Control of Semivolatile Radionuclides in Gaseous Effluents at Nuclear Facilities

Total Page:16

File Type:pdf, Size:1020Kb

Control of Semivolatile Radionuclides in Gaseous Effluents at Nuclear Facilities TECHNICAL REPORTS SERIES No. Control of Semivolatile Radionuclides in Gaseous Effluents at Nuclear Facilities INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1982 CONTROL OF SEMIVOLATILE RADIONUCLIDES IN GASEOUS EFFLUENTS AT NUCLEAR FACILITIES The following States are Members of the International Atomic Energy Agency: AFGHANISTAN HOLY SEE PHILIPPINES ALBANIA HUNGARY POLAND ALGERIA ICELAND PORTUGAL ARGENTINA INDIA QATAR AUSTRALIA INDONESIA ROMANIA AUSTRIA IRAN ISLAMIC REPUBLIC SAUDI ARABIA BANGLADESH IRAQ SENEGAL BELGIUM IRELAND SIERRA LEONE BOLIVIA ISRAEL SINGAPORE BRAZIL ITALY SOUTH AFRICA BULGARIA IVORY COAST SPAIN BURMA JAMAICA SRI LANKA BYELORUSSIAN SOVIET JAPAN SUDAN SOCIALIST REPUBLIC JORDAN SWEDEN CANADA KENYA SWITZERLAND CHILE KOREA, REPUBLIC OF SYRIAN ARAB REPUBLIC COLOMBIA KUWAIT THAILAND COSTA RICA LEBANON TUNISIA CUBA LIBERIA TURKEY CYPRUS LIBYAN ARAB JAMAHIRIYA UGANDA CZECHOSLOVAKIA LIECHTENSTEIN UKRAINIAN SOVIET SOCIALIST DEMOCRATIC KAMPUCHEA LUXEMBOURG REPUBLIC DEMOCRATIC PEOPLE'S MADAGASCAR UNION OF SOVIET SOCIALIST REPUBLIC OF KOREA MALAYSIA REPUBLICS DENMARK MALI UNITED ARAB EMIRATES DOMINICAN REPUBLIC MAURITIUS UNITED KINGDOM OF GREAT ECUADOR MEXICO BRITAIN AND NORTHERN EGYPT MONACO IRELAND EL SALVADOR MONGOLIA UNITED REPUBLIC OF ETHIOPIA MOROCCO CAMEROON FINLAND NETHERLANDS UNITED REPUBLIC OF FRANCE NEW ZEALAND TANZANIA GABON NICARAGUA UNITED STATES OF AMERICA GERMAN DEMOCRATIC REPUBLIC NIGER URUGUAY GERMANY, FEDERAL REPUBLIC OF NIGERIA VENEZUELA GHANA NORWAY VIET NAM GREECE PAKISTAN YUGOSLAVIA GUATEMALA PANAMA ZAIRE HAITI PARAGUAY ZAMBIA PERU The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world". © IAEA, 1982 Permission to reproduce or translate the information contained in this publication may be obtained by writing to the International Atomic Energy Agency, Wagramerstrasse 5, P.O. Box 100, A-1400 Vienna, Austria. Printed by the IAEA in Austria December 1982 TECHNICAL REPORTS SERIES No. 220 CONTROL OF SEMIVOLATILE RADIONUCLIDES IN GASEOUS EFFLUENTS AT NUCLEAR FACILITIES INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 1982 CONTROL OF SEMIVOLATILE RADIONUCLIDES IN GASEOUS EFFLUENTS AT NUCLEAR FACILITIES IAEA, VIENNA, 1982 STI/DOC/10/220 ISBN 92-0-125482-2 FOREWORD In the context of an expanding nuclear fuel cycle, where more and more electrical power is generated by nuclear fission, increased attention is being paid to control of releases of radioactive effluents to the environment. To assist £ national authorities responsible for restricting the discharge of effluents in order to limit population exposure, the International Atomic Energy Agency has undertaken a programme to collect, review and disseminate information on technologies for handling and treatment of gaseous and particulate radioactive wastes from nuclear facilities. The IAEA's programme of work covers different aspects of radioactive airborne effluents and wastes. The results of IAEA meetings on handling krypton-85, radioiodine and tritium have been published in the Agency's Technical Reports Series, as follows: Separation, Storage and Disposal of Krypton-85, Technical Reports Series No. 199, IAEA, Vienna (1980). Radioiodine Removal in Nuclear Facilities: Methods and Techniques for Normal and Emergency Situations, Technical Reports Series No. 201, IAEA, Vienna (1980). Further documents are in preparation on the retention of gaseous radionuclides from nuclear power plants under normal and accident conditions and on testing and in-plant monitoring of offgas cleaning systems. A Symposium on Management of Gaseous Wastes from Nuclear Facilities, jointly organized by IAEA and OECD-NEA in Vienna in 1980, and published by the IAEA in 1980, dealt with current practice and the latest developments in the field. The contents of this Technical Report are based on the results of a Techni- cal Committee Meeting on Retention of Semivolatile Radionuclides at Nuclear Facilities, held in Vienna from 27 to 31 October 1980. Additional information was collected subsequently from the USA, the USSR and India and has been incorporated. The information contained in this report represents an up-to-date review of the subject, combining the results of laboratory studies on control of the most important semivolatile radionuclides in gaseous effluents at nuclear facilities and the results of operating experience in that area. The Agency wishes to express its thanks to all participants of the meeting, particularly to M. Klein, Belgium, who served as Chairman. The Agency is also grateful to those who contributed information after the meeting, particularly to H. Deuber, Federal Republic of Germany, who as a consultant to the Agency collected most of this information and compiled the present report. The officer of the IAEA responsible for this work was V. Tsyplenkov of the Waste Manage- ment Section. CONTENTS 1. INTRODUCTION 1 2. SIGNIFICANCE OF THE CONTROL OF SEMIVOLATILES 1 2.1. Solidification of high-level liquid waste (HLLW) 3 2.2. Reprocessing of nuclear fuel 3 3. PROPERTIES OF RUTHENIUM 5 3.1. Volatilization of ruthenium 5 3.1.1. Volatilization of ruthenium at low temperatures 5 3.1.2. Volatilization of ruthenium at high temperatures 8 3.2. Deposition of ruthenium 10 3.3. Retention of ruthenium 14 3.3.1. Retention of ruthenium by solids 14 — General - Silica gel — Ferric-oxide-based materials - Catalytic decomposition 3.3.2. Retention of ruthenium by liquids 18 4. PROPERTIES OF OTHER SEMIVOLATILES 18 4.1. Properties of caesium 19 4.2. Properties of selenium, technetium, antimony and tellurium 19 5. PRINCIPLES OF HIGH-LEVEL WASTE SOLIDIFICATION PROCESSES 20 5.1. Solidification methods 20 5.2. Offgas treatment systems 21 5.2.1. Individual components 23 5.2.2. Integrated systems 23 6. EXPERIENCE WITH CONTROL OF SEMIVOLATILES IN HIGH-LEVEL LIQUID WASTE SOLIDIFICATION PROCESSES 24 6.1. Fluidized-bed calcination 24 6.2. Spray calcination 30 6.3. Rotary-kiln calcination 33 6.4. Pot calcination 35 6.5. Liquid-fed ceramic melter 46 6.6. Summary 48 7. SAMPLING AND MONITORING 49 8. CONCLUSIONS 50 REFERENCES 51 LIST OF PARTICIPANTS 55 1. INTRODUCTION The contaminants in gaseous effluents of nuclear facilities are usually con- sidered to consist of particulates and gases. There are, however, also contaminants which are generally present in the condensed form and which volatilize significantly owing to rise in temperature or chemical reactions. These semivolatile contaminants may not be trapped sufficiently by the devices commonly used for decontaminating the gaseous effluents of nuclear facilities and may therefore have to be dealt with separately. The semivolatile contaminants include isotopes of selenium, technetium, ruthenium, antimony, tellurium and caesium. This report reviews the present knowledge of control of these semivolatiles in the gaseous effluents of nuclear facilities under normal conditions. The main topics of this report have been reviewed up to 1976, and up to 1977 in Refs [1—3]. The literature contained in these reviews is taken into account in this report, although it is not usually cited unless tables or figures are reproduced. The emphasis is, rather, on quoting literature published later. 2. SIGNIFICANCE OF THE CONTROL OF SEMIVOLATILES The significance of control of radionuclides in gaseous effluents may be related both to the environmental impact and to the influence within the facilities. The environmental impact may be characterized by the efforts necessary to comply with the retention requirements which are determined by the activity inventories or processing rates and the maximum permissible releases of the radionuclides. Thus, apart from the retention requirement, the environmental impact depends on the release potential and the behaviour of the radionuclides in the offgas treatment system. The significance in terms of the impact within the plants is associated with the creation of high radiation fields in unshielded areas, plugging of pipes due to deposition, and contamination of secondary-effluent streams. Apart from activity, mass is an important factor in this context. As will be shown later, semivolatiles may volatilize to a large extent with high temperatures and/or oxidizing conditions. Therefore, in normal operation it is only in solidification of high-level liquid waste (HLLW) and in reprocessing nuclear fuel that appreciable volatilization of semivolatiles has to be reckoned with. Only these processes will be considered further. 1 TABLE I. CONTENT OF RADIONUCLIDES IN LWR HIGH-LEVEL LIQUID WASTE3 [2] Isotope Half-life Activity Mass 1 (Ci-r1 U) (g-r u) Volatile H-3 12.33 a 33 3.5 X 10"J Kr-85 10.73 a 8X10"3 2.0 X 10"s 1-129 1.59 X 107 a 3 X 10"s 0.2 Potentially volatile Se-79. 6.5 X 104 a 0.34 4.9 Tc-99 2.13 X 105 a 13 7.4 X 102 Ru-103 0.1084 a 72 2.2 X 10~3 Ru-106 1.01 a 1.8 X 10s 54 b Rh-103m 56 min 72 - b s Rh-106 29.9 s 1.8 X 10 - Te-123m 0.3275 a 1.5 X 10"2 1.8 X 10"6 Te-127m 0.298 a 4.2 X 102 4.5 X 10~2 Sb-124 0.1648 a 0.68 3.9 X 10"5 Sb-125 2.73 a 5.7 X 103 5.5 Sb-126mb 19.0 min 0.54 . 6.8 X 10"' Sb-126b 12.4 d 0.53 6.4 X 10"6 Cs-134 . 2.06 a 1.2 X 10s 91 Cs-135 2.3 X 106 a 0.31 2.7 X 102 Cs-137 30.1 a 9.3 X 104 1.1 X 103 Potential solids (major activities only)0 s Ce-144 0.7787 a 2.4 X 10 - b s Pr-144 17.28 min 2.4 X 10 - 4 Sr-90 29 a 6.0 X 10 - b 4 Y-90 64.0 h 6.0 X 10 - 3 Cm-244 • 17.9a 7.0 X 10 _ Note: 1 curie (Ci)= 3.70 X 1010 Bq.
Recommended publications
  • A 1 Case-PR/ }*Rciofft.;Is Report
    .A 1 case-PR/ }*rciofft.;is Report (a) This eruption site on Mauna Loa Volcano was the main source of the voluminous lavas that flowed two- thirds of the distance to the town of Hilo (20 km). In the interior of the lava fountains, the white-orange color indicates maximum temperatures of about 1120°C; deeper orange in both the fountains and flows reflects decreasing temperatures (<1100°C) at edges and the surface. (b) High winds swept the exposed ridges, and the filter cannister was changed in the shelter of a p^hoehoc (lava) ridge to protect the sample from gas contamination. (c) Because of the high temperatures and acid gases, special clothing and equipment was necessary to protect the eyes. nose, lungs, and skin. Safety features included military flight suits of nonflammable fabric, fuil-face respirators that are equipped with dual acidic gas filters (purple attachments), hard hats, heavy, thick-soled boots, and protective gloves. We used portable radios to keep in touch with the Hawaii Volcano Observatory, where the area's seismic activity was monitored continuously. (d) Spatter activity in the Pu'u O Vent during the January 1984 eruption of Kilauea Volcano. Magma visible in the circular conduit oscillated in a piston-like fashion; spatter was ejected to heights of 1 to 10 m. During this activity, we sampled gases continuously for 5 hours at the west edge. Cover photo: This aerial view of Kilauea Volcano was taken in April 1984 during overflights to collect gas samples from the plume. The bluish portion of the gas plume contained a far higher density of fine-grained scoria (ash).
    [Show full text]
  • Calculations of \(N,2N\) Reaction Cross Sections for 74,76,78,80,82Se up to 20
    128 EPJ Web of Conferences , 01001 (2016) DOI: 10.1051/epjconf/201612801001 TESNAT 2016 Halide Şahan1,a, Muhittin Şahan1, Eyyup Tel1 1Osmaniye Korkut Ata University, Faculty of Arts and Science, Department of Physics, Osmaniye, Turkey In the present work, the excitation functions of (n,2n) reactions for five isotopes of selenium (74,76,78,80,82Se) are calculated using ALICE/ASH, EMPIRE-3.2.2, PCROSS, and TALYS 1.6 computer codes based on statistical model up to 20 MeV. The theoretical calculations provide information of the (n,2n) excitation functions with the increasing target neutron number of selenium element. The calculated cross-sections were compared with experimental data from EXFOR and also with the cross- sections estimated with semi empirical formula developed by Tet et al. (2008) [18]. Results show a reasonably good agreement between the calculations and the experimental data from literature. ! " by Tel et al. [13]. These formulas have been given as follows; The theoretical calculation models are necessary to ⎪⎧7.15[]1− 2.45e−31.620(N −Z ) / A for even A⎪⎫ provide the estimation of the particle–induced reaction σ = (1) ln n,2n ⎨ ⎬ cross sections due to the experimental difficulty [1,2]. In ⎩⎪ 7.65[]1−1.59e−23.06(N −Z ) / A for odd A⎭⎪ past years the cross section of selenium isotopes (74,76,78,80,82,84Se) around 14-15 MeV have been measured For (n,2n) reaction cross sections of 74Se(n,2n)73Se, by many researches such as Hille and Münzer [3]; 76Se(n,2n)75Se, 78Se(n,2n)77Se, 80Se(n,2n)79Se and Minetti and Pasquarelli [4]; Casanova and Sanchez [5]; 82Se(n,2n)81Se at 14-15 MeV, the calculated cross 74,76,78,80,82 Hoang et al.
    [Show full text]
  • AN43285 – Accurate Determination of Arsenic and Selenium in Environmental Samples Using Triple Quadrupole ICP-MS
    Certified for Thermo Scientific™ iCAP™ TQe ICP-MS APPLICATION NOTE 43285 Accurate determination of arsenic and selenium in environmental samples using triple quadrupole ICP-MS Authors: Marcus Manecki1, Simon Lofthouse2, Philipp Boening3 and Shona McSheehy Ducos1; 1Thermo Fisher Scientific, Bremen, Germany; 2Thermo Fisher Scientific, Hemel Hempstead, UK; 3Institute of Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany Keywords: Arsenic, interference removal, Selenium for example is an essential element that is REE, rock, selenium, soil, sediment necessary for normal thyroid function and due to its antioxidant properties, is associated with several health Goal benefits. Diseases associated with selenium deficiency To demonstrate the accurate determination of arsenic such as Keshan disease and symptoms of hypothyroidism, and selenium in sediments and rocks that contain elevated are most commonly found in areas where levels of levels of rare earth elements using triple quadrupole selenium in soil are particularly low. Supplementation as a ICP-MS. remedy is common practice and is not isolated to humans. Understanding where soil selenium deficiencies occur for Introduction example supports the correct supplementation of cattle Due to the impact arsenic and selenium can have in the grazing in those areas to prevent white muscle disease environment at low levels, as a toxin or essential nutrient (a cattle specific selenium deficiency disease). respectively, it is important to be able to quantify them accurately. Arsenic on the other hand, in its inorganic forms Instrumentation (the most common forms found in ground water and soils) An iCAP TQ ICP-MS was used to analyse all samples.
    [Show full text]
  • Hyperfine Structure in Selenium, Palladium and Gold.* by L
    HYPERFINE STRUCTURE IN SELENIUM, PALLADIUM AND GOLD.* BY L. SIBAZ~A. (From the Dcpa,'tment of Physics, CeJ~tral College, Balzgarore.) Received September 10, 1935. Selenium (At. no. 34; At. wt. 79.2). l'oI~ purposes of classification of selenium spectra, the arc arid spark lines of seleniunl have been mostly excited in tubes of various types with con- (lensed or uncondensed electrical discharge through selenium vapour or between alumiuium poles tipped with metallic selenium. A selenium arc either in vacuum or iu an atmosphere of nitrogen has aIso been employed. Such sources however are not suited for hyperfine structure work, as the lines obtained are broad and diffuse. Moreover most of the prominent are lines of selenium lie either in the near infra-red or in the extreme ultra-violet, thus rendering their analysis by high resolving power apparatus specially difficult. Some intense spark lines of selenium 1% in the visible region; lmt under the conditions employed for their emission in discharge tubes, the broadening of the lines renders such sources unsuitable for hyperfine structure study. The apparatus used, the essential part of ~-hich is a water- cooled hollow cathode, is the same as that employed by 2Prof. Venkatesaehar and the author in their investigation on the isotopic constitution of platinum, x The selenium powcler took the place of the platinum foil in the tubular space of the cathode (P1. XV, Fig. 1). For experimental details the above paper -,,~+ he consulted. Of the seventeen lines of selenium here examined, only two are are lines and the remaining fifteen belong to the first spark spectrum of selenium.
    [Show full text]
  • Detection of Elements at All Three R-Process Peaks in the Metal-Poor Star HD 160617
    Published in the Astrophysical Journal A Preprint typeset using LTEX style emulateapj v. 5/2/11 DETECTION OF ELEMENTS AT ALL THREE R-PROCESS PEAKS IN THE METAL-POOR STAR HD 1606171 ,2 ,3 Ian U. Roederer4 and James E. Lawler5 Published in the Astrophysical Journal ABSTRACT We report the first detection of elements at all three r-process peaks in the metal-poor halo star HD 160617. These elements include arsenic and selenium, which have not been detected previously in halo stars, and the elements tellurium, osmium, iridium, and platinum, which have been detected previously. Absorption lines of these elements are found in archive observations made with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope. We present up-to-date absolute atomic transition probabilities and complete line component patterns for these elements. Additional archival spectra of this star from several ground-based instruments allow us to derive abundances or upper limits of 45 elements in HD 160617, including 27 elements produced by neutron-capture reactions. The average abundances of the elements at the three r-process peaks are similar to the predicted solar system r-process residuals when scaled to the abundances in the rare earth element domain. This result for arsenic and selenium may be surprising in light of predictions that the production of the lightest r-process elements generally should be decoupled from the heavier r-process elements. Subject headings: atomic data — nuclear reactions, nucleosynthesis, abundances — stars: abundances — stars: individual (HD 160617) — stars: Population II 1. INTRODUCTION in greater abundance during n-capture reactions. The Understanding the origin of the elements is one of the s-process path closely follows the valley of β-stability, major challenges of modern astrophysics.
    [Show full text]
  • Discovery of the Selenium Isotopes
    Discovery of the Selenium Isotopes J. Claes, J. Kathawa, M. Thoennessen∗ National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA Abstract Thirty-one selenium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented. ∗Corresponding author. Email address: [email protected] (M. Thoennessen) Preprint submitted to Atomic Data and Nuclear Data Tables April 28, 2010 Contents 1. Introduction . 3 2. Discovery of 64−94Se.................................................................................... 3 2.1. 64Se............................................................................................. 3 2.2. 65Se............................................................................................. 3 2.3. 66Se............................................................................................. 5 2.4. 67Se............................................................................................. 5 2.5. 68Se............................................................................................. 5 2.6. 69Se............................................................................................. 5 2.7. 70Se............................................................................................. 5 2.8. 71Se............................................................................................
    [Show full text]
  • Proceedings of the 1990 Billings Land Reclamation Symposium On
    U.S. GEOLOGICAL SURVEY CI-RCULAR 1064 Proceedings of the 1990 Billings Land Reclamation Symposium on Selenium in Arid and Semiarid Environments, Western United States AVAILABILITY OF BOOKS AND MAP OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the Jast offerings, arc·Jive!l in the cur­ rent-year issues of the monthly catalog "New Publications of th U.S. Geological Survey." Prices of available U.l:~ Sur· .­ vey publications released prior to the current year are listed in e most recent annual "Price and Availability List" Puhlications that are listed in various U.S. Geological Survey catalogs (see b ck inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are ~iven in the li ting "U.S. Geological Survey Open-File Reports,'~ updated month­ ly, which is for sale in microfiche froiD the U.S. Geological S ey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, CO 80225. Reports released through the NTIS y be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161 please include NTIS report numbez with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Techniqu of Water-Resources Investigations, Circulars, publications of general in Books of the
    [Show full text]
  • Selenium and Tellurium Content of Stony Meteorites by Neutron Activation
    Geochimicaet CosmochimicaActa, 1900, Vol. 19, py. 135 to 138. PeryamonPress Ltd. Priutedin NorthernIreland Selenium and tellurium content of stony meteorites by neutron activation U. SCHINDEWOLF* Department of Chemistry, University of Michigan, Ann &bor, Michigan (Received 14 Jcrmary 1MO) Abstract-By neutron activation analysis the Se- tendTe-content of four chondritic nleteorites have been determined. The average content is 9.8 + 2.5 and 0.61 .jl I.7 p.p.m., mspectively. Thesevalues are lowerthan those alrea,dyreported in the literature. SEVERAL authors (SUESS and UREY, 1956) have published data on the relative abundance of the chemical elements. In theoretically deriving these abundances extensive use has been made of certain systematic properties of nuclei because the necessary experimental data are lacking or unsatisfactory. Reliable experimental values of the abundance of each element are of great interest to cosmologists since the abundances of the elements are the result of cosmic events and any useful theory of the origin of the elements has to account in detail for the abundance curve. A recent theory requires several different types of synthesizing processes in order to explain the features of the abundance curve (BURBIDGE et al., 1957; CAMERON, 1957). Two of these processes are different types of neutron capture. Neutron capture on a long time-scale is thought to be responsible for the abundance peaks at Y (fifty neutrons), La (eighty-two neutrons) and Pb (126 neutrons) while neutron capture on a very short time-scale produces abundance peaks (CORYELI,, 1956) at approximately Br, Xe and Pt. Since the abundance of bromine, krypton, iodine and xenon are inherently difficult to determine, reliable data on the abundances of selenium and tellurium would be valuable in establishing the magnitudes of the peak yields at Br and Xe.
    [Show full text]
  • Discovery of the Isotopes with 11 ≤ Z ≤ 19
    Discovery of the Isotopes with 11 ≤ Z ≤ 19 M. Thoennessen∗ National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA Abstract A total of 194 isotopes with 11 ≤ Z ≤ 19 have been identified to date. The discovery of these isotopes which includes the observation of unbound nuclei, is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented. ∗Corresponding author. Email address: [email protected] (M. Thoennessen) Preprint submitted to Atomic Data and Nuclear Data Tables May 31, 2011 Contents 1. Introduction . 2 2. Discovery of Isotopes with 11 ≤ Z ≤ 19................................................................... 3 2.1. Sodium.......................................................................................... 3 2.2. Magnesium . 8 2.3. Aluminum . 12 2.4. Silicon . 17 2.5. Phosphorus . 22 2.6. Sulfur ........................................................................................... 26 2.7. Chlorine . 31 2.8. Argon ........................................................................................... 36 2.9. Potassium. 41 3. Summary ............................................................................................. 46 References . 46 Explanation of Tables . 53 Table 1. Discovery of Isotopes with 11 ≤ Z ≤ 19. See page 53 for Explanation of Tables . 54 1. Introduction The discovery of isotopes of the elements from sodium to potassium is
    [Show full text]
  • The Radiochemistry of Selenium
    Rt?v.1965 NUCLEARSCIENCESERIES National Academy of Sciences-National Research Council Pubtished $3y: United States Atomic Energ Commission COMMITTEEON NUCLEARSCIENCE S.K.Allison,Chairman f?.D. Evans,Vice Chairman UniversityofChicago Mass.InstituteofTechnology LewisSlack,Secretary NationalResearchCouncil E. C.Anderson BerndKahn Los Alamos Sci.Laboratory TaftSanitaryEngineeringCenter N. E. Ballou JerryB. Marion U.S.NavalRadiologicalDefenseLaboratory UniversityofMaryland MartinJ.Berger R. L.Platzman NationalBureauofStandards ArgonneNationalLaboratory C. J.Borkowski ErnestC.Pollard Oak RidgeNatl.Laboratory PennsylvaniaStateUniversity RobertG. Cochran KatherineWay A & M CollegeofTexas Oak RidgeNationallaboratory HerbertGoldstein GeorgeW. Wetherill ColumbiaUniversity UniversityofCalifornia(LosAngeles) LIAISONMEMBERS PaulC.Aebersold RalphG. Allen AtomicEnergyCommission AirForceOfficeofScientificReeearch J.HowardMcMillen NationalScienceFoundation SUBCOMMITTEEON NAOIOCHEMISTRY N. E. Ballou,Chairman W. E. Nervik U. S.NavalRadiologicalDefense LawrenceRadiationLaboratory Laboratory J.M. Nielsen G. R. Choppin GeneralElectricCompany (Richfand) FloridaStateUniversity G. D. O’Kelley H. M. Clark Oak RidgeNationalLaboratory RensselaerPolytechnicInstitute R. P. Schuman R. M. Diamond AtomicEnergyDivision LawrenceRadiationLaboratory PhillipsPetroleumCompany (IdahoFalls) A. W. Fairhall E. P. Steinberg UniversityofWashington ArgonneNationalLaboratory Jerome Hudie D. N. Sunderman BrookhavenNationalLaboratory BattelleMemorialInstitute J.D. Knight J.W. Winchester
    [Show full text]
  • Studies of Selenium and Xenon in Inductively Coupled Plasma Mass Spectrometry
    IS-T 1701 Studies of Selenium and Xenon in Inductively Coupled Plasma Mass Spectrometry by Bricker, Tonya MS Thesis submitted to Iowa State University Ames Laboratory, U.S. DOE Iowa State University Ames, Iowa 50011 Date Transmitted: July 27, 1994 PREPARED FOR THE U.S. DEPARTMENT OF ENERGY STE UNDER CONTRACT NO. W-7405-Eng-82. RECEIVED OCT 2 5 1994 °ST| 6»6TR!eUTtON OF THIS DOCUMENT IS UNLIMITED DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. 11 TABLE OF CONTENTS GENERAL INTRODUCTION 1 ICP-MS Overview 1 PART L SELENIUM SPECIATION BY SIZE EXCLUSION-INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY 5 INTRODUCTION 6 EXPERIMENTAL SECTION 9 HPLC-DIN-ICP-MS 9 Data Acquisition 13 Reagents and Samples 13 RESULTS AND DISCUSSION 14 CONCLUSION 20 PARTE.
    [Show full text]
  • Selenium Mineral Commodity Profile
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Open-File Report 03–018 Mineral Commodity Profiles Selenium By W.C. Butterman and R.D. Brown, Jr. 2004 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards (or with the Northern American Stratigraphic Code). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 2 CONTENTS Overview .......................................................................................................................................................................4 Historical background....................................................................................................................................................4 Description ....................................................................................................................................................................5 Salient facts ............................................................................................................................................................5 Principal forms, alloys, and compounds.................................................................................................................6 Commercial grades, shapes, and specifications......................................................................................................6 Sources of selenium.......................................................................................................................................................6
    [Show full text]