University Contributions to a Flora of New York State IX Richard S. Mitchell, Editor 1992 Bulletin No. 483 New York State Museum The University of the State of New York THE STATE EDUC ATION DEPARTMENT Albany, New York 12230 THE UNIVERSITY OF THE STATE OF NEW YORK Regents of The University Martin C. Barell, Chancellor, B.A., I.A., LL.B. Muttontown R. Carlos Carballada, Vice Chancellor, B.S. Rochester Willard A. Genrich, LL.B. Buffalo Emlyn I. Griffith. A.B.. J.D. Rome Jorge L. Batista, B.A.. J.D. Bronx Laura Bradley Chodos, B.A., M.A. Vischer Ferry Louise P. Matteoni, B.A., M.A., Ph.D. Bayside J. Edward Meyer, B.A., LL.B. Chappaqua FloydS. Linton, A.B., M.A., M.P.A. Miller Place Mimi Levin Lif.ber, B.A., M.A. Manhattan Shirley C. Brown, B.A., M.A., Ph.D. Albany Norma Gluck, B.A., M.S.W. Manhattan Adelaide L. Sanford, B.A., M.A., P.D. -
Oxalic Acid Degradation by a Novel Fungal Oxalate Oxidase from Abortiporus Biennis Marcin Grąz1*, Kamila Rachwał2, Radosław Zan2 and Anna Jarosz-Wilkołazka1
Vol. 63, No 3/2016 595–600 http://dx.doi.org/10.18388/abp.2016_1282 Regular paper Oxalic acid degradation by a novel fungal oxalate oxidase from Abortiporus biennis Marcin Grąz1*, Kamila Rachwał2, Radosław Zan2 and Anna Jarosz-Wilkołazka1 1Department of Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland; 2Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Lublin, Poland Oxalate oxidase was identified in mycelial extracts of a to formic acid and carbon dioxide (Mäkelä et al., 2002). basidiomycete Abortiporus biennis strain. Intracellular The degradation of oxalate via action of oxalate oxidase enzyme activity was detected only after prior lowering (EC 1.2.3.4), described in our study, is atypical for fun- of the pH value of the fungal cultures by using oxalic or gi and was found predominantly in higher plants. The hydrochloric acids. This enzyme was purified using size best characterised oxalate oxidase originates from cereal exclusion chromatography (Sephadex G-25) and ion-ex- plants (Dunwell, 2000). Currently, only three oxalate oxi- change chromatography (DEAE-Sepharose). This enzyme dases of basidiomycete fungi have been described - an exhibited optimum activity at pH 2 when incubated at enzyme from Tilletia contraversa (Vaisey et al., 1961), the 40°C, and the optimum temperature was established at best characterised so far enzyme from Ceriporiopsis subver- 60°C. Among the tested organic acids, this enzyme ex- mispora (Aguilar et al., 1999), and an enzyme produced by hibited specificity only towards oxalic acid. Molecular Abortiporus biennis (Grąz et al., 2009). The enzyme from mass was calculated as 58 kDa. The values of Km for oxa- C. -
Laetisaria Arvalis (Aphyllophorales, Corticiaceae): a Possible Biological Control Agent for Rhizoctonia Solani and Pythium Species1
LAETISARIA ARVALIS (APHYLLOPHORALES, CORTICIACEAE): A POSSIBLE BIOLOGICAL CONTROL AGENT FOR RHIZOCTONIA SOLANI AND PYTHIUM SPECIES1 H. H. BURDSALL, JR. Center for Forest Mycology Research, Forest Products Laboratory2 USDA, Forest Service, Madison, Wisconsin 53705 H. C. HOCH Department of Plant Pathology, New York State Agricultural Experiment Station, Cornell University, Geneva, New York 14456 M. G. BOOSALIS Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska 68583 AND E. C. SETLIFF State University of New York, College of Environmental Science and Forestry. School of Biology, Chemistry, and Forestry, Syracuse, New York 13210 SUMMARY Laetisaria arvalis, a soil-inhabiting basidiomycete, is described from culture as a new species. Descriptions and illustrations of the basidiocarps and cultures are provided and the relationship of L. arvalis to Phanero chaete as well as its potential importance as a biological control agent are discussed. About 1960, M. G. Boosalis isolated a fungus with clamp connections from soil planted to sugar beets (Beta vulgaris L.) for more than 50 yr near Scottsbluff, Scotts Bluff County, Neb. His early studies of this isolate indicated that it might be used as a biological control agent against Thanatephorus cucumerus (Frank) Donk (anamorph : Rhizo ctonia solani Kuhn) the cause of a root rot of sugar beets. Recently the 1This article was written arid prepared by U.S. Government employees on official time, and it is therefore in the public domain. 2Maintained at Madison, Wis., in cooperation with the University of Wisconsin. 728 729 BURDSALL ET AL. : LAETISARIA ARVALIS isolate has been reported to be a hyperparasite of R. solani (Odvody et al., 1977) and a possible biological control agent of Pythium ultimum Trow (Hoch and Abawi, 1979). -
Three Species of Wood-Decaying Fungi in <I>Polyporales</I> New to China
MYCOTAXON ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2017 January–March 2017—Volume 132, pp. 29–42 http://dx.doi.org/10.5248/132.29 Three species of wood-decaying fungi in Polyporales new to China Chang-lin Zhaoa, Shi-liang Liua, Guang-juan Ren, Xiao-hong Ji & Shuanghui He* Institute of Microbiology, Beijing Forestry University, No. 35 Qinghuadong Road, Haidian District, Beijing 100083, P.R. China * Correspondence to: [email protected] Abstract—Three wood-decaying fungi, Ceriporiopsis lagerheimii, Sebipora aquosa, and Tyromyces xuchilensis, are newly recorded in China. The identifications were based on morphological and molecular evidence. The phylogenetic tree inferred from ITS+nLSU sequences of 49 species of Polyporales nests C. lagerheimii within the phlebioid clade, S. aquosa within the gelatoporia clade, and T. xuchilensis within the residual polyporoid clade. The three species are described and illustrated based on Chinese material. Key words—Basidiomycota, polypore, taxonomy, white rot fungus Introduction Wood-decaying fungi play a key role in recycling nutrients of forest ecosystems by decomposing cellulose, hemicellulose, and lignin of the plant cell walls (Floudas et al. 2015). Polyporales, a large order in Basidiomycota, includes many important genera of wood-decaying fungi. Recent molecular studies employing multi-gene datasets have helped to provide a phylogenetic overview of Polyporales, in which thirty-four valid families are now recognized (Binder et al. 2013). The diversity of wood-decaying fungi is very high in China because of the large landscape ranging from boreal to tropical zones. More than 1200 species of wood-decaying fungi have been found in China (Dai 2011, 2012), and some a Chang-lin Zhao and Shi-liang Liu contributed equally to this work and share first-author status 30 .. -
Plant Life MagillS Encyclopedia of Science
MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D. -
Phylum Order Number of Species Number of Orders Family Genus Species Japanese Name Properties Phytopathogenicity Date Pref
Phylum Order Number of species Number of orders family genus species Japanese name properties phytopathogenicity date Pref. points R inhibition H inhibition R SD H SD Basidiomycota Polyporales 98 12 Meruliaceae Abortiporus Abortiporus biennis ニクウチワタケ saprobic "+" 2004-07-18 Kumamoto Haru, Kikuchi 40.4 -1.6 7.6 3.2 Basidiomycota Agaricales 171 1 Meruliaceae Abortiporus Abortiporus biennis ニクウチワタケ saprobic "+" 2004-07-16 Hokkaido Shari, Shari 74 39.3 2.8 4.3 Basidiomycota Agaricales 269 1 Agaricaceae Agaricus Agaricus arvensis シロオオハラタケ saprobic "-" 2000-09-25 Gunma Kawaba, Tone 87 49.1 2.4 2.3 Basidiomycota Polyporales 181 12 Agaricaceae Agaricus Agaricus bisporus ツクリタケ saprobic "-" 2004-04-16 Gunma Horosawa, Kiryu 36.2 -23 3.6 1.4 Basidiomycota Hymenochaetales 129 8 Agaricaceae Agaricus Agaricus moelleri ナカグロモリノカサ saprobic "-" 2003-07-15 Gunma Hirai, Kiryu 64.4 44.4 9.6 4.4 Basidiomycota Polyporales 105 12 Agaricaceae Agaricus Agaricus moelleri ナカグロモリノカサ saprobic "-" 2003-06-26 Nagano Minamiminowa, Kamiina 70.1 3.7 2.5 5.3 Basidiomycota Auriculariales 37 2 Agaricaceae Agaricus Agaricus subrutilescens ザラエノハラタケ saprobic "-" 2001-08-20 Fukushima Showa 67.9 37.8 0.6 0.6 Basidiomycota Boletales 251 3 Agaricaceae Agaricus Agaricus subrutilescens ザラエノハラタケ saprobic "-" 2000-09-25 Yamanashi Hakusyu, Hokuto 80.7 48.3 3.7 7.4 Basidiomycota Agaricales 9 1 Agaricaceae Agaricus Agaricus subrutilescens ザラエノハラタケ saprobic "-" 85.9 68.1 1.9 3.1 Basidiomycota Hymenochaetales 129 8 Strophariaceae Agrocybe Agrocybe cylindracea ヤナギマツタケ saprobic "-" 2003-08-23 -
New Data on the Occurence of an Element Both
Analele UniversităĠii din Oradea, Fascicula Biologie Tom. XVI / 2, 2009, pp. 53-59 CONTRIBUTIONS TO THE KNOWLEDGE DIVERSITY OF LIGNICOLOUS MACROMYCETES (BASIDIOMYCETES) FROM CĂ3ĂğÂNII MOUNTAINS Ioana CIORTAN* *,,Alexandru. Buia” Botanical Garden, Craiova, Romania Corresponding author: Ioana Ciortan, ,,Alexandru Buia” Botanical Garden, 26 Constantin Lecca Str., zip code: 200217,Craiova, Romania, tel.: 0040251413820, e-mail: [email protected] Abstract. This paper presents partial results of research conducted between 2005 and 2009 in different forests (beech forests, mixed forests of beech with spruce, pure spruce) in CăSăĠânii Mountains (Romania). 123 species of wood inhabiting Basidiomycetes are reported from the CăSăĠânii Mountains, both saprotrophs and parasites, as identified by various species of trees. Keywords: diversity, macromycetes, Basidiomycetes, ecology, substrate, saprotroph, parasite, lignicolous INTRODUCTION MATERIALS AND METHODS The data presented are part of an extensive study, The research was conducted using transects and which will complete the PhD thesis. The CăSăĠânii setting fixed locations in some vegetable formations, Mountains are a mountain group of the ùureanu- which were visited several times a year beginning with Parâng-Lotru Mountains, belonging to the mountain the months April-May until October-November. chain of the Southern Carpathians. They are situated in Fungi were identified on the basis of both the SE parth of the Parâng Mountain, between OlteĠ morphological and anatomical properties of fruiting River in the west, Olt River in the east, Lotru and bodies and according to specific chemical reactions LaroriĠa Rivers in the north. Our area is 900 Km2 large using the bibliography [1-8, 10-13]. Special (Fig. 1). The vegetation presents typical levers: major presentation was made in phylogenetic order, the associations characteristic of each lever are present in system of classification used was that adopted by Kirk this massif. -
Fungal Diversity in the Mediterranean Area
Fungal Diversity in the Mediterranean Area • Giuseppe Venturella Fungal Diversity in the Mediterranean Area Edited by Giuseppe Venturella Printed Edition of the Special Issue Published in Diversity www.mdpi.com/journal/diversity Fungal Diversity in the Mediterranean Area Fungal Diversity in the Mediterranean Area Editor Giuseppe Venturella MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editor Giuseppe Venturella University of Palermo Italy Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Diversity (ISSN 1424-2818) (available at: https://www.mdpi.com/journal/diversity/special issues/ fungal diversity). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03936-978-2 (Hbk) ISBN 978-3-03936-979-9 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Editor .............................................. vii Giuseppe Venturella Fungal Diversity in the Mediterranean Area Reprinted from: Diversity 2020, 12, 253, doi:10.3390/d12060253 .................... 1 Elias Polemis, Vassiliki Fryssouli, Vassileios Daskalopoulos and Georgios I. -
(12) Patent Application Publication (10) Pub. No.: US 2009/0005340 A1 Kristiansen (43) Pub
US 20090005340A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0005340 A1 Kristiansen (43) Pub. Date: Jan. 1, 2009 54) BOACTIVE AGENTS PRODUCED BY 3O Foreigngn AppApplication PrioritVty Data SUBMERGED CULTIVATION OFA BASDOMYCETE CELL Jun. 15, 2005 (DK) ........................... PA 2005 OO881 Jan. 25, 2006 (DK)........................... PA 2006 OO115 (75) Inventor: Bjorn Kristiansen, Frederikstad Publication Classification (NO)NO (51) Int. Cl. Correspondence Address: A 6LX 3L/75 (2006.01) BROWDY AND NEIMARK, P.L.L.C. CI2P I/02 (2006.01) 624 NINTH STREET, NW A6IP37/00 (2006.01) SUTE 300 CI2P 19/04 (2006.01) WASHINGTON, DC 20001-5303 (US) (52) U.S. Cl. ............................ 514/54:435/171; 435/101 (57) ABSTRACT (73) Assignee: MediMush A/S, Horsholm (DK) - The invention in one aspect is directed to a method for culti (21) Appl. No.: 11/917,516 Vating a Basidiomycete cell in liquid culture medium, said method comprising the steps of providing a Basidiomycete (22) PCT Filed: Jun. 14, 2006 cell capable of being cultivated in a liquid growth medium, e - rs and cultivating the Basidiomycete cell under conditions (86). PCT No.: PCT/DK2OO6/OOO340 resulting in the production intracellularly or extracellularly of one or more bioactive agent(s) selected from the group con S371 (c)(1) sisting of oligosaccharides, polysaccharides, optionally gly (2), (4) Date: Ul. 31, 2008 cosylated peptides or polypeptides, oligonucleotides, poly s e a v-9 nucleotides, lipids, fatty acids, fatty acid esters, secondary O O metabolites Such as polyketides, terpenes, steroids, shikimic Related U.S. Application Data acids, alkaloids and benzodiazepine, wherein said bioactive (60) Provisional application No.