<<

EE 330 Lecture 36

Summary • Cascaded Design • Amplifier • Other Amplifier Configurations • Digital Circuit Design Review from Last Lecture The Cascode Amplifier (consider npn BJT version)

VCC

IB VOUT

Q2 VXX

Q1 VIN

VSS

• Actually a cascade of a CE stage followed by a CB stage but usually viewed as a “single-stage” structure

• Cascode structure is widely used

Review from Last Lecture Cascode current sources

IX IX

Q2 M2 VXX VXX IX

VYY VYY M1 Q1

VSS VSS VSS g0CC

VCC VCC VDD

Q1 VYY IX M1 VYY

VXX Q2 M2 VXX All have the same small-signal model

I IX X g02 g 01 +gπ2  g=0CC  g01 +g 02 +gπ2 +g m2 Summary (BJT) Basic Cascode

IX IX VCC VCC V YY Q1 Q1 Q2 VYY Q1 VYY VXX

VSS I X VYY VXX Q2 Q1

VSS IX

g01 g01/b

g01 gg0 01 g 0CC β Current Source Summary (MOS) Basic Cascode

IX VDD IX

M2 V VXX V DD YY VYY M1 M1 V YY M 1 V VYY M1 ZZ VSS M2

IX VSS IX

g0 g0

gg 0 01 g02 gg0 01 gm2 High Amplifier Comparisons ( n-ch MOS)

VCC

VDD VCC IB VDD

VOUT IB VDD

VZZ VOUT M2 V M4 M1 YY VZZ VIN M3 VOUT M2 VXX VZZ M VSS 1 M3 VIN VOUT

V M1 SS M2 VOUT gm1 VIN A-V  VXX g 01 M2 VXX 1 gm1 VSS A- M1 V  V 2g01 IN M1 VIN ggm1 m2 VSS A-VCC  gg01 02 VSS gm1 A-VCC  g01 1 ggm1 m2 A-VCC  2 g01 g 02 High Gain Amplifier Comparisons (BJT)

VDD

VCC V IB CC V OUT VYY IB VOUT

VIN Q1 VOUT

Q2 VXX V Q1 IN VCC

VEE VYY Q3 VCC Q V 1 -g EE VIN VOUT Q m VZZ 3 AV  g VSS Q2 0 VXX VYY Q 1 g m1 4 AV  VOUT 2g  Q1 01 gm1 VIN Q2 AV  β VXX g 01 VSS

Q1 g VIN A  m1 V  V g01 SS

gm1 β A=V   g201 The Cascode Amplifier

• Operational often built with basic cascode configuration

• Usually configured as a differential structure when building op amps

• Have high (but can be bufferred)

• Terms “telescopic cascode”, “folded-cascode”, and “regulated cascode” often refer to op amps based upon the cascode configuration

VDD

VB1

M5 M6

VB2

M7 M8

VOUT

VB3

M3 M4

VIN VIN M1 M2

IT V B5 M 11

V SS Telescopic Cascode Op Amp (CMFB feedback biasing not shown) Cascade Configurations

VDD VDD

IB1 IB2 IB1 IB2

VOUT VOUT

M1 Q1 Q2 VIN VIN M2

VSS Two-stage Cascade VSS

A?VCB 

A?VCM  Cascade Configurations

VDD VDD

IB1 IB2 IB1 IB2

VOUT VOUT

M1 Q1 Q2 VIN VIN M2

VSS Two-stage Cascade VSS -gm1   -g m2  g m1 g m2 g m1 AVCB      β g01 +g 2   g 02  g 2 g 02 g 02

-gm1   -g m2  g m1 g m2 AVCM     g01   g 02  g01 g 02

• Significant increase in gain • Gain is noninverting • Comparable to that obtained with the cascode Cascade Configurations

VDD VDD

VYY VXX VYY VXX M4 Q3 Q4 M3 VOUT VOUT

M1 Q1 Q2 VIN VIN M2

VSS Two-stage Cascade VSS -gm1   -g m2  g m1 g m2 g m1 AVCB      β g01 +g 03 +g 2   g 02 +g 04  2g 2 g 02 2g 02

-gm1   -g m2  g m1 g m2 AVCM     g01 g 03   g 02 g 04  4g01 g 02

Note factor or 2 and 4 reduction in gain due to actual current source bias Cascade Configurations

V VDD DD

I I I IB1 IB2 B1 B2 B3

VOUT VOUT

VIN Q1 Q2 Q3 VIN Q1 Q2

VSS VEE

Two-stage Cascade Three-stage Cascade • Large gains can be obtained by cascading • Gains are multiplicative (when loading is included) • Large gains used to build “Op Amps” and feedback used to control gain value • Some attention is needed for biasing but it is manageable • Minor variant of the two-stage cascade often used to built Op Amps • Compensation of two-stage cascade needed if feedback is applied to maintain stability • Three or more stages are seldom cascaded because no really good way to compensate to maintain stability

Differential Amplifiers

VDD

R1 R2

VOUT1 VOUT2

V1 Q1 Q2 V2

ITAIL

VSS

Basic circuit Amplifier Biasing

Amplifier biasing is that part of the design of a circuit that establishes the desired operating point (or Q-point)

Goal is to invariably minimize the impact the biasing circuit has on the small-signal performance of a circuit

Usually at most 2 dc power supplies are available and these are often fixed in value by system requirements – this restriction is cost driven

Discrete amplifiers invariable involve adding biasing and use capacitor coupling and bypassing

Integrated amplifiers often use current sources which can be used in very large numbers and are very inexpensive Amplifier Biasing Example: Vout

RL

Vin VDD R RB1 C1 C2 AV =-g m R L Vout C1 C Desired small-signal circuit B E RL Amplifier Vin

RB2 RE1 C Vout 3

RL//RC1 Biased circuit

Vin RB1//RB2

Actual small-signal circuit

AV =-g m R L //R C1 Amplifier Biasing Example:

Vout

RL

Vin

Desired small-signal circuit

Common Emitter Amplifier VDD R RB1 C1 C2 Vout C1 C B

E RL Vin

RB2 RE1 C3

Biased small-signal circuit Amplifier Biasing Example:

Vout Vin RL

Desired small-signal circuit V Amplifier DD

Vout Vin

IB RL

VSS

Biased circuit Amplifier Biasing Example:

R2 R1 Vin Vout

Desired small-signal circuit Inverting Feedback Amplifier

R2 R1 VDD Vin Vout

VSS

Biased circuit Other Basic Configurations

C B Q1

Q2

E

Darlington Configuration

• Current gain is approximately β2

• Two diode drop between Beff and Eeff Other Basic Configurations

C

B Q1 Q2

E

Sziklai Pair

• Same basic structure ad Darlington Pair

• Current gain is approximately βn βp • Current gain will not be as large when βp< βn • Only one diode drop between Beff and Eeff Other Basic Configurations

Low offset buffers VDD

VCC

IB2 IB2

VOUT M1 VOUT VIN M2 VIN Q1 Q2 ZL ZL

IB1 IB1

VSS VEE

• Actually a CC-CC or a CD-CD cascade • Significant drop in offset between input and output

• Biasing with DC current sources Other Basic Configurations

Voltage Attenuator

VDD VDD VDD

M2

VOUT VIN VOUT VOUT VIN VIN

M1

• Attenuation factor is quite accurate (Determined by geometry) • Infinite

• M1 in , M2 in saturation • Actually can be a channel-tapped structure Amplifier Wrap-Up

We will now draw closure to the focus on amplifiers in this course (high-frequency performance will be considered later if time permits) with a brief review:

• Amplifier Design Strategies • MOS-Bipolar mappings • Large and Small Signal Models • Basic Amplifier Configurations

Amplifier Design Strategies

• Draw on Past Experience • Often leads to Circuit or Architecture that can be modified or extended • Remember unique characteristics observed for circuit structures for future use even if not relevant in an existing deisgn • Identify the degrees of freedom in the design and the number of constraints and then systematically explore the design space • Simulation-guided computer simulation is not an effective way of exploring a multi-variable design space ! MOS Amplifiers (summary) • 1-1 mapping between almost all bipolar amplifiers and MOS amplifiers • Simply replace BJT with MOS devices and redo the biasing

• Small-signal gains for MOS circuits in terms of small-signal model parameters identical if set gπ = 0 for BJT circuits MOS-Bipolar Amplifier Mapping

V VOUT OUT

VIN VIN

Common Emitter

VIN VIN

VOUT VOUT

Common Collector

VOUT VOUT

VIN VIN Can use these equations only when small signal circuit is EXACTLY like that shown !! MOS-Bipolar Amplifier Mapping Example: Common Emitter – Common Source Circuits

VDD

G

VOUT VOUT gm AV  VIN G gGo  VIN 1 RIN  g

VSS

g  0 VCC

G VOUT

VOUT gm G AV  VIN gG VIN o RIN 

VEE Digital Circuit Design Most of the remainder of the course will be devoted to digital circuit design 3.5V

C M6 B M5 A M4 F

F

C M3

B M2

Verilog A M1 VHDL

module gates (input logic [3:0] a,b, library IEEE; use IEEE.STD_LOGIC_1164.all; output logic [3:0] y1,y2,y3,y4,y5); entity gates is assign y1 = a&b; //AND port(a,b: in STD_LOGIC_VECTOR(3 dowto 0); assign y2 = a | b; //OR y1,y2,y3,y4,y5:out STD_LOGIC_VECTOR(3 downto 0)); assign y3 = a ^ b; //XOR end; assign y4 = ~(a & b); //NAND architecture synth of gates is assign y5 = ~( a | b); //NOR begin endmodule y1 <= a and b; y2 <= a or b; y3 <= a xor b; A rendering of a small standard y4 <= a nand b; cell with three metal layers y5 <= a nor b; (dielectric has been removed). end; The sand-colored structures are metal interconnect, with the vertical pillars being contacts, typically plugs of tungsten. The reddish structures are polysilicon gates, and the solid at the bottom Standard Cell Library is the crystalline silicon bulk Digital Circuit Design

• Hierarchical Design • Propagation Delay with • Basic Logic Gates Multiple Levels of Logic • Properties of Logic Families • Optimal driving of Large • Characterization of CMOS Capacitive Loads Inverter • Power Dissipation in Logic • Static CMOS Logic Gates Circuits – Ratio Logic • Other Logic Styles • Propagation Delay • Array Logic – Simple analytical models • Ring Oscillators – Elmore Delay • Sizing of Gates

Hierarchical Digital Design Domains: Top

Behavioral:

Structural:

Physical

Bottom Multiple Levels of Abstraction Hierarchical Digital Design Domains: Top

Behavioral: Top DownDesign

Structural:

Physical Design Up Bottom

Bottom Hierarchical Digital Design Domains:

Top Top DownDesign

Behavioral:

Structural:

Bottom Up Design Up Bottom Physical

Bottom

Multiple Sublevels in Each Major Level All Design Steps may not Fit Naturally in this Description Hierarchical Analog Design Domains: Top

Behavioral: Top DownDesign

Structural:

Physical Design Up Bottom

Bottom Hierarchical Digital Design Domains:

Behavioral : Describes what a system does or what it should do

Structural : Identifies constituent blocks and describes how these blocks are interconnected and how they interact

Physical : Describes the constituent blocks to both the and polygon level and their physical placement and interconnection

Multiple representations often exist at any level or sublevel End of Lecture 36