Forest & Shade Tree
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lepidoptera of North America 5
Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains, -
GIS Handbook Appendices
Aerial Survey GIS Handbook Appendix D Revised 11/19/2007 Appendix D Cooperating Agency Codes The following table lists the aerial survey cooperating agencies and codes to be used in the agency1, agency2, agency3 fields of the flown/not flown coverages. The contents of this list is available in digital form (.dbf) at the following website: http://www.fs.fed.us/foresthealth/publications/id/id_guidelines.html 28 Aerial Survey GIS Handbook Appendix D Revised 11/19/2007 Code Agency Name AFC Alabama Forestry Commission ADNR Alaska Department of Natural Resources AZFH Arizona Forest Health Program, University of Arizona AZS Arizona State Land Department ARFC Arkansas Forestry Commission CDF California Department of Forestry CSFS Colorado State Forest Service CTAES Connecticut Agricultural Experiment Station DEDA Delaware Department of Agriculture FDOF Florida Division of Forestry FTA Fort Apache Indian Reservation GFC Georgia Forestry Commission HOA Hopi Indian Reservation IDL Idaho Department of Lands INDNR Indiana Department of Natural Resources IADNR Iowa Department of Natural Resources KDF Kentucky Division of Forestry LDAF Louisiana Department of Agriculture and Forestry MEFS Maine Forest Service MDDA Maryland Department of Agriculture MADCR Massachusetts Department of Conservation and Recreation MIDNR Michigan Department of Natural Resources MNDNR Minnesota Department of Natural Resources MFC Mississippi Forestry Commission MODC Missouri Department of Conservation NAO Navajo Area Indian Reservation NDCNR Nevada Department of Conservation -
WO 2017/023486 Al 9 February 2017 (09.02.2017) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/023486 Al 9 February 2017 (09.02.2017) P O P C T (51) International Patent Classification: 0552 (US). FENGLER, Kevin; 7250 NW 62nd Ave, P.O. AOlH l/00 (2006.01) C07K 14/195 (2006.01) Box 552, Johnston, IA 5013 1-0552 (US). SCHEPERS, A01H3/00 (2006.01) C12N 15/82 (2006.01) Eric; 7250 NW 62nd Ave, P.O. Box 552, Johnston, IA 5013 1-0552 (US). UDRANSZKY, Ingrid; 7250 NW 62nd (21) International Application Number: Ave, P.O. Box 552, Johnston, IA 5013 1-0552 (US). PCT/US20 16/04 1452 (74) Agent: BAUER, S., Christopher; Pioneer Hi-Bred Inter (22) International Filing Date: national, Inc., 7100 N.W. 62nd Avenue, Johnston, IA 8 July 2016 (08.07.2016) 5013 1-1014 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (30) Priority Data: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 62/201,977 6 August 2015 (06.08.2015) US DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (71) Applicants: PIONEER HI-BRED INTERNATIONAL, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, INC. [US/US]; PIONEER HI-BRED INTERNATIONAL, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, INC., 7100 N.W. -
U.S. EPA, Pesticide Product Label, JAVELIN WG, 03/25/2008
. '. .3 - d-S-J-oog- . UNITED S(=~ES ENVIRONMENTAL PROTECTION AG('~CY Christine A. Dively MAR 25 2008 Director of Regulatory Affairs Certis USA 9145 Guilford Road, Suite 175 Columbia, MD 21046 Dear Ms. Dively: Subject: Javelin WG (EPA Reg. No. 70051-66) Label submitted for Bt reregistration !' . As part of the reregistration ofBt microbial pesticides, the Agency has issued a stamped approved label for each reregistered product. Part of the labeling that was required for reregistrationwas an Environmental Hazards statement containing language to protect endangered or threatened Lepidoptera. After finalizing reregistration of the subject product, the Agency was made aware that registrants were given an erroneous version of the Environmental Hazard statement to include on product labels. .The correct statement should read as follows: "This product must not be applied aerially within 1/4 mile of any habitats of endangered or threatened Lepidoptera. No manual application can be made within 300 feet of any threatened or endangered Lepidoptera." . In light of this error, EPA has re-stamped the label forthe subject product with the corrected Environmental Hazards text. A copy of the label is enclosed for yoUr records. If you have any questions, please contact Alan Reynolds of my staff at (703) 605-0515 (e-mail: [email protected]). Sincerely, Sheryl Reilly, Ph.D., Branch Chief Microbial Pesticides Branch (7511P) Biopesticides and Pollution Prevention Division Enclosure CONCURRENCES' SYMBOL .. '/ S"lj () '. SURNAME ~ ··4····· ·lJ..~·: ..................................... -
MOTHS and BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed Distributional Information Has Been J.D
MOTHS AND BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed distributional information has been J.D. Lafontaine published for only a few groups of Lepidoptera in western Biological Resources Program, Agriculture and Agri-food Canada. Scott (1986) gives good distribution maps for Canada butterflies in North America but these are generalized shade Central Experimental Farm Ottawa, Ontario K1A 0C6 maps that give no detail within the Montane Cordillera Ecozone. A series of memoirs on the Inchworms (family and Geometridae) of Canada by McGuffin (1967, 1972, 1977, 1981, 1987) and Bolte (1990) cover about 3/4 of the Canadian J.T. Troubridge fauna and include dot maps for most species. A long term project on the “Forest Lepidoptera of Canada” resulted in a Pacific Agri-Food Research Centre (Agassiz) four volume series on Lepidoptera that feed on trees in Agriculture and Agri-Food Canada Canada and these also give dot maps for most species Box 1000, Agassiz, B.C. V0M 1A0 (McGugan, 1958; Prentice, 1962, 1963, 1965). Dot maps for three groups of Cutworm Moths (Family Noctuidae): the subfamily Plusiinae (Lafontaine and Poole, 1991), the subfamilies Cuculliinae and Psaphidinae (Poole, 1995), and ABSTRACT the tribe Noctuini (subfamily Noctuinae) (Lafontaine, 1998) have also been published. Most fascicles in The Moths of The Montane Cordillera Ecozone of British Columbia America North of Mexico series (e.g. Ferguson, 1971-72, and southwestern Alberta supports a diverse fauna with over 1978; Franclemont, 1973; Hodges, 1971, 1986; Lafontaine, 2,000 species of butterflies and moths (Order Lepidoptera) 1987; Munroe, 1972-74, 1976; Neunzig, 1986, 1990, 1997) recorded to date. -
Proceedings of the Entomological Society of Alberta 2005
September 2006 ISSN 0071-0709 PROCEEDINGS OF THE 53rd ANNUAL MEETING OF THE Entomological Society of Alberta Held jointly with the Entomological Society of Canada November 2-5, 2005 Canmore, Alberta Contents ESA executive and meeting committees.........................................................................1 President’s Report.............................................................................................................2 Program of events .............................................................................................................3 Greetings from the ESC ....................................................................................................5 Welcome from the ESA .....................................................................................................5 Abstracts of submitted papers and posters....................................................................6 Minutes of the Fall Executive Meeting...........................................................................50 Minutes of the Annual General Meeting ........................................................................61 Annual Financial Report .................................................................................................64 Annual Report of the Webmaster...................................................................................65 ESC Director Report........................................................................................................66 ESA Membership list.......................................................................................................75 -
Impacts of Native and Non-Native Plants on Urban Insect Communities: Are Native Plants Better Than Non-Natives?
Impacts of Native and Non-native plants on Urban Insect Communities: Are Native Plants Better than Non-natives? by Carl Scott Clem A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama December 12, 2015 Key Words: native plants, non-native plants, caterpillars, natural enemies, associational interactions, congeneric plants Copyright 2015 by Carl Scott Clem Approved by David Held, Chair, Associate Professor: Department of Entomology and Plant Pathology Charles Ray, Research Fellow: Department of Entomology and Plant Pathology Debbie Folkerts, Assistant Professor: Department of Biological Sciences Robert Boyd, Professor: Department of Biological Sciences Abstract With continued suburban expansion in the southeastern United States, it is increasingly important to understand urbanization and its impacts on sustainability and natural ecosystems. Expansion of suburbia is often coupled with replacement of native plants by alien ornamental plants such as crepe myrtle, Bradford pear, and Japanese maple. Two projects were conducted for this thesis. The purpose of the first project (Chapter 2) was to conduct an analysis of existing larval Lepidoptera and Symphyta hostplant records in the southeastern United States, comparing their species richness on common native and alien woody plants. We found that, in most cases, native plants support more species of eruciform larvae compared to aliens. Alien congener plant species (those in the same genus as native species) supported more species of larvae than alien, non-congeners. Most of the larvae that feed on alien plants are generalist species. However, most of the specialist species feeding on alien plants use congeners of native plants, providing evidence of a spillover, or false spillover, effect. -
Illustration Sources
APPENDIX ONE ILLUSTRATION SOURCES REF. CODE ABR Abrams, L. 1923–1960. Illustrated flora of the Pacific states. Stanford University Press, Stanford, CA. ADD Addisonia. 1916–1964. New York Botanical Garden, New York. Reprinted with permission from Addisonia, vol. 18, plate 579, Copyright © 1933, The New York Botanical Garden. ANDAnderson, E. and Woodson, R.E. 1935. The species of Tradescantia indigenous to the United States. Arnold Arboretum of Harvard University, Cambridge, MA. Reprinted with permission of the Arnold Arboretum of Harvard University. ANN Hollingworth A. 2005. Original illustrations. Published herein by the Botanical Research Institute of Texas, Fort Worth. Artist: Anne Hollingworth. ANO Anonymous. 1821. Medical botany. E. Cox and Sons, London. ARM Annual Rep. Missouri Bot. Gard. 1889–1912. Missouri Botanical Garden, St. Louis. BA1 Bailey, L.H. 1914–1917. The standard cyclopedia of horticulture. The Macmillan Company, New York. BA2 Bailey, L.H. and Bailey, E.Z. 1976. Hortus third: A concise dictionary of plants cultivated in the United States and Canada. Revised and expanded by the staff of the Liberty Hyde Bailey Hortorium. Cornell University. Macmillan Publishing Company, New York. Reprinted with permission from William Crepet and the L.H. Bailey Hortorium. Cornell University. BA3 Bailey, L.H. 1900–1902. Cyclopedia of American horticulture. Macmillan Publishing Company, New York. BB2 Britton, N.L. and Brown, A. 1913. An illustrated flora of the northern United States, Canada and the British posses- sions. Charles Scribner’s Sons, New York. BEA Beal, E.O. and Thieret, J.W. 1986. Aquatic and wetland plants of Kentucky. Kentucky Nature Preserves Commission, Frankfort. Reprinted with permission of Kentucky State Nature Preserves Commission. -
WO 2017/105987 Al 22 June 2017 (22.06.2017) W P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/105987 Al 22 June 2017 (22.06.2017) W P O P C T (51) International Patent Classification: Ave, Po Box 552, Johnston, Iowa 5013 1 (US). ORAL, C07K 14/21 (2006.01) C12R 1/38 (2006.01) Jarred Kenneth; 7250 Nw 62nd Ave, Po Box 552, John C12N 15/82 (2006.01) A01N 63/02 (2006.01) ston, Iowa 5013 1 (US). PEREZ-ORTEGA, Claudia; 7250 Nw 62nd Ave, Po Box 552, Johnston, Iowa 5013 1 (21) International Application Number: (US). ROSEN, Barbara Ann Marie; 7250 Nw 62nd Ave, PCT/US2016/06553 1 Po Box 552, Johnston, Iowa 501 3 1 (US). SCHELLEN- (22) International Filing Date: BERGER, Ute; 914 Moreno Avenue, Palo Alto, Califor 8 December 2016 (08.12.2016) nia 94303 (US). WEI, Jun-Zhi; 7250 Nw 62nd Ave, Po Box 552, Johnston, Iowa 5013 1 (US). XIE, Weiping; (25) Filing Language: English 7250 Nw 62nd Ave, Po Box 552, Johnston, Iowa 5013 1 (26) Publication Language: English (US). ZHONG, Xiaohong; 7250 Nw 62nd Ave, Po Box 552, Johnston, Iowa 5013 1 (US). ZHU, Genhai; 7250 Nw (30) Priority Data: 62nd Ave, Po Box 552, Johnston, Iowa 5013 1 (US). 62/269,482 18 December 201 5 (18. 12.2015) US (74) Agent: BAUER, S., Christopher; PIONEER HI-BRED (71) Applicants: PIONEER HI-BRED INTERNATIONAL, INTERNATIONAL, INC., 7100 N.W. 62nd Avenue, P.O. INC. [US/US]; 7100 N.W. -
Technical Information Bulletin
TECHNICAL INFORMATION BULLETIN OVERVIEW Leap® ES Bacterial Disease Management Biological Insecticide Emulsifiable Suspension is the only alternative to copper-based products that, as part of a program, manages both bacterial disease and the yield-diminishing lepidopteran (worm) pests that can increase pathogens points of entry. Leap provides two-way protection: disease management and control of worm pests that can significantly damage crop foliage, fruit and plant health, while reducing crop quality and yield. DISEASE PROTECTION Xanthomonas spp. Bacterial leaf spot disease of tomato Disease Activity Pseudomonas spp. caused by Xanthomonas spp. INSECT ACTIVITY Common Name Scientific Name Common Name Scientific Name Achema Sphinx Moth Eumorpha achemon Melonworm Diaphania hyalinata (Hornworm) Spodoptera spp., e.g. Armyworm exigua, frugiperda, littoralis, Obliquebanded Leafroller Choristoneura rosaceana Pseudaletia unipuncta Cherry Fruitworm Grapholita packardi Omnivorous Leafroller Playnota stultana Corn Earworm, Cotton Helicoverpa spp., e.g. zea Orange Tortrix Argyrotaenia citrana Bollworm, Tomato Fruitworm Cranberry Fruitworm Acrobasis vaccinii Rindworm Complex Various Lepidoptera Cross-striped Evergestis rimosalis Saltmarsh Caterpillar Estigmene acrea Cabbageworm Various Noctuid species, Cutworm Soybean Looper Pseudoplusia includens e.g. Agrotis ipsilon Diamondback Moth Plutella xylostella Spanworm Ennomos subsignaria Ello Moth (Hornworm) Erinnyis ello Tent Caterpillar Various Lasiocampidae Grape Berry Moth Paralobesia viteana Tobacco Budworm -
Direct and Indirect Impacts of Emerald Ash Borer on Forest Bird
Direct and Indirect Impacts of Emerald Ash Borer on Forest Bird Communities THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Lawrence Charles Long Graduate Program in Entomology The Ohio State University 2013 Master's Examination Committee: Dr. Daniel A. Herms, Advisor Dr. Mary M. Gardiner Dr. Kathleen S. Knight Dr. Amanda D. Rodewald i Copyrighted by Lawrence Charles Long 2013 ii Abstract Emerald Ash Borer (EAB) (Agrilus planipennis Fairmare) is an exotic invader in North American forests. The buprestid wood borer has killed millions of ash trees since its discovery in southeastern Michigan in 2002. Because North American ash trees lack an evolutionary history with EAB, it has the potential to functionally extirpate the genus Fraxinus from the North American continent. Widespread, simultaneous ash mortality is likely to initiate a cascade of direct and indirect ecological effects. Forest infestation by EAB and subsequent loss of ash trees may lead to altered habitat and food availability for native insectivores such as birds. The objectives of this research were to: (1) determine utilization of EAB as a food resource by non-migratory bark-gleaning birds, (2) quantify forest regeneration in response to EAB-induced ash tree mortality and (3) determine the impact of EAB-induced regeneration on forest bird communities. Bird/vegetation monitoring plots were established during the winters of 2011 and 2012 in 51 forested stands throughout agricultural western and central Ohio as well as along the Huron river watershed in southeastern Michigan. During the spring of 2011 and 2012, point counts were conducted at each of the three plots per site. -
Species on the Menu of a Generalist
Molecular Ecology (2009) 18, 2532–2542 doi: 10.1111/j.1365-294X.2009.04184.x SpeciesBlackwell Publishing Ltd on the menu of a generalist predator, the eastern red bat (Lasiurus borealis): using a molecular approach to detect arthropod prey ELIZABETH L. CLARE,* ERIN E. FRASER,† HEATHER E. BRAID*, M. BROCK FENTON† and PAUL D. N. HEBERT* *Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G2W1, †Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7 Abstract One of the most difficult interactions to observe in nature is the relationship between a predator and its prey. When direct observations are impossible, we rely on morphological classification of prey remains, although this is particularly challenging among generalist predators whose faeces contain mixed and degraded prey fragments. In this investigation, we used a poly- merase chain reaction and sequence-based technique to identify prey fragments in the guano of the generalist insectivore, the eastern red bat (Lasiurus borealis), and evaluate several hypotheses about prey selection and prey defences. The interaction between bats and insects is of significant evolutionary interest because of the adaptive nature of insect hearing against echolocation. However, measuring the successes of predator tactics or particular prey defences is limited because we cannot normally identify these digested prey fragments beyond order or family. Using a molecular approach, we recovered sequences from 89% of the fragments tested, and through comparison to a reference database of sequences, we were able to identify 127 different species of prey. Our results indicate that despite the robust jaws of L. borealis, most prey taxa were softer-bodied Lepidoptera.