Technical Information Bulletin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lepidoptera of North America 5
Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains, -
GIS Handbook Appendices
Aerial Survey GIS Handbook Appendix D Revised 11/19/2007 Appendix D Cooperating Agency Codes The following table lists the aerial survey cooperating agencies and codes to be used in the agency1, agency2, agency3 fields of the flown/not flown coverages. The contents of this list is available in digital form (.dbf) at the following website: http://www.fs.fed.us/foresthealth/publications/id/id_guidelines.html 28 Aerial Survey GIS Handbook Appendix D Revised 11/19/2007 Code Agency Name AFC Alabama Forestry Commission ADNR Alaska Department of Natural Resources AZFH Arizona Forest Health Program, University of Arizona AZS Arizona State Land Department ARFC Arkansas Forestry Commission CDF California Department of Forestry CSFS Colorado State Forest Service CTAES Connecticut Agricultural Experiment Station DEDA Delaware Department of Agriculture FDOF Florida Division of Forestry FTA Fort Apache Indian Reservation GFC Georgia Forestry Commission HOA Hopi Indian Reservation IDL Idaho Department of Lands INDNR Indiana Department of Natural Resources IADNR Iowa Department of Natural Resources KDF Kentucky Division of Forestry LDAF Louisiana Department of Agriculture and Forestry MEFS Maine Forest Service MDDA Maryland Department of Agriculture MADCR Massachusetts Department of Conservation and Recreation MIDNR Michigan Department of Natural Resources MNDNR Minnesota Department of Natural Resources MFC Mississippi Forestry Commission MODC Missouri Department of Conservation NAO Navajo Area Indian Reservation NDCNR Nevada Department of Conservation -
Colusa Subreach Planning Pest and Regulatory Effects Study Final Project Report
Colusa Subreach Planning Pest and Regulatory Effects Study Final Project Report January 2008 Colusa Subreach Planning Pest and Regulatory Effects Study Final Project Report Submitted to: Colusa Subreach Planning Advisory Workgroup and The Nature Conservancy 500 Main Street Chico, CA 95928 Contact: Greg Golet, Senior Ecologist 530/897-6370 Prepared by: EDAW 2022 J Street Sacramento, CA 95811 Contact: Ron Unger 916/414-5800 January 2008 05110133.01 01.30.08 TABLE OF CONTENTS Section Page ACRONYMS AND ABBREVIATIONS................................................................................................................iv EXECUTIVE SUMMARY ............................................................................................................................... ES-1 Background and Purpose of the Study........................................................................................................ES-1 Key Regulatory Findings............................................................................................................................ES-2 Key Pest Findings.......................................................................................................................................ES-5 Recommendations.....................................................................................................................................ES-11 Conclusions ..............................................................................................................................................ES-13 1 INTRODUCTION -
WO 2017/023486 Al 9 February 2017 (09.02.2017) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/023486 Al 9 February 2017 (09.02.2017) P O P C T (51) International Patent Classification: 0552 (US). FENGLER, Kevin; 7250 NW 62nd Ave, P.O. AOlH l/00 (2006.01) C07K 14/195 (2006.01) Box 552, Johnston, IA 5013 1-0552 (US). SCHEPERS, A01H3/00 (2006.01) C12N 15/82 (2006.01) Eric; 7250 NW 62nd Ave, P.O. Box 552, Johnston, IA 5013 1-0552 (US). UDRANSZKY, Ingrid; 7250 NW 62nd (21) International Application Number: Ave, P.O. Box 552, Johnston, IA 5013 1-0552 (US). PCT/US20 16/04 1452 (74) Agent: BAUER, S., Christopher; Pioneer Hi-Bred Inter (22) International Filing Date: national, Inc., 7100 N.W. 62nd Avenue, Johnston, IA 8 July 2016 (08.07.2016) 5013 1-1014 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (30) Priority Data: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 62/201,977 6 August 2015 (06.08.2015) US DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (71) Applicants: PIONEER HI-BRED INTERNATIONAL, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, INC. [US/US]; PIONEER HI-BRED INTERNATIONAL, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, INC., 7100 N.W. -
England Biodiversity Indicators 2020
4a. Status of UK priority species: relative abundance England Biodiversity Indicators 2020 This documents supports 4a. Status of UK priority species: relative abundance Technical background document Fiona Burns, Tom August, Mark Eaton, David Noble, Gary Powney, Nick Isaac, Daniel Hayhow For further information on 4a. Status of UK priority species: relative abundance visit https://www.gov.uk/government/statistics/england-biodiversity-indicators 1 4a. Status of UK priority species: relative abundance Indicator 4a. Status of UK priority species: relative abundance Technical background document, 2020 NB this paper should be read together with 4b Status of UK Priority Species; distribution which presents a companion statistic based on time series on frequency of occurrence (distribution) of priority species. 1. Introduction The adjustments to the UK biodiversity indicators set as a result of the adoption of the Strategic Plan for Biodiversity (including the Aichi Targets) at the 10th Conference of Parties of the Convention on Biological Diversity mean there is a need to report progress against Aichi Target 12: Target 12: By 2020 the extinction of known threatened species has been prevented and their conservation status, particularly of those most in decline, has been improved and sustained. Previously, the UK biodiversity indicator for threatened species used lead partner status assessments on the status of priority species from 3-yearly UK Biodiversity Action Plan (UK BAP) reporting rounds. As a result of the devolution of biodiversity strategies to the UK's 4 nations, there is no longer reporting at the UK level of the status of species previously listed by the BAP process. This paper presents a robust indicator of the status of threatened species in the UK, with species identified as conservation priorities being taken as a proxy for threatened species. -
U.S. EPA, Pesticide Product Label, JAVELIN WG, 03/25/2008
. '. .3 - d-S-J-oog- . UNITED S(=~ES ENVIRONMENTAL PROTECTION AG('~CY Christine A. Dively MAR 25 2008 Director of Regulatory Affairs Certis USA 9145 Guilford Road, Suite 175 Columbia, MD 21046 Dear Ms. Dively: Subject: Javelin WG (EPA Reg. No. 70051-66) Label submitted for Bt reregistration !' . As part of the reregistration ofBt microbial pesticides, the Agency has issued a stamped approved label for each reregistered product. Part of the labeling that was required for reregistrationwas an Environmental Hazards statement containing language to protect endangered or threatened Lepidoptera. After finalizing reregistration of the subject product, the Agency was made aware that registrants were given an erroneous version of the Environmental Hazard statement to include on product labels. .The correct statement should read as follows: "This product must not be applied aerially within 1/4 mile of any habitats of endangered or threatened Lepidoptera. No manual application can be made within 300 feet of any threatened or endangered Lepidoptera." . In light of this error, EPA has re-stamped the label forthe subject product with the corrected Environmental Hazards text. A copy of the label is enclosed for yoUr records. If you have any questions, please contact Alan Reynolds of my staff at (703) 605-0515 (e-mail: [email protected]). Sincerely, Sheryl Reilly, Ph.D., Branch Chief Microbial Pesticides Branch (7511P) Biopesticides and Pollution Prevention Division Enclosure CONCURRENCES' SYMBOL .. '/ S"lj () '. SURNAME ~ ··4····· ·lJ..~·: ..................................... -
MOTHS and BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed Distributional Information Has Been J.D
MOTHS AND BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed distributional information has been J.D. Lafontaine published for only a few groups of Lepidoptera in western Biological Resources Program, Agriculture and Agri-food Canada. Scott (1986) gives good distribution maps for Canada butterflies in North America but these are generalized shade Central Experimental Farm Ottawa, Ontario K1A 0C6 maps that give no detail within the Montane Cordillera Ecozone. A series of memoirs on the Inchworms (family and Geometridae) of Canada by McGuffin (1967, 1972, 1977, 1981, 1987) and Bolte (1990) cover about 3/4 of the Canadian J.T. Troubridge fauna and include dot maps for most species. A long term project on the “Forest Lepidoptera of Canada” resulted in a Pacific Agri-Food Research Centre (Agassiz) four volume series on Lepidoptera that feed on trees in Agriculture and Agri-Food Canada Canada and these also give dot maps for most species Box 1000, Agassiz, B.C. V0M 1A0 (McGugan, 1958; Prentice, 1962, 1963, 1965). Dot maps for three groups of Cutworm Moths (Family Noctuidae): the subfamily Plusiinae (Lafontaine and Poole, 1991), the subfamilies Cuculliinae and Psaphidinae (Poole, 1995), and ABSTRACT the tribe Noctuini (subfamily Noctuinae) (Lafontaine, 1998) have also been published. Most fascicles in The Moths of The Montane Cordillera Ecozone of British Columbia America North of Mexico series (e.g. Ferguson, 1971-72, and southwestern Alberta supports a diverse fauna with over 1978; Franclemont, 1973; Hodges, 1971, 1986; Lafontaine, 2,000 species of butterflies and moths (Order Lepidoptera) 1987; Munroe, 1972-74, 1976; Neunzig, 1986, 1990, 1997) recorded to date. -
Scientific Note: Functional Morphology of Masquerading Larva of Ceratonyx Satanaria with Notes on Horned Spanworm, Nematocampa Resistaria (Geometridae: Ennominae)
SOURAKOV & STUBINA: Larva of Ceratonyx satanaria TROP. LEPID. RES., 22(1): 53-59, 2012 53 SCIENTIFIC NOTE: FUNCTIONAL MORPHOLOGY OF MASQUERADING LARVA OF CERATONYX SATANARIA WITH NOTES ON HORNED SPANWORM, NEMATOCAMPA RESISTARIA (GEOMETRIDAE: ENNOMINAE) Andrei Sourakov and Minna Stubina McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611; [email protected] Abstract - Morphological drawings and photographs are provided illustrating the unusual larval morphology, featuring long cervical horns or tubercles, of the geometrid moth Ceratonyx satanaria Guenée. In addition photographs of Nematocampa resistaria (Herrich-Schäffer) larvae, commonly known as a “horned spanworm” for its long abdominal tubercles, are also provided. The possible function of cervical horns is discussed in the context of predator-prey interactions. A survey of available photographs of geometrid larvae worldwide revealed cervical horns only in the genera Ceratonyx (Ennominae: Nacophorini) and in two Australian species of Geometridae: Plesanemma fucata (F&R 1875) (Ennominae: Nacophorini) and Parepisparis lutosaria (F. & R) (Oenochrominae). Key words: anti-predator defenses, mimicry, camouflage, crypsis. Larvae of Geometridae and genus Ceratonyx Morphology of Ceratonyx larvae The remarkable twig-like appearance of geometrid moth The larva illustrated in Figs. 1-2 was found on the ground larvae, and in particular the polymorphism and effectiveness in mid-April in Gainesville, Florida (Lat.: 29.6864; Long.: of this mode of defense against predators, has attracted much -82.3391”), and was preserved in 70% ethanol after boiling attention from researchers. While larval color can depend on in water. It measures 33 mm long, with cervical horns 10 mm diet, and hence can be regulated by environmental factors (e.g., long, and head 3.5 mm wide. -
Bosco Palazzi
SHILAP Revista de Lepidopterología ISSN: 0300-5267 ISSN: 2340-4078 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España Bella, S; Parenzan, P.; Russo, P. Diversity of the Macrolepidoptera from a “Bosco Palazzi” area in a woodland of Quercus trojana Webb., in southeastern Murgia (Apulia region, Italy) (Insecta: Lepidoptera) SHILAP Revista de Lepidopterología, vol. 46, no. 182, 2018, April-June, pp. 315-345 Sociedad Hispano-Luso-Americana de Lepidopterología España Available in: https://www.redalyc.org/articulo.oa?id=45559600012 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative SHILAP Revta. lepid., 46 (182) junio 2018: 315-345 eISSN: 2340-4078 ISSN: 0300-5267 Diversity of the Macrolepidoptera from a “Bosco Palazzi” area in a woodland of Quercus trojana Webb., in southeastern Murgia (Apulia region, Italy) (Insecta: Lepidoptera) S. Bella, P. Parenzan & P. Russo Abstract This study summarises the known records of the Macrolepidoptera species of the “Bosco Palazzi” area near the municipality of Putignano (Apulia region) in the Murgia mountains in southern Italy. The list of species is based on historical bibliographic data along with new material collected by other entomologists in the last few decades. A total of 207 species belonging to the families Cossidae (3 species), Drepanidae (4 species), Lasiocampidae (7 species), Limacodidae (1 species), Saturniidae (2 species), Sphingidae (5 species), Brahmaeidae (1 species), Geometridae (55 species), Notodontidae (5 species), Nolidae (3 species), Euteliidae (1 species), Noctuidae (96 species), and Erebidae (24 species) were identified. -
Insect Pests of the Grapevine
INSECT PESTS OF THE GRAPEVINE Lucia G. Varela North Coast IPM Advisor UC Cooperative Extension & Statewide IPM Program Major Insect & Mite Pests • Leafhoppers – Western Grape, Variegated and Virginia Creeper • Spider Mites – Willamette & Pacific • Mealybugs: – Grape, Vine, Obscure, Longtailed and Gill’s • Worms – Berry feeders, leafrollers, defoliators • Pierce’s disease vectors – Sharpshooters and spittlebugs • Others: – Scale, phylloxera, thrips Leafhoppers in California Vineyards • Western grape leafhopper, Erythroneura elegantula, found throughout California, north of the Tehachapi Mountains. – Adults pale yellow with orange markings and two dark brown spots on thorax. • Variegated leafhopper, E. variabilis, found in the Central Valley as far north as San Joaquin County and in southern California. – Adults have red, white, green, brown mottling. • Virginia creeper leafhopper, E. ziczac, found in Northern California and Northern Sierra foothills. – Adults have reddish-brown zigzag markings on the wing. Photos: Jack K. Clark All 3 species overwinter as adults Leafhopper Leaf Damage Photos: Jack K. Clark Monitor for nymphs Nymphs are small (~1/32 to 1/8”). Found primarily on under surface of leaf. Western grape leafhopper • Western grape leafhopper – Pale yellow marking on thorax only visible with a hand lens. Eyes appear white. – 2 to 3 broods a year • Variegated leafhopper – Yellow-brown to orange-brown. 1st and 2nd stages primarily on the upper Variegated leafhopper surface of the leaf. – 2 to 4 broods a year • Virginia creeper leafhopper – First stage is colorless with dark reddish brown eyes. – 2nd and 3rd stage have 4 orange Virginia creeper leafhopper markings on the thorax and dark red eyes. – 4th and 5th stage nymphs have 4 reddish-brown markings on the thorax and dark red eyes. -
Review of Ecologically-Based Pest Management in California Vineyards
Review Review of Ecologically-Based Pest Management in California Vineyards Houston Wilson 1,* and Kent M. Daane 2 1 Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA 2 Department Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA 94720-3114, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-559-646-6519 Academic Editors: Alberto Pozzebon, Carlo Duso, Gregory M. Loeb and Geoff M. Gurr Received: 28 July 2017; Accepted: 6 October 2017; Published: 11 October 2017 Abstract: Grape growers in California utilize a variety of biological, cultural, and chemical approaches for the management of insect and mite pests in vineyards. This combination of strategies falls within the integrated pest management (IPM) framework, which is considered to be the dominant pest management paradigm in vineyards. While the adoption of IPM has led to notable and significant reductions in the environmental impacts of grape production, some growers are becoming interested in the use of an explicitly non-pesticide approach to pest management that is broadly referred to as ecologically-based pest management (EBPM). Essentially a subset of IPM strategies, EBPM places strong emphasis on practices such as habitat management, natural enemy augmentation and conservation, and animal integration. Here, we summarize the range and known efficacy of EBPM practices utilized in California vineyards, followed by a discussion of research needs and future policy directions. EBPM should in no way be seen in opposition, or as an alternative to the IPM framework. Rather, the further development of more reliable EBPM practices could contribute to the robustness of IPM strategies available to grape growers. -
Metabolic Response of Platynota Stultana Pupae to Controlled Atmospheres and Its Relation to Insect Mortality Response Shijun Zhou A, Richard S
Journal of Insect Physiology 46 (2000) 1375–1385 www.elsevier.com/locate/jinsphys Metabolic response of Platynota stultana pupae to controlled atmospheres and its relation to insect mortality response Shijun Zhou a, Richard S. Criddle b, Elizabeth J. Mitcham a,* a Department of Pomology, University of California, One Shields Ave., Davis, CA 95616-8683, USA b Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA Received 26 October 1999; accepted 29 February 2000 Abstract The metabolic responses of Platynota stultana pupae to reduced O2, elevated CO2, and their combinations were investigated using microcalorimetry, and mortality of pupae under elevated CO2 atmospheres was correlated with metabolic responses. The metabolic heat rate decreased slightly with decreasing O2 concentration until a critical O2 concentration (Pc) below which the heat rate decreased rapidly. The Pc increased with temperature. The percentage decreases of metabolic heat rate were comparable to the percentage decreases of O2 consumption rate (RO2) at 10, 8, 6, and 4% O2, but were smaller at 2 and 1% O2. The metabolic heat rate decreased rapidly at 20% CO2 relative to 0% CO2, with little to no further decrease between 20 and 79% CO2. The percentage ° decreases of RO2 under 20 and 79% CO2 at 20 C were comparable to the percentage decreases of metabolic heat rates. The additive effects of subatmospheric O2 and elevated CO2 levels on reducing metabolic heat rate were generally fully realized at combinations Յ Ն of 5% CO2 and 4% O2, but became increasingly overlapped as the O2 concentration decreased and the CO2 concentration increased.