Филогенез И Адаптациогенез Полипоровых Грибов (Семейство Polyporaceae S

Total Page:16

File Type:pdf, Size:1020Kb

Филогенез И Адаптациогенез Полипоровых Грибов (Семейство Polyporaceae S ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ БОТАНИЧЕСКИЙ ИНСТИТУТ ИМ. В.Л. КОМАРОВА РОССИЙСКОЙ АКАДЕМИИ НАУК На правах рукописи Змитрович Иван Викторович ФИЛОГЕНЕЗ И АДАПТАЦИОГЕНЕЗ ПОЛИПОРОВЫХ ГРИБОВ (СЕМЕЙСТВО POLYPORACEAE S. STR.) 03.02.12 – «Микология» Диссертация на соискание ученой степени доктора биологических наук Научный консультант доктор биологических наук, профессор Бондарцева Маргарита Аполлинарьевна Санкт-Петербург – 2017 2 ОГЛАВЛЕНИЕ ВВЕДЕНИЕ ………………………………………………………………………………... 6 ГЛАВА 1. ОБЩАЯ ХАРАКТЕРИСТИКА ПОЛИПОРОВЫХ ГРИБОВ (СЕМЕЙСТВО POLYPORACEAE S. STR.) ……………………………………… 16 1.1. История систематики семейства Polyporaceae ……………………………….. 16 1.2. Очерк морфологии и плектологии Polyporaceae ……………………………… 52 1.2.1. Особенности макроморфологии ……………………………………….. 52 1.2.2. Гифальная морфология …………………………………………………. 59 1.2.2.1. История и терминология ………………………………. 59 1.2.2.2. Генеративные гифы ……………………………………... 68 1.2.2.3. Псевдоскелетные гифы ………………………………… 69 1.2.2.4. Скелетные гифы ………………………………………….. 70 1.2.2.5. Связывающие гифы ……………………………………… 71 1.2.2.6. Упрощенная классификация гифальных систем полипоровых грибов ……………………………………….. 72 1.2.2.7. Гифальные системы и морфогенез ………………… 77 1.2.3. Гимений и его элементы ……………………………………………….. 79 1.2.3.1. Стерильные элементы гимения ……………………… 79 1.2.3.2. Базидии ………………………………………………………. 80 1.2.3.3. Базидиo споры ………………………………………………. 81 1.2.3.4. Ганодермоидные базидиоспоры и вопросы эволюции спородермы …………………………………….. 82 1.2.4. Митоспоры ……………………………………………………………… 90 1.3. Субстратная адаптация грибов семейства Polyporaceae …………………….. 91 1.4. Система экоморф грибов семейства Polyporaceae …………………………… 96 1.4.1. Контекст: развитие взглядов на экоморфологическую систему грибов ……………………………………………………………………. 96 1.4.2. Развернутая экоморфологическая система грибов семейства 3 Polyporaceae ……………………………………………………………... 104 ГЛАВА 2. МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ ………………………… 108 2.1. Изученный материал …………………………………………………………. 108 2.2. Техника морфологического анализа ………………………………………... 110 2.3. Техника молекулярно-филогенетического анализа ……………………….. 111 2.3.1. Выделение ДНК ………………………………………………………. 111 2.3.2. Амплификация ДНК ………………………………………………….. 111 2.3.3. Секвенирование ДНК …………………………………………………. 112 2.3.4. Филогенетический анализ ……………………………………………. 112 ГЛАВА 3. РЕКОНСТРУКЦИЯ ФИЛОГЕНЕЗА ПОЛИПОРОВЫХ ГРИБОВ …… 114 3.1. Подходы к филогенетическим гипотезам и оценке ранга таксонов …………. 114 3.2. Реконструкция филогенетического древа, фокусирующаяся на траметоидных таксонах ……………………………………………………….. 116 3.3. Реконструкция филогенетического древа, фокусирующаяся на полипороидных и лентиноидных таксонах. Балансировка филогенетического древа Polyporaceae ……………………………………… 125 ГЛАВА 4. АДАПТАЦИОГЕНЕЗ ПОЛИПОРОВЫХ ГРИБОВ ……………………... 134 4.1. Концепция адаптациогенеза ……………………………………………………. 134 4.1.1. Общие положения ………………………………………………………. 134 4.1.2. Многоуровневость адаптациогенеза …………………………………... 136 4.1.2.1. Клеточная адаптация ……………………………………. 136 4.1.2.2. Многоклеточность и адаптация …………………….. 139 4.1.2.3. Преадаптивный потенциал некодирующих последовательностей ДНК …………………………………... 143 4.1.2.4. Понятие гистиона …………………………………………. 145 4.1.2.5. Адаптации организменного уровня и онтогенез 148 4.1.2.6. Адаптации организменного уровня в филогенетическом аспекте …………………………………. 157 4.1.3. Обобщенное представление об адаптациогенезе ……………………... 160 4.2. Дифференциация экотипов и видообразование ………………………………. 162 4.2.1. Экады и экотипы ………………………………………………………... 162 4.2.2. Эволюционное значение экотипической дифференциации …………. 164 4.2.2.1. Проблема Daedaleopsis tricolor/ D . confragosa .. 167 4.2.2.2. Проблема Perenniporia valliculorum/ P . 4 subacida ………………………………………………………… 169 4.2.2.3. Проблема Perenniporia kilemariensis/ Yuchengia (Perenniporia) narymica ………………………………….. 171 4.2.2.4. Проблема Trametes velutina/T. pubescens ………. 173 4.2.2.5. Недавно описанная разновидность Trametes pubescens var. anthopora ………………………………… 175 4.2.3. Представление о видообразовании в контексте экотипической дифференциации ………………………………………………………… 178 4.2.3.1. Экотипический континуум в ряду Trametes versicolor– T. multicolor‒T. pubescens ……………… 181 4.2.3.2. Экотипический полиморфизм в долготном градиенте: ряд Pachykytospora tuberculosa– P. wasseri– P. subtrametea …………………………………… 195 4.2.3.3. Резкое прерывание экотипического континуума: Cerioporus rangiferinus ………………. 198 4.2.3.4. Сложность дробления линнеонов: проблема Cerioporus varius …………………………………………… 212 4.3. Биоморфологическая интерпретация родов полипоровых грибов …………... 226 4.3.1. Роды и морфотипы ……………………………………………………… 226 4.3.2. Модусы морфологической эволюции …………………………………. 236 4.3.2.1. Архаллаксис. Удлинение ножки ……………………… 238 4.3.2.2. Анаболия. «Траметизация», фомитоидные базидиомы ……………………………………………………... 239 4.3.2.3. Морфогенетическая рационализация. Редукция базидиом ………………………………………………………... 242 4.3.3. Роды и основные черты глобальной биоты …………………………… 243 ГЛАВА 5. КОНСПЕКТ СИСТЕМЫ ПОЛИПОРОВЫХ ГРИБОВ (POLYPORACEAE S. STR.) ………………………………………………………… 255 ГЛАВА 6. ПРОГНОСТИЧЕСКИЕ ВОЗМОЖНОСТИ СИСТЕМЫ ПОЛИПОРОВЫХ ГРИБОВ ……………………………………………………… 287 6.1. О прогностических возможностях естественной системы …………………… 287 6.2. Поиск среди полипоровых грибов новых перспективных видов – продуцентов лигнинокисляющих ферментов ……………………………….. 288 6.3. Поиск среди полипоровых грибов новых перспективных видов – 5 продуцентов биоактивных комплексов, воздействующих на иммунные и злокачественно трансформированные клетки ………………………………. 290 6.3.3.1. Основные механизмы онкостатической и иммуномодулирующей активности метаболитов и биоактивных комплексов, продуцируемых полипоровыми грибами …………………………………………. 291 6.3.3.2. Виды полипоровых грибов, широко известные как продуценты биоактивных комплексов и требующие изучения близкородственные таксоны …………………… 295 ЗАКЛЮЧЕНИЕ …………………………………………………………………………… 301 ВЫВОДЫ ………………………………………………………………………………….. 302 СПИСОК ЛИТЕРАТУРЫ ………………………………………………………………. 305 ПРИЛОЖЕНИЯ ………………………………………………………………………….. 353 6 ВВЕДЕНИЕ Актуальность темы исследования. Семейство Polyporaceae, представленное по современным оценкам более чем 550 видами, содержит важные в биотехнологическом отношении объекты – Ganoderma lucidum, Lentinus tigrinus, Trametes versicolor и др., поэтому соврешенствование филогенетической системы полипоровых грибов, позволяющее выявлять качественные характеристики филогенетически близких видов и, соответственно, прогнозировать их возможные полезные свойства, представляется весьма актуальной задачей. Полипоровые грибы – продуценты ферментов, способных трансформировать лигнин, имеют большое значение для хозяйственной деятельности человека – при переработке древесины, в бумажном и текстильном производствах, как агенты биоремедиации производственных отходов (Martinez et al., 1994; Messner, Srebotnik, 1994; Reid, Paice, 1994; Гаврилова и др., 2002; Ţura et al., 2016). Кроме того, глюканы и белково-полисахаридные комплексы, входящие в состав клеточной стенки полипоровых грибов, а также продуцируемые некоторыми видами вторичные метаболиты получают применение в иммунотерапии и таргетной терапии злокачественных новообразований и интерес к этим организмам со стороны биомедицины и фармакологии с каждым годом возрастает (Wasser, 2002, 2010; Stamets, 2005; Переведенцева, 2011; Феофилова и др., 2013; Белова, 2015; Змитрович, 2015). Учитывая увеличивающиеся масштабы производства и фактор конкуренции в области биотехнологий актуальным остается поиск новых видов – активных продуцентов ферментов и биологически-активных субстанций. Прогностические возможности филогенетической системы связаны с представлением о том, что степень дивергенции групп находится в обратной зависимости от сохранения их фенотипических особенностей, в том числе востребованных в практическом отношении (Змитрович и др., 2007; Psurtseva et al., 2007; Ţura et al., 2016). На уровне крупных групп в процессе эволюции вырабатываются системы запретов для морфофизиологической конвергенции организмов. Маркировка таких групп открывает возможности для прогностических оценок различной степени определенности, касающихся как эволюционных тенденций организмов, так и их некоторых существенных с точки зрения прикладных исследований свойств. 7 «Молекулярная революция», открывшая возможности получения в ходе сравнительного изучения нуклеотидных последовательностей филогенетически информативных участков генома «протокола дивергенции», подводит под классификацию объективное и более устойчивое основание. Таким образом, со стороны филогенетической систематики возможна оптимизация путей поиска новых «гнезд» продуцентов, учитывая значительное разнообразие группы полипоровых грибов. Однако, помимо важного прикладного значения, надежная реконструкция филогенеза позволяет продвинуться по целому ряду фундаментальных направлений, в частности, понимания путей адаптивной эволюции той или иной группы организмов. До недавнего времени, когда в связи с успехами молекулярной биологии и геносистематики появились возможности более надежной реконструкции филогенеза, противопоставление адаптивных и инадаптивных («приспособительных и организационных», «ведущих и подчиненных» и т. п.) признаков было одним из главных «рабочих инструментов» систематика, причем область эта была не лишена субъективных оценок. «Молекулярная революция» в значительной мере снизила остроту дискуссии об адаптивных и инадаптивных признаках, и с выявлением объективной картины филогенеза эволюционная морфология обрела достаточно устойчивое основание. По сути, появилась
Recommended publications
  • Appendix K. Survey and Manage Species Persistence Evaluation
    Appendix K. Survey and Manage Species Persistence Evaluation Establishment of the 95-foot wide construction corridor and TEWAs would likely remove individuals of H. caeruleus and modify microclimate conditions around individuals that are not removed. The removal of forests and host trees and disturbance to soil could negatively affect H. caeruleus in adjacent areas by removing its habitat, disturbing the roots of host trees, and affecting its mycorrhizal association with the trees, potentially affecting site persistence. Restored portions of the corridor and TEWAs would be dominated by early seral vegetation for approximately 30 years, which would result in long-term changes to habitat conditions. A 30-foot wide portion of the corridor would be maintained in low-growing vegetation for pipeline maintenance and would not provide habitat for the species during the life of the project. Hygrophorus caeruleus is not likely to persist at one of the sites in the project area because of the extent of impacts and the proximity of the recorded observation to the corridor. Hygrophorus caeruleus is likely to persist at the remaining three sites in the project area (MP 168.8 and MP 172.4 (north), and MP 172.5-172.7) because the majority of observations within the sites are more than 90 feet from the corridor, where direct effects are not anticipated and indirect effects are unlikely. The site at MP 168.8 is in a forested area on an east-facing slope, and a paved road occurs through the southeast part of the site. Four out of five observations are more than 90 feet southwest of the corridor and are not likely to be directly or indirectly affected by the PCGP Project based on the distance from the corridor, extent of forests surrounding the observations, and proximity to an existing open corridor (the road), indicating the species is likely resilient to edge- related effects at the site.
    [Show full text]
  • Conservation Status Assessment
    Element Ranking Form Oregon Biodiversity Information Center Conservation Status Assessment Scientific Name: Fayodia bisphaerigera Classification: Fungus Assessment area: Global Heritage Rank: G3Q Rank Date: 3/9/2017 Assigned Rank Comments: None. Rank Adjustment Notes: Found over a wide range but rare within its range. In 2017 L. Norvell says "A good species; widespread in Asia, Europe (including Iceland), North America; critically threatened in Czech Republic (Holec & Beran 2006, Holec & al. 2015), France (Larent-Dargent 2009), and on Norway red list; 22 historical occurrences noted in Region 6. Antonín (2004) provides an excellent description of the European type material. NOTE: In 2002 Norvell noted taxonomic confusion between F. bisphaerigera and 'Mycena rainierensis' to be resolved when Redhead combined M. rainierensis in Fayodia. As no such transfer has been made, the status of the PNW taxon remains unresolved. The PNW reports of F. 'biphaerigera', would reflect the rarity accurately, and current ranking accepted until taxonomy is resolved." (Holec, Jan; Beran, Miroslav (eds.) 2006. Red list of fungi (macromycetes) of the Czech Republic]. – Příroda, Praha, 24: 1-282. [in Czech with English summary] ; Holec, Jan; Kříž, Martin; Pouzar, Zdeněk; Šandová, Markéta. 2015. Boubínský prales virgin forest, a Central European refugium of boreal-montane and old-growth forest fungi. Czech Mycology 67(2): 157–226. ; Laurent-Dargent, Jonathan. 2009. La Liste Rouge des Champignons (macromycètes) rares ou menacés de Lorraine. Thesis for Docteur de Pharmacie: Universite Henry Poincare - Nancy I. 120 pp ; Antonín, Vladimír. 2004. Notes on the genus Fayodia s.l. (Tricholomataceae) — II. Type studies of European species described in the genera Fayodia and Gamundia.
    [Show full text]
  • Distribution of Methionine Sulfoxide Reductases in Fungi and Conservation of the Free- 2 Methionine-R-Sulfoxide Reductase in Multicellular Eukaryotes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Distribution of methionine sulfoxide reductases in fungi and conservation of the free- 2 methionine-R-sulfoxide reductase in multicellular eukaryotes 3 4 Hayat Hage1, Marie-Noëlle Rosso1, Lionel Tarrago1,* 5 6 From: 1Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, 7 Marseille, France. 8 *Correspondence: Lionel Tarrago ([email protected]) 9 10 Running title: Methionine sulfoxide reductases in fungi 11 12 Keywords: fungi, genome, horizontal gene transfer, methionine sulfoxide, methionine sulfoxide 13 reductase, protein oxidation, thiol oxidoreductase. 14 15 Highlights: 16 • Free and protein-bound methionine can be oxidized into methionine sulfoxide (MetO). 17 • Methionine sulfoxide reductases (Msr) reduce MetO in most organisms. 18 • Sequence characterization and phylogenomics revealed strong conservation of Msr in fungi. 19 • fRMsr is widely conserved in unicellular and multicellular fungi. 20 • Some msr genes were acquired from bacteria via horizontal gene transfers. 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Phylogenetic Classification of Trametes
    TAXON 60 (6) • December 2011: 1567–1583 Justo & Hibbett • Phylogenetic classification of Trametes SYSTEMATICS AND PHYLOGENY Phylogenetic classification of Trametes (Basidiomycota, Polyporales) based on a five-marker dataset Alfredo Justo & David S. Hibbett Clark University, Biology Department, 950 Main St., Worcester, Massachusetts 01610, U.S.A. Author for correspondence: Alfredo Justo, [email protected] Abstract: The phylogeny of Trametes and related genera was studied using molecular data from ribosomal markers (nLSU, ITS) and protein-coding genes (RPB1, RPB2, TEF1-alpha) and consequences for the taxonomy and nomenclature of this group were considered. Separate datasets with rDNA data only, single datasets for each of the protein-coding genes, and a combined five-marker dataset were analyzed. Molecular analyses recover a strongly supported trametoid clade that includes most of Trametes species (including the type T. suaveolens, the T. versicolor group, and mainly tropical species such as T. maxima and T. cubensis) together with species of Lenzites and Pycnoporus and Coriolopsis polyzona. Our data confirm the positions of Trametes cervina (= Trametopsis cervina) in the phlebioid clade and of Trametes trogii (= Coriolopsis trogii) outside the trametoid clade, closely related to Coriolopsis gallica. The genus Coriolopsis, as currently defined, is polyphyletic, with the type species as part of the trametoid clade and at least two additional lineages occurring in the core polyporoid clade. In view of these results the use of a single generic name (Trametes) for the trametoid clade is considered to be the best taxonomic and nomenclatural option as the morphological concept of Trametes would remain almost unchanged, few new nomenclatural combinations would be necessary, and the classification of additional species (i.e., not yet described and/or sampled for mo- lecular data) in Trametes based on morphological characters alone will still be possible.
    [Show full text]
  • DPR Journal 2016 Corrected Final.Pmd
    Bul. Dept. Pl. Res. No. 38 (A Scientific Publication) Government of Nepal Ministry of Forests and Soil Conservation Department of Plant Resources Thapathali, Kathmandu, Nepal 2016 ISSN 1995 - 8579 Bulletin of Department of Plant Resources No. 38 PLANT RESOURCES Government of Nepal Ministry of Forests and Soil Conservation Department of Plant Resources Thapathali, Kathmandu, Nepal 2016 Advisory Board Mr. Rajdev Prasad Yadav Ms. Sushma Upadhyaya Mr. Sanjeev Kumar Rai Managing Editor Sudhita Basukala Editorial Board Prof. Dr. Dharma Raj Dangol Dr. Nirmala Joshi Ms. Keshari Maiya Rajkarnikar Ms. Jyoti Joshi Bhatta Ms. Usha Tandukar Ms. Shiwani Khadgi Mr. Laxman Jha Ms. Ribita Tamrakar No. of Copies: 500 Cover Photo: Hypericum cordifolium and Bistorta milletioides (Dr. Keshab Raj Rajbhandari) Silene helleboriflora (Ganga Datt Bhatt), Potentilla makaluensis (Dr. Hiroshi Ikeda) Date of Publication: April 2016 © All rights reserved Department of Plant Resources (DPR) Thapathali, Kathmandu, Nepal Tel: 977-1-4251160, 4251161, 4268246 E-mail: [email protected] Citation: Name of the author, year of publication. Title of the paper, Bul. Dept. Pl. Res. N. 38, N. of pages, Department of Plant Resources, Kathmandu, Nepal. ISSN: 1995-8579 Published By: Mr. B.K. Khakurel Publicity and Documentation Section Dr. K.R. Bhattarai Department of Plant Resources (DPR), Kathmandu,Ms. N. Nepal. Joshi Dr. M.N. Subedi Reviewers: Dr. Anjana Singh Ms. Jyoti Joshi Bhatt Prof. Dr. Ram Prashad Chaudhary Mr. Baidhya Nath Mahato Dr. Keshab Raj Rajbhandari Ms. Rose Shrestha Dr. Bijaya Pant Dr. Krishna Kumar Shrestha Ms. Shushma Upadhyaya Dr. Bharat Babu Shrestha Dr. Mahesh Kumar Adhikari Dr. Sundar Man Shrestha Dr.
    [Show full text]
  • Hans Halbwachs
    Hans Halbwachs hat are fungal characteristics Moreover, the variability of spore traits in winter. It has been speculated that good for? Well, for identifying is bewildering (as was discussed by Else this may be a strategy to avoid predators fungi, of course! Field Vellinga in the previous issue of FUNGI). (Halbwachs et al., 2016), though this Wmycologists all over the world are living Size, ornamentation, and pigmentation would imply investment, e.g., into encyclopedias when it comes to fungal occur in all combinations (Fig. 2). These antifreeze substances and producing traits. Even the most subtle differences are the visible characteristics which may relatively small fruit bodies, as in in spore size or cap coloration have their be grouped in (1) morphological (shape, Flammulina velutipes or Hygrophorus place in identifying mushrooms and size) and (2) physiological (pigments, hypothejus. Generally, species fruiting other fungi. Quite many mycologists are taste, smell, toxicity, etc.). A third, more in late autumn seem to have larger intrigued by the endless variations, for mysterious trait, is the phenology of fruit fruit bodies, at least in Cortinarius instance of fruit bodies (Fig. 1). bodies. Some do it in spring, some even (Halbwachs, 2018). Figure 1. Examples of basidiomycete fruit body shapes and colors. From left to right top: Amanita flavoconia (courtesy J. Veitch), Lactarius indigo (courtesy A. Rockefeller), Butyriboletus frostii (courtesy D. Molter); bottom: Calostoma cinnabarinum (courtesy D. Molter), Tricholomopsis decora (courtesy W. Sturgeon), Mycena adonis (courtesy D. Molter). creativecommons. org/licenses/by-sa/3.0/deed.en. 18 FUNGI Volume 12:1 Spring 2019 Knockin’ on Evolution’s Door Although some ideas are circulating about the functionality of fungal traits, mycologists want to know more about their ecological implications.
    [Show full text]
  • Type Studies in Polyporaceae 27. Species Described by P. Ch
    CZECH MYCOLOGY 64(1): 13–21, JULY 2, 2012 (ONLINE VERSION, ISSN 1805-1421) Type studies in Polyporaceae 27. Species described by P. Ch. Hennings LEIF RYVARDEN Biological Institute, University of Oslo, P.O. Box 1066, Blindern, N-0316 Oslo, Norway; [email protected] Ryvarden L. (2012): Type studies in Polyporaceae 27. Species described by P. Ch. Hennings. – Czech Mycol. 64(1): 13–21. 103 polypores described by P. Ch. Hennings have been examined based on the available types. Nine- teen species are accepted, 63 species are reduced to synonymy, the types of 19 species could not be found, while two names are illegitimate. Two new combinations are proposed: Tyromyces aquosus (Henn.) Ryvarden and Diplomitoporus daedaleiformis (Henn.) Ryvarden. These two species are provided with de- scriptions, while published recent descriptions are referred to for the other 17 accepted species. Key words: Polyporaceae, types, taxonomy, nomenclature, Berlin herbarium. Ryvarden L. (2012): Typové studie chorošů 27. Druhy popsané P. Ch. Henning- sem – Czech Mycol. 64(1): 13–21. Na základě studia dostupných typů bylo revidováno 103 druhů chorošů popsaných P. Ch. Henning- sem. 19 druhů je akceptováno, 63 zařazeno do synonymiky, typy 19 druhů nebyly nalezeny, jména 2 dru- hů jsou ilegitimní. Jsou publikovány dvě nové kombinace: Tyromyces aquosus (Henn.) Ryvarden a Di- plomitoporus daedaleiformis (Henn.) Ryvarden. Tyto dva druhy jsou podrobně popsány a u 17 dalších akceptovaných druhů jsou připojeny odkazy na již publikované revize. INTRODUCTION Paul Christoph Hennings (1841–1908) was a productive mycologist, who de- scribed besides other species 109 polypores, mostly from Africa and South Amer- ica.
    [Show full text]
  • Biodegradación De Hidrocarburos Totales De Petróleo Por Hongos Endófitos De La Amazonia Ecuatoria.Pdf
    PONTIFICIA UNIVERSIDAD CATÓLICA DEL ECUADOR FACULTAD DE CIENCIAS EXACTAS Y NATURALES ESCUELA DE CIENCIAS BIOLÓGICAS Biodegradación de Hidrocarburos Totales de Petróleo por Hongos Endófitos de la Amazonia Ecuatoriana Disertación previa a la obtención del Título de Licenciado en Ciencias Biológicas FERNANDO JAVIER MARÍN MINDA Quito, 2018 Certifico que la Disertación de Licenciatura en Ciencias Biológicas de la Sr. Fernando Javier Marín Minda ha sido concluida de conformidad con las normas establecidas; por lo tanto, puede ser presentada para la calificación correspondiente. M.Sc. Alexandra Narváez Trujillo Directora de la Disertación Quito, 28 de noviembre de 2018 iii “La ciencia no es solo una disciplina de razón, sino también de romance y pasión.” -Stephen Hawking iv AGRADECIMIENTOS A Alexandra Narváez-Trujillo, directora de mi proyecto de tesis por su incondicional apoyo, motivación, tiempo compartido y por creer en mi desde el primer momento en que me incorporé a su grupo de trabajo, al acogerme en su laboratorio y transmitirme su amor por la ciencia y los hongos endófitos. A la Pontificia Universidad Católica del Ecuador por el financiamiento de esta investigación. A Hugo Navarrete Zambrano y al Centro de Servicios Ambientales y Químicos de la PUCE (CESAQ-PUCE) por su valioso aporte en el análisis de los resultados de este estudio. A Carolina Portero, por haberme brindado su confianza y por enseñarme todo lo necesario para realizar mi trabajo de titulación de manera exitosa. Por siempre estar dispuesta a brindarme un poco de su tiempo cada vez que lo necesité. En especial le agradezco por su amistad y por siempre ser esa persona que cuida y vela por el bienestar de sus compañeros de trabajo.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0005340 A1 Kristiansen (43) Pub
    US 20090005340A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0005340 A1 Kristiansen (43) Pub. Date: Jan. 1, 2009 54) BOACTIVE AGENTS PRODUCED BY 3O Foreigngn AppApplication PrioritVty Data SUBMERGED CULTIVATION OFA BASDOMYCETE CELL Jun. 15, 2005 (DK) ........................... PA 2005 OO881 Jan. 25, 2006 (DK)........................... PA 2006 OO115 (75) Inventor: Bjorn Kristiansen, Frederikstad Publication Classification (NO)NO (51) Int. Cl. Correspondence Address: A 6LX 3L/75 (2006.01) BROWDY AND NEIMARK, P.L.L.C. CI2P I/02 (2006.01) 624 NINTH STREET, NW A6IP37/00 (2006.01) SUTE 300 CI2P 19/04 (2006.01) WASHINGTON, DC 20001-5303 (US) (52) U.S. Cl. ............................ 514/54:435/171; 435/101 (57) ABSTRACT (73) Assignee: MediMush A/S, Horsholm (DK) - The invention in one aspect is directed to a method for culti (21) Appl. No.: 11/917,516 Vating a Basidiomycete cell in liquid culture medium, said method comprising the steps of providing a Basidiomycete (22) PCT Filed: Jun. 14, 2006 cell capable of being cultivated in a liquid growth medium, e - rs and cultivating the Basidiomycete cell under conditions (86). PCT No.: PCT/DK2OO6/OOO340 resulting in the production intracellularly or extracellularly of one or more bioactive agent(s) selected from the group con S371 (c)(1) sisting of oligosaccharides, polysaccharides, optionally gly (2), (4) Date: Ul. 31, 2008 cosylated peptides or polypeptides, oligonucleotides, poly s e a v-9 nucleotides, lipids, fatty acids, fatty acid esters, secondary O O metabolites Such as polyketides, terpenes, steroids, shikimic Related U.S. Application Data acids, alkaloids and benzodiazepine, wherein said bioactive (60) Provisional application No.
    [Show full text]
  • Redalyc.Notes on Two Species of Diplomitoporus (Basidiomycota
    Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México Kout, Jirí; Vlasák, Josef Notes on two species of Diplomitoporus (Basidiomycota, Polyporaceae) of Central America Revista Mexicana de Biodiversidad, vol. 81, núm. 1, abril, 2010, pp. 9-14 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42515998002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Biodiversidad 81: 9- 14, 2010 Notes on two species of Diplomitoporus (Basidiomycota, Polyporaceae) of Central America Comentarios sobre dos especies de Diplomitoporus (Basidiomycota, Polyporaceae) de America Central Jiří Kout1, 2* and Josef Vlasák3 1Department of Botany, Faculty of Science, University of South Bohemia, Na Zlaté stoce 1, České Budějovice, 370 05, Czech Republic. 2Department of Biology, Faculty of Education, University of West Bohemia, Klatovska 51, Pilsen, 306 19, Czech Republic. 3Biology Centre ASCR, v.v.i., Institute of Plant Molecular Biology, Branišovská 31/1160, České Budějovice 370 05, Czech Republic. *Correspondent: [email protected] Abstract. Two species of Diplomitoporus were studied from Central America and notes about their distribution are presented. Noteworthy records include Diplomitoporus dilutabilis Log.-Leite et J.E. Wright, which is reported for the fi rst time to Guatemala and Diplomitoporus hondurensis (Murrill) Ryvarden, which is found in a new locality from Belize. A list of Diplomitoporus species cited from America is presented.
    [Show full text]
  • Improved Efficiency in Screening.Pdf
    PLEASE NOTE! THIS IS SELF-ARCHIVED FINAL-DRAFT VERSION OF THE ORIGINAL ARTICLE To cite this Article: Kinnunen, A. Maijala, P., Järvinen, P. & Hatakka, A. 2017. Improved efficiency in screening for lignin-modifying peroxidases and laccases of basidiomycetes. Current Biotechnology 6 (2), 105–115. doi: 10.2174/2211550105666160330205138 URL:http://www.eurekaselect.com/140791/article Send Orders for Reprints to [email protected] Current Biotechnology, 2016, 5, 000-000 1 RESEARCH ARTICLE Improved Efficiency in Screening for Lignin-Modifying Peroxidases and Laccases of Basidiomycetes Anu Kinnunen1, Pekka Maijala2, Päivi Järvinen3 and Annele Hatakka1,* aDepartment of Food and Environmental Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Finland; bSchool of Food and Agriculture, Applied University of Seinäjoki, Seinäjoki, Finland; cCentre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland Abstract: Background: Wood rotting white-rot and litter-decomposing basidiomycetes form a huge reservoir of oxidative enzymes, needed for applications in the pulp and paper and textile industries and for bioremediation. Objective: The aim was (i) to achieve higher throughput in enzyme screening through miniaturization and automatization of the activity assays, and (ii) to discover fungi which produce efficient oxidoreductases for industrial purposes. Methods: Miniaturized activity assays mostly using dyes as substrate were carried Annele Hatakka A R T I C L E H I S T O R Y out for lignin peroxidase, versatile peroxidase, manganese peroxidase and laccase. Received: November 24, 2015 Methods were validated and 53 species of basidiomycetes were screened for lignin modifying enzymes Revised: March 15, 2016 Accepted: March 29, 2016 when cultivated in liquid mineral, soy, peptone and solid state oat husk medium.
    [Show full text]
  • 9B Taxonomy to Genus
    Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella
    [Show full text]