Isotopic Methods in the Study of Mineral Metabolism of Infants with Special Reference to Stable Isotopes

Total Page:16

File Type:pdf, Size:1020Kb

Isotopic Methods in the Study of Mineral Metabolism of Infants with Special Reference to Stable Isotopes Trace Elements in Nutrition of Children, edited by R. K. Chandra. Nestle Nutrition, Vevey/Raven Press, New York €> 1985. Isotopic Methods in the Study of Mineral Metabolism of Infants with Special Reference to Stable Isotopes Morteza Janghorbani, Vernon R. Young, and *Richard A. Ehrenkranz Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; and *Yale University School of Medicine, New Haven, Connecticut 06510 Of the 90 naturally occurring chemical elements, 26 have been suggested as essential for animal life (1). In addition to these, a number are of toxicological importance (e.g., Pb), and some others are of interest because of their special properties (e.g., as components of therapeutic agents). A summary of the biological significance of these elements is given in Fig. 1. The listed elements are mineral elements (2) (in contrast to C, H, O, and N). Fomon considered all except Na, Cl, K, Ca, P, Mg, and S as trace elements (2). Because of the potential importance of the isotopic techniques in the study of mineral metabolism in general, and especially in relation to the emerging importance of mineral nutrition of the premature infant, we discuss the isotopic techniques in relation to the broad category of minerals. Examination of the literature on the subject of trace elements in relation to human development indicates many gaps in the fundamental aspects of their me- tabolism (2-5). Although there are some limited data on various aspects of Cu, Fe, and Zn nutriture in infants and children, major questions remain for many features of their metabolism, especially with respect to premature infants (5,6). Even less is known about other trace elements (e.g., Se) in the human infant. Furthermore, available information on such important fundamental issues as body composition during development is either very fragmentary (7) or completely lacking (3). Requirements for low-birth-weight (LBW) infants have been, by and large, based empirically on composition of human milk in combination with balance studies (8). Investigation of many aspects of mineral metabolism requires the use of suitable isotopic tracers (9). Radiotracers have of course made a major impact in our understanding of mineral metabolism in animals (10) and have been and continue to be employed extensively for medical diagnostic purposes in man (11) and fairly extensively in the study of mineral metabolism in adults (especially the sick) (12). In infants, radiotracers have been used for such studies as measurement of RBC 63 64 STABLE ISOTOPE METHODS r Li Be B F O y Na Mg Al Si P Cl X y ox K Co Ti V Cr Mn Fe Co Ni Cu Zn As Se Br 0 0 X V Rb Sr Mo Ag Cd In Sn Sb I O 0 X o Cs Ba La W Hg Pb V I ESSENTIAL EH] INTERACTIVE FUNCTIONS F=| TOXIC f~\ THERAPEUTIC AGENT FIG. 1. Biological significance of minerals. The elements marked with (x) have potential as nonabsorbable markers. The chart was constructed from various sources (1,2). survival using 51Cr-labeled RBCs (13) or for issues related to blood loss employing either 51Cr- or 59Fe-labeled RBCs (14,15). However, their application to the study of mineral metabolism has again been limited (16), undoubtedly partly due to unwillingness to expose the infant to internal radiation. More recently there has been limited application of stable isotope methodology to selected aspects of mineral metabolism in the pediatric group (17-19). Chromium-50-labeled RBCs have been used to study RBC survival time, although this does not fall strictly within the realm of mineral metabolism (14). Limited use has been made in relation to calcium absorption studies (18) and the bioavailability of zinc in neonates (19). Considering the obvious need for a much better understanding of all aspects of mineral metabolism especially during the perinatal period and early infancy, the general requirement for safe and noninvasive tracer methods which avoids issues of internal radiation exposure, and the present state of knowledge and development of stable isotope tracers (Table 1), it is timely to ask the following question: What can stable isotopes do in the realistic setting of a pediatric study, and how should they be used? In this chapter we address this question. ISOTOPIC CONSTITUTION OF MINERALS A chemical element is characterized by the invariant number of protons in its nucleus. However, the number of neutrons present may vary, giving rise to different isotopes. The isotopic pattern is characteristic of a chemical element (Fig. 2) (19a). Depending on the innate nuclear stability of these isotopes, some are unstable (radioisotopes) and others are stable (stable isotopes). In general, the naturally occurring element consists of one or more stable isotopes present in a characteristic, and in most cases constant, ratio. The isotopic constitution of minerals has been discussed in detail previously (9). Figure 2 summarizes the isotopic characteristics of the minerals of interest to the present discussion. For each element, all stable isotopes as well as radioisotopes of potential usefulness in metabolic tracer studies have been included. STABLE ISOTOPE METHODS 65 TABLE 1. Some important characteristics of stable isotope tracers 1. They are nonradioactive a. Radiation exposure is not an issue b. They do not decay so that samples can be processed when convenient c. They do not permit external organ monitoring 2. They are safe a. They are natural constituents of foods b. They do not pose problems of radiation exposure 3. They permit multiple-labeling studies a. Several labels (of different minerals) can be given simultaneously, allowing studies of mineral-mineral interaction b. Multiple isotopes of the same mineral can be given simultaneously (e.g., intravenously and orally or two separate dietary pools) c. Longitudinal studies may be done in the same individual, allowing such studies as gastrointestinal maturation versus age 4. They permit studies related to group comparisons (e.g., dynamics of metabolism of selenium in infants versus adults and the elderly) 5. They permit field studies (e.g., investigations under home feeding conditions) 6. They permit investigations related to food processing under realistic field conditions From Fig. 2 it becomes clear that some elements consist of only a single stable isotope (Na, P, Mn, Co, I), and for these elements stable isotope tracer methods do not apply. The remaining elements occur either as two (Cl, Cu) or multiple stable isotopes. In principle, then, the stable isotope method is applicable to Mg, S, Cl, K, Ca, Cr, Fe, Ni, Cu, Zn, Se, Br, and Mo. It should be noted at this time, however, that the natural isotopic abundance varies over a wide range (e.g., ^Ca, 96.97%; ^Ca, 0.0033%) and that this introduces an important experimental pa- rameter with respect to the optimum design of human metabolic studies, from the point of view of optimization as well as isotope cost (20-25). The radioisotopes included in Fig. 2 have been limited to those possessing a radioactive half-life of greater than 10 hr, as a shorter half-life generally would limit the value of an isotope for human metabolic studies. Furthermore, radioisotopes are, of course, of limited use in relation to studies with children, and their application can be justified only under very restricted circumstances. Stable isotopes possess several important characteristics whose understanding in relation to isotopic studies in children is a prerequisite and must be taken into account carefully. A wide variety of studies can be carried out with stable isotopes, but the experimental requirements are specific to the individual mineral and the issues to be investigated, as is discussed in the following sections. ANALYTICAL METHODOLOGY OF STABLE ISOTOPES In contrast to radiotracers, accurate measurement of stable isotopes in the fluids relevant to these studies (feces, urine, blood) is a relatively complex task (9) involving issues of trace analysis and stable isotope measurements. Two methods of analysis are applicable: neutron activation analysis (9) and mass spectrometry (26). Here we discuss only briefly the main characteristics of these two techniques 3 xlO3y ' 740 !20rJ 50 54 Ca 20 9697 0,64 0 145 2 06 163d 0.0033 0.185 B- T K 43 rT308 48 19 93 15 0,012 6 84 I2.4h Cl 39 y 1460 42 17 75 57 3.0xl05y 24 42 5 V 37 16 95 0 0 760 4 22 872d 0 014 B- ve stable isotope olope 34 36 P f h 15 100 14 3d 25.3 d chemical j B- symbol 31 33 V 1 uf o 1 ob Mg f 11 2 6Oy 100- 12 76 70 II 20 (a om %) 0,15 21 1 h / M35O tomic n 22 23 — ss no 24 28 V 100. 22 23 Mass No — i mode of decoylfl* posilror , 0" beia minus, EC Electron capture , I T Isometric Tronsitiont FIG. 2. Isotopic constitution of selected minerals (19a). STABLE ISOTOPE METHODS 67 in specific relation to accurate stable isotope analyses of materials derived from pediatric studies. Neutron Activation Analysis Neutron activation analysis has been described in detail for stable isotopes of Ca (21), Zn (20), Fe (27), Cu (28), and Se (22). The method can measure absolute contents of selected stable isotopes with precision and accuracy in the range of 1 to 10% (29). It is capable of relatively large sample throughput. It has been successfully applied to the measurement of absorption of Ca (18) and Zn (19) in neonates. The major limitations of the method relate to its inability to measure all stable isotopes (9). For example, of the five stable isotopes of Zn, neutron activation analysis can measure three ("Zn, 68Zn, 70Zn) (30). For copper both can be measured (28), and for iron 54Fe and 58Fe have been measured simultaneously (31).
Recommended publications
  • A 1 Case-PR/ }*Rciofft.;Is Report
    .A 1 case-PR/ }*rciofft.;is Report (a) This eruption site on Mauna Loa Volcano was the main source of the voluminous lavas that flowed two- thirds of the distance to the town of Hilo (20 km). In the interior of the lava fountains, the white-orange color indicates maximum temperatures of about 1120°C; deeper orange in both the fountains and flows reflects decreasing temperatures (<1100°C) at edges and the surface. (b) High winds swept the exposed ridges, and the filter cannister was changed in the shelter of a p^hoehoc (lava) ridge to protect the sample from gas contamination. (c) Because of the high temperatures and acid gases, special clothing and equipment was necessary to protect the eyes. nose, lungs, and skin. Safety features included military flight suits of nonflammable fabric, fuil-face respirators that are equipped with dual acidic gas filters (purple attachments), hard hats, heavy, thick-soled boots, and protective gloves. We used portable radios to keep in touch with the Hawaii Volcano Observatory, where the area's seismic activity was monitored continuously. (d) Spatter activity in the Pu'u O Vent during the January 1984 eruption of Kilauea Volcano. Magma visible in the circular conduit oscillated in a piston-like fashion; spatter was ejected to heights of 1 to 10 m. During this activity, we sampled gases continuously for 5 hours at the west edge. Cover photo: This aerial view of Kilauea Volcano was taken in April 1984 during overflights to collect gas samples from the plume. The bluish portion of the gas plume contained a far higher density of fine-grained scoria (ash).
    [Show full text]
  • Calculations of \(N,2N\) Reaction Cross Sections for 74,76,78,80,82Se up to 20
    128 EPJ Web of Conferences , 01001 (2016) DOI: 10.1051/epjconf/201612801001 TESNAT 2016 Halide Şahan1,a, Muhittin Şahan1, Eyyup Tel1 1Osmaniye Korkut Ata University, Faculty of Arts and Science, Department of Physics, Osmaniye, Turkey In the present work, the excitation functions of (n,2n) reactions for five isotopes of selenium (74,76,78,80,82Se) are calculated using ALICE/ASH, EMPIRE-3.2.2, PCROSS, and TALYS 1.6 computer codes based on statistical model up to 20 MeV. The theoretical calculations provide information of the (n,2n) excitation functions with the increasing target neutron number of selenium element. The calculated cross-sections were compared with experimental data from EXFOR and also with the cross- sections estimated with semi empirical formula developed by Tet et al. (2008) [18]. Results show a reasonably good agreement between the calculations and the experimental data from literature. ! " by Tel et al. [13]. These formulas have been given as follows; The theoretical calculation models are necessary to ⎪⎧7.15[]1− 2.45e−31.620(N −Z ) / A for even A⎪⎫ provide the estimation of the particle–induced reaction σ = (1) ln n,2n ⎨ ⎬ cross sections due to the experimental difficulty [1,2]. In ⎩⎪ 7.65[]1−1.59e−23.06(N −Z ) / A for odd A⎭⎪ past years the cross section of selenium isotopes (74,76,78,80,82,84Se) around 14-15 MeV have been measured For (n,2n) reaction cross sections of 74Se(n,2n)73Se, by many researches such as Hille and Münzer [3]; 76Se(n,2n)75Se, 78Se(n,2n)77Se, 80Se(n,2n)79Se and Minetti and Pasquarelli [4]; Casanova and Sanchez [5]; 82Se(n,2n)81Se at 14-15 MeV, the calculated cross 74,76,78,80,82 Hoang et al.
    [Show full text]
  • AN43285 – Accurate Determination of Arsenic and Selenium in Environmental Samples Using Triple Quadrupole ICP-MS
    Certified for Thermo Scientific™ iCAP™ TQe ICP-MS APPLICATION NOTE 43285 Accurate determination of arsenic and selenium in environmental samples using triple quadrupole ICP-MS Authors: Marcus Manecki1, Simon Lofthouse2, Philipp Boening3 and Shona McSheehy Ducos1; 1Thermo Fisher Scientific, Bremen, Germany; 2Thermo Fisher Scientific, Hemel Hempstead, UK; 3Institute of Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany Keywords: Arsenic, interference removal, Selenium for example is an essential element that is REE, rock, selenium, soil, sediment necessary for normal thyroid function and due to its antioxidant properties, is associated with several health Goal benefits. Diseases associated with selenium deficiency To demonstrate the accurate determination of arsenic such as Keshan disease and symptoms of hypothyroidism, and selenium in sediments and rocks that contain elevated are most commonly found in areas where levels of levels of rare earth elements using triple quadrupole selenium in soil are particularly low. Supplementation as a ICP-MS. remedy is common practice and is not isolated to humans. Understanding where soil selenium deficiencies occur for Introduction example supports the correct supplementation of cattle Due to the impact arsenic and selenium can have in the grazing in those areas to prevent white muscle disease environment at low levels, as a toxin or essential nutrient (a cattle specific selenium deficiency disease). respectively, it is important to be able to quantify them accurately. Arsenic on the other hand, in its inorganic forms Instrumentation (the most common forms found in ground water and soils) An iCAP TQ ICP-MS was used to analyse all samples.
    [Show full text]
  • Hyperfine Structure in Selenium, Palladium and Gold.* by L
    HYPERFINE STRUCTURE IN SELENIUM, PALLADIUM AND GOLD.* BY L. SIBAZ~A. (From the Dcpa,'tment of Physics, CeJ~tral College, Balzgarore.) Received September 10, 1935. Selenium (At. no. 34; At. wt. 79.2). l'oI~ purposes of classification of selenium spectra, the arc arid spark lines of seleniunl have been mostly excited in tubes of various types with con- (lensed or uncondensed electrical discharge through selenium vapour or between alumiuium poles tipped with metallic selenium. A selenium arc either in vacuum or iu an atmosphere of nitrogen has aIso been employed. Such sources however are not suited for hyperfine structure work, as the lines obtained are broad and diffuse. Moreover most of the prominent are lines of selenium lie either in the near infra-red or in the extreme ultra-violet, thus rendering their analysis by high resolving power apparatus specially difficult. Some intense spark lines of selenium 1% in the visible region; lmt under the conditions employed for their emission in discharge tubes, the broadening of the lines renders such sources unsuitable for hyperfine structure study. The apparatus used, the essential part of ~-hich is a water- cooled hollow cathode, is the same as that employed by 2Prof. Venkatesaehar and the author in their investigation on the isotopic constitution of platinum, x The selenium powcler took the place of the platinum foil in the tubular space of the cathode (P1. XV, Fig. 1). For experimental details the above paper -,,~+ he consulted. Of the seventeen lines of selenium here examined, only two are are lines and the remaining fifteen belong to the first spark spectrum of selenium.
    [Show full text]
  • Detection of Elements at All Three R-Process Peaks in the Metal-Poor Star HD 160617
    Published in the Astrophysical Journal A Preprint typeset using LTEX style emulateapj v. 5/2/11 DETECTION OF ELEMENTS AT ALL THREE R-PROCESS PEAKS IN THE METAL-POOR STAR HD 1606171 ,2 ,3 Ian U. Roederer4 and James E. Lawler5 Published in the Astrophysical Journal ABSTRACT We report the first detection of elements at all three r-process peaks in the metal-poor halo star HD 160617. These elements include arsenic and selenium, which have not been detected previously in halo stars, and the elements tellurium, osmium, iridium, and platinum, which have been detected previously. Absorption lines of these elements are found in archive observations made with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope. We present up-to-date absolute atomic transition probabilities and complete line component patterns for these elements. Additional archival spectra of this star from several ground-based instruments allow us to derive abundances or upper limits of 45 elements in HD 160617, including 27 elements produced by neutron-capture reactions. The average abundances of the elements at the three r-process peaks are similar to the predicted solar system r-process residuals when scaled to the abundances in the rare earth element domain. This result for arsenic and selenium may be surprising in light of predictions that the production of the lightest r-process elements generally should be decoupled from the heavier r-process elements. Subject headings: atomic data — nuclear reactions, nucleosynthesis, abundances — stars: abundances — stars: individual (HD 160617) — stars: Population II 1. INTRODUCTION in greater abundance during n-capture reactions. The Understanding the origin of the elements is one of the s-process path closely follows the valley of β-stability, major challenges of modern astrophysics.
    [Show full text]
  • Discovery of the Selenium Isotopes
    Discovery of the Selenium Isotopes J. Claes, J. Kathawa, M. Thoennessen∗ National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA Abstract Thirty-one selenium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented. ∗Corresponding author. Email address: [email protected] (M. Thoennessen) Preprint submitted to Atomic Data and Nuclear Data Tables April 28, 2010 Contents 1. Introduction . 3 2. Discovery of 64−94Se.................................................................................... 3 2.1. 64Se............................................................................................. 3 2.2. 65Se............................................................................................. 3 2.3. 66Se............................................................................................. 5 2.4. 67Se............................................................................................. 5 2.5. 68Se............................................................................................. 5 2.6. 69Se............................................................................................. 5 2.7. 70Se............................................................................................. 5 2.8. 71Se............................................................................................
    [Show full text]
  • Proceedings of the 1990 Billings Land Reclamation Symposium On
    U.S. GEOLOGICAL SURVEY CI-RCULAR 1064 Proceedings of the 1990 Billings Land Reclamation Symposium on Selenium in Arid and Semiarid Environments, Western United States AVAILABILITY OF BOOKS AND MAP OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the Jast offerings, arc·Jive!l in the cur­ rent-year issues of the monthly catalog "New Publications of th U.S. Geological Survey." Prices of available U.l:~ Sur· .­ vey publications released prior to the current year are listed in e most recent annual "Price and Availability List" Puhlications that are listed in various U.S. Geological Survey catalogs (see b ck inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are ~iven in the li ting "U.S. Geological Survey Open-File Reports,'~ updated month­ ly, which is for sale in microfiche froiD the U.S. Geological S ey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, CO 80225. Reports released through the NTIS y be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161 please include NTIS report numbez with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Techniqu of Water-Resources Investigations, Circulars, publications of general in Books of the
    [Show full text]
  • Selenium and Tellurium Content of Stony Meteorites by Neutron Activation
    Geochimicaet CosmochimicaActa, 1900, Vol. 19, py. 135 to 138. PeryamonPress Ltd. Priutedin NorthernIreland Selenium and tellurium content of stony meteorites by neutron activation U. SCHINDEWOLF* Department of Chemistry, University of Michigan, Ann &bor, Michigan (Received 14 Jcrmary 1MO) Abstract-By neutron activation analysis the Se- tendTe-content of four chondritic nleteorites have been determined. The average content is 9.8 + 2.5 and 0.61 .jl I.7 p.p.m., mspectively. Thesevalues are lowerthan those alrea,dyreported in the literature. SEVERAL authors (SUESS and UREY, 1956) have published data on the relative abundance of the chemical elements. In theoretically deriving these abundances extensive use has been made of certain systematic properties of nuclei because the necessary experimental data are lacking or unsatisfactory. Reliable experimental values of the abundance of each element are of great interest to cosmologists since the abundances of the elements are the result of cosmic events and any useful theory of the origin of the elements has to account in detail for the abundance curve. A recent theory requires several different types of synthesizing processes in order to explain the features of the abundance curve (BURBIDGE et al., 1957; CAMERON, 1957). Two of these processes are different types of neutron capture. Neutron capture on a long time-scale is thought to be responsible for the abundance peaks at Y (fifty neutrons), La (eighty-two neutrons) and Pb (126 neutrons) while neutron capture on a very short time-scale produces abundance peaks (CORYELI,, 1956) at approximately Br, Xe and Pt. Since the abundance of bromine, krypton, iodine and xenon are inherently difficult to determine, reliable data on the abundances of selenium and tellurium would be valuable in establishing the magnitudes of the peak yields at Br and Xe.
    [Show full text]
  • Discovery of the Isotopes with 11 ≤ Z ≤ 19
    Discovery of the Isotopes with 11 ≤ Z ≤ 19 M. Thoennessen∗ National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA Abstract A total of 194 isotopes with 11 ≤ Z ≤ 19 have been identified to date. The discovery of these isotopes which includes the observation of unbound nuclei, is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented. ∗Corresponding author. Email address: [email protected] (M. Thoennessen) Preprint submitted to Atomic Data and Nuclear Data Tables May 31, 2011 Contents 1. Introduction . 2 2. Discovery of Isotopes with 11 ≤ Z ≤ 19................................................................... 3 2.1. Sodium.......................................................................................... 3 2.2. Magnesium . 8 2.3. Aluminum . 12 2.4. Silicon . 17 2.5. Phosphorus . 22 2.6. Sulfur ........................................................................................... 26 2.7. Chlorine . 31 2.8. Argon ........................................................................................... 36 2.9. Potassium. 41 3. Summary ............................................................................................. 46 References . 46 Explanation of Tables . 53 Table 1. Discovery of Isotopes with 11 ≤ Z ≤ 19. See page 53 for Explanation of Tables . 54 1. Introduction The discovery of isotopes of the elements from sodium to potassium is
    [Show full text]
  • The Radiochemistry of Selenium
    Rt?v.1965 NUCLEARSCIENCESERIES National Academy of Sciences-National Research Council Pubtished $3y: United States Atomic Energ Commission COMMITTEEON NUCLEARSCIENCE S.K.Allison,Chairman f?.D. Evans,Vice Chairman UniversityofChicago Mass.InstituteofTechnology LewisSlack,Secretary NationalResearchCouncil E. C.Anderson BerndKahn Los Alamos Sci.Laboratory TaftSanitaryEngineeringCenter N. E. Ballou JerryB. Marion U.S.NavalRadiologicalDefenseLaboratory UniversityofMaryland MartinJ.Berger R. L.Platzman NationalBureauofStandards ArgonneNationalLaboratory C. J.Borkowski ErnestC.Pollard Oak RidgeNatl.Laboratory PennsylvaniaStateUniversity RobertG. Cochran KatherineWay A & M CollegeofTexas Oak RidgeNationallaboratory HerbertGoldstein GeorgeW. Wetherill ColumbiaUniversity UniversityofCalifornia(LosAngeles) LIAISONMEMBERS PaulC.Aebersold RalphG. Allen AtomicEnergyCommission AirForceOfficeofScientificReeearch J.HowardMcMillen NationalScienceFoundation SUBCOMMITTEEON NAOIOCHEMISTRY N. E. Ballou,Chairman W. E. Nervik U. S.NavalRadiologicalDefense LawrenceRadiationLaboratory Laboratory J.M. Nielsen G. R. Choppin GeneralElectricCompany (Richfand) FloridaStateUniversity G. D. O’Kelley H. M. Clark Oak RidgeNationalLaboratory RensselaerPolytechnicInstitute R. P. Schuman R. M. Diamond AtomicEnergyDivision LawrenceRadiationLaboratory PhillipsPetroleumCompany (IdahoFalls) A. W. Fairhall E. P. Steinberg UniversityofWashington ArgonneNationalLaboratory Jerome Hudie D. N. Sunderman BrookhavenNationalLaboratory BattelleMemorialInstitute J.D. Knight J.W. Winchester
    [Show full text]
  • Studies of Selenium and Xenon in Inductively Coupled Plasma Mass Spectrometry
    IS-T 1701 Studies of Selenium and Xenon in Inductively Coupled Plasma Mass Spectrometry by Bricker, Tonya MS Thesis submitted to Iowa State University Ames Laboratory, U.S. DOE Iowa State University Ames, Iowa 50011 Date Transmitted: July 27, 1994 PREPARED FOR THE U.S. DEPARTMENT OF ENERGY STE UNDER CONTRACT NO. W-7405-Eng-82. RECEIVED OCT 2 5 1994 °ST| 6»6TR!eUTtON OF THIS DOCUMENT IS UNLIMITED DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. 11 TABLE OF CONTENTS GENERAL INTRODUCTION 1 ICP-MS Overview 1 PART L SELENIUM SPECIATION BY SIZE EXCLUSION-INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY 5 INTRODUCTION 6 EXPERIMENTAL SECTION 9 HPLC-DIN-ICP-MS 9 Data Acquisition 13 Reagents and Samples 13 RESULTS AND DISCUSSION 14 CONCLUSION 20 PARTE.
    [Show full text]
  • Selenium Mineral Commodity Profile
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Open-File Report 03–018 Mineral Commodity Profiles Selenium By W.C. Butterman and R.D. Brown, Jr. 2004 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards (or with the Northern American Stratigraphic Code). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 2 CONTENTS Overview .......................................................................................................................................................................4 Historical background....................................................................................................................................................4 Description ....................................................................................................................................................................5 Salient facts ............................................................................................................................................................5 Principal forms, alloys, and compounds.................................................................................................................6 Commercial grades, shapes, and specifications......................................................................................................6 Sources of selenium.......................................................................................................................................................6
    [Show full text]