Business-Oriented (Therefore Mostly Non
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Technical Details of the Elliott 152 and 153
Appendix 1 Technical Details of the Elliott 152 and 153 Introduction The Elliott 152 computer was part of the Admiralty’s MRS5 (medium range system 5) naval gunnery project, described in Chap. 2. The Elliott 153 computer, also known as the D/F (direction-finding) computer, was built for GCHQ and the Admiralty as described in Chap. 3. The information in this appendix is intended to supplement the overall descriptions of the machines as given in Chaps. 2 and 3. A1.1 The Elliott 152 Work on the MRS5 contract at Borehamwood began in October 1946 and was essen- tially finished in 1950. Novel target-tracking radar was at the heart of the project, the radar being synchronized to the computer’s clock. In his enthusiasm for perfecting the radar technology, John Coales seems to have spent little time on what we would now call an overall systems design. When Harry Carpenter joined the staff of the Computing Division at Borehamwood on 1 January 1949, he recalls that nobody had yet defined the way in which the control program, running on the 152 computer, would interface with guns and radar. Furthermore, nobody yet appeared to be working on the computational algorithms necessary for three-dimensional trajectory predic- tion. As for the guns that the MRS5 system was intended to control, not even the basic ballistics parameters seemed to be known with any accuracy at Borehamwood [1, 2]. A1.1.1 Communication and Data-Rate The physical separation, between radar in the Borehamwood car park and digital computer in the laboratory, necessitated an interconnecting cable of about 150 m in length. -
David Hartley a Promise of Funding Has Been Received and an Outline Plan Including Cost Estimates and Timescales Has Been Drawn Up
Issue Number 54 Spring 2011 Computer Conservation Society Aims and objectives The Computer Conservation Society (CCS) is a co-operative venture between the British Computer Society (BCS), the Science Museum of London and the Museum of Science and Industry (MOSI) in Manchester. The CCS was constituted in September 1989 as a Specialist Group of the British Computer Society. It is thus covered by the Royal Charter and charitable status of the BCS. The aims of the CCS are: To promote the conservation of historic computers and to identify existing computers which may need to be archived in the future, To develop awareness of the importance of historic computers, To develop expertise in the conservation and restoration of historic computers, To represent the interests of Computer Conservation Society members with other bodies, To promote the study of historic computers, their use and the history of the computer industry, To publish information of relevance to these objectives for the information of Computer Conservation Society members and the wider public. Membership is open to anyone interested in computer conservation and the history of computing. The CCS is funded and supported by voluntary subscriptions from members, a grant from the BCS, fees from corporate membership, donations, and by the free use of the facilities of both museums. Some charges may be made for publications and attendance at seminars and conferences. There are a number of active Projects on specific computer restorations and early computer technologies and software. -
Sir William Siemens (1823–1883)
Sir William Siemens (1823–1883) Wilhelm Siemens (1823–1883), who changed his first name to William after moving to England, was born on April 4, 1823, in Lenthe near Hanover, Germany. He accompanied his older brother Werner von Siemens, who was then serving in the Prussian army, to Magdeburg, where he attended trade school. After dropping out of a practical engineering program in Magdeburg and abandoning the study of natural sciences at the University of Göttingen, William spent the spring and summer of 1843 in England. Here he succeeded in patenting the silver and gold-plating technique developed by Werner and selling the rights to the English company of Elkington for £1,600 or roughly 30,000 marks. This success not only helped the brothers out of major financial difficulties; it also encouraged William to consider moving to England. Werner supported the idea, and William traveled to England again in January 1844. However, the quick success of the previous year could not be immediately repeated. Only gradually did the situation improve. From 1849, William held a permanent position as an engineer in Birmingham. At the same time, he also worked on his own inventions, among them a water meter that later proved very successful. In 1850, William took over the management of the newly established agency of Siemens & Halske in London, although its beginnings were somewhat inauspicious. The manufacture and laying of submarine telegraph cables opened up new business opportunities. William’s good contacts with engineering circles and government authorities facilitated the otherwise difficult entry into the highly developed English telegraph market, where private operating companies were in competition with one another. -
Computer Conservation Society
Computer Conservation Society Aims and objectives The Computer Conservation Society (CCS) is a co-operative venture between the British Computer Society, the Science Museum of London and the Museum of Science and Industry in Manchester. The CCS was constituted in September 1989 as a Specialist Group of the British Computer Society (BCS). It is thus covered by the Royal Charter and charitable status of the BCS. The aims of the CCS are to Promote the conservation of historic computers and to identify existing computers which may need to be archived in the future Develop awareness of the importance of historic computers Encourage research on historic computers and their impact on society Membership is open to anyone interested in computer conservation and the history of computing. The CCS is funded and supported by voluntary subscriptions from members, a grant from the BCS, fees from corporate membership, do- nations, and by the free use of Science Museum facilities. Some charges may be made for publications and attendance at seminars and conferences. There are a number of active Working Parties on specific computer restorations and early computer technologies and software. Younger peo- ple are especially encouraged to take part in order to achieve skills transfer. Resurrection The Bulletin of the Computer Conservation Society ISSN 0958 - 7403 Number 30 Spring 2003 Contents Generous BCS Support for Bombe Rebuild Project Ernest Morris, Chairman 2 AGM 2 News Round-Up 3 Society Activity 6 CCS Collection Policy 11 DAP snippets Brian M Russell 12 CCS Web Site Information 12 British Computer Corporation | a 1956 Venture Hugh McGregor Ross 13 Edsger Dijkstra remembered Brian Shearing 22 Deciphering Ancient Floppy Discs Kevin Murrell 26 The ICL Archive Hamish Carmichael 28 Forthcoming Events 31 Generous BCS Support for Bombe Rebuild Project Ernest Morris, Chairman CCS members will be familiar with the good progress of the Bombe re- build from the regular reports in Resurrection by John Harper, the project manager. -
British Engineering in the Twentieth Century.Doc Page 1 of 2 the British
British Engineering in the Twentieth Century.doc Page 1 of 2 The British Thomson Houston company was formed in 1896, though its roots date back some ten years earlier. Manufacturing in the UK started in Rugby in March 1902 with a factory of 206,000 sq. ft. The plant produced its first turbo-alternator in 1905 and in 1907 BTH engaged in a joint venture with Wolseley Motors to construct petrol-electric buses. 1909 saw the Company involved in providing electrical equipment for the first trolley buses in London. From day one, the company was connected with the manufacture of incandescent lamps. In 1911 they obtained all the GE patents for drawn-wire tungsten filaments and the Mazda trade mark. Leading up to the Second World War, BTH was heavily involved in jet engine design and when the war began it manufactured magnetos, compressors, switchgear and was involved in the development of radar. On the 1st January 1960 BTH and Metropolitan Vickers were merged into AEI (Associated Electrical Industries Limited) and the BTH and MV names were lost forever in the world of electrical engineering. The American-owned firm British Westinghouse was responsible for the formation of Metropolitan-Vickers. MV was established in 1899 and located in Trafford Park, Manchester. This was an industrial area that became the focal point of many of MV’s activities. Metrovick was particularly successful in South Africa, Australia and New Zealand and, in 1922 alone, provided £1 million worth of railway traction equipment to South Africa. The 1920s was a period of considerable development for Metrovick with technical advances in the manufacture of turbines, generators, switchgear and industrial motors. -
Fiendish Designs
Fiendish Designs A Software Engineering Odyssey © Tim Denvir 2011 1 Preface These are notes, incomplete but extensive, for a book which I hope will give a personal view of the first forty years or so of Software Engineering. Whether the book will ever see the light of day, I am not sure. These notes have come, I realise, to be a memoir of my working life in SE. I want to capture not only the evolution of the technical discipline which is software engineering, but also the climate of social practice in the industry, which has changed hugely over time. To what extent, if at all, others will find this interesting, I have very little idea. I mention other, real people by name here and there. If anyone prefers me not to refer to them, or wishes to offer corrections on any item, they can email me (see Contact on Home Page). Introduction Everybody today encounters computers. There are computers inside petrol pumps, in cash tills, behind the dashboard instruments in modern cars, and in libraries, doctors’ surgeries and beside the dentist’s chair. A large proportion of people have personal computers in their homes and may use them at work, without having to be specialists in computing. Most people have at least some idea that computers contain software, lists of instructions which drive the computer and enable it to perform different tasks. The term “software engineering” wasn’t coined until 1968, at a NATO-funded conference, but the activity that it stands for had been carried out for at least ten years before that. -
The Electric-Lamp Industry
Massachusetts Institute of Technology Studies of Innovation • GiSma,..=("EaEssormat THE MACMILLAN COMPANY THE ELECTRIC-LAMP INDUSTRY: NEW YORK a BOSTON a CHICAGO DALLAS • ATLANTA • SAN FRANCISCO MACMILLAN AND CO., LIMITED Technological Change and Economic LONDON a BOMBAY a CALCUTTA MADRAS a MELBOURNE Development from 1800 to 1947 THE MACMILLAN COMPANY OF CANADA, LIMITED TORONTO By ARTHUR A. BRIGHT, Jr. THE MACMILLAN COMPANY • NEW YORK 1949 FOREWORD THIS study of the economic development of the electric- lamp industry is the second volume in a series of studies on the economics of innovation, undertaken at the Massachusetts Insti- tute of Technology. The creative role played by science and technology in modern economic life is apparent to everyone. But we know relatively little about the human factors which condition the introduction of technological change into our environment. Are there barriers to innovation inherent in the increasing concentration of power in a few large concerns? Does the patent system, designed as an incentive to invention, act more often as a brake on new develop- ments? What has been the role of key personalities in creating change? Are there lessons to be drawn from the past on how the innovating process can be more effective, not only from the standpoint of achieving a higher standard of material being but from the point of view of smoother human relations? Certainly, material progress at any price is not a satisfactory goal. On the other hand, freedom for creative action in initiating and carrying out new developments is a basic human drive for many individu- als. I believe, personally, that a great society should strive toward a goal which will give to individuals and groups the maximum opportunities for creative expression; yet this means to me that the State must act to prevent the compulsive pressure of some particular group from overriding others to the destruction of human values. -
A Ditadura Dos Cartéis Anatomia De Um Subdesenvolvimento Biblioteca De Santo André
Kurt Rudolf Mirow A Ditadura dos Cartéis Anatomia de um Subdesenvolvimento Biblioteca de Santo André Direitos desta edição reservados à EDITORA CIVILIZAÇÃO BRASILEIRA S.A. 1977 Impresso no Brasil Sumário I — O JOGO DO PODER ECONÔMICO 1. A Divisão do Mundo 2. Economia em Escala e Curvas de Experiências 3. Domínio de Mercado 4. "Patent-Pool" e "Cross Licensing 5. Proteção de Mercado Cativo (Hunting ground agreements) 6. O Possível Concorrente 7. Inflação 8. "Pool" de Lucros II — A INDÚSTRIA ELÉTRICA É EXEMPLAR 1. O Cartel nos Estados Unidos 2. A Guerra Comercial 3. A Divisão do Mercado 4. Os Subornos 5. O Primeiro Cartel 6. A Eliminação dos Independentes e a GE concorrendo consigo própria 7. A Grande Conspiração 8. O Cartel na Alemanha 9. O Cartel de Lâmpadas e a OSRAM 10. O Cartel no Terceiro Reich e no após-guerra 11. O Cartel na Inglaterra e na França 12. Os Acordos Internacionais 13. O Cartel Internacional de Lâmpadas 14. A IEA (Internacional Electrical Association) 15. A IEA e o MCE (Mercado Comum Europeu) 16. As Corporações Japonesas e o Cartel de IEA 17. Os Acordos Especiais e o Brasil 18. O Cartel Internacional de Cabos Elétricos 19. O Caso Cônsul 20. O Cartel da Indústria Eletrônica 21. Cooperação entre Cartéis — a ACESITA e as chapas silicosas 22. A Indústria Nuclear e o Cartel de Urânio III — Os CARTÉIS DE AÇO E A INDUSTRIA DE BENS DE CAPITAL 1.O Cartel dos Trilhos 2. O Cartel dos Tubos de Aço 3. Os Cartéis de Aço e o Brasil 4. -
P the Pioneers and Their Computers
The Videotape Sources: The Pioneers and their Computers • Lectures at The Compp,uter Museum, Marlboro, MA, September 1979-1983 • Goal: Capture data at the source • The first 4: Atanasoff (ABC), Zuse, Hopper (IBM/Harvard), Grosch (IBM), Stibitz (BTL) • Flowers (Colossus) • ENIAC: Eckert, Mauchley, Burks • Wilkes (EDSAC … LEO), Edwards (Manchester), Wilkinson (NPL ACE), Huskey (SWAC), Rajchman (IAS), Forrester (MIT) What did it feel like then? • What were th e comput ers? • Why did their inventors build them? • What materials (technology) did they build from? • What were their speed and memory size specs? • How did they work? • How were they used or programmed? • What were they used for? • What did each contribute to future computing? • What were the by-products? and alumni/ae? The “classic” five boxes of a stored ppgrogram dig ital comp uter Memory M Central Input Output Control I O CC Central Arithmetic CA How was programming done before programming languages and O/Ss? • ENIAC was programmed by routing control pulse cables f ormi ng th e “ program count er” • Clippinger and von Neumann made “function codes” for the tables of ENIAC • Kilburn at Manchester ran the first 17 word program • Wilkes, Wheeler, and Gill wrote the first book on programmiidbBbbIiSiing, reprinted by Babbage Institute Series • Parallel versus Serial • Pre-programming languages and operating systems • Big idea: compatibility for program investment – EDSAC was transferred to Leo – The IAS Computers built at Universities Time Line of First Computers Year 1935 1940 1945 1950 1955 ••••• BTL ---------o o o o Zuse ----------------o Atanasoff ------------------o IBM ASCC,SSEC ------------o-----------o >CPC ENIAC ?--------------o EDVAC s------------------o UNIVAC I IAS --?s------------o Colossus -------?---?----o Manchester ?--------o ?>Ferranti EDSAC ?-----------o ?>Leo ACE ?--------------o ?>DEUCE Whirl wi nd SEAC & SWAC ENIAC Project Time Line & Descendants IBM 701, Philco S2000, ERA.. -
PREFACE to 1895 EDITION, OUTLINE of CONTENTS and INDEX to COMPANIES LISTED in 1895 (PDF File
PREFACE TO 1895 EDITION, OUTLINE OF CONTENTS & INDEX TO COMPANIES LISTED IN 1895 By 1895 the Stock Exchange Official Yearbook had settled into a format that it was to stay with for the duration. We reproduce the Preface, Outline of Contents and the Index to companies listed in 1895 to give readers an idea of the typical organisation of a yearbook, and of the great variety of companies covered in this and in future volumes. PREFACE. The year 1894 has not proved so favourable to business as was expected. This is chiefly due to the further considerable decline in the prices of natural products, and to some extent to the difficulty in bringing to a conclusion the tariff and other reforms in the United States to which President Cleveland had put his hand. But the year closes with a nearly complete absence of disturbing causes, though the prices of produce are still at their lowest, and the return to commercial and agricultural prosperity is in all parts of the world proceeding at an abnormally slow rate. But it is generally admitted that the worst is now more than over. This is an immense gain in itself, especially as regards Stock Exchange securities, amongst which selling from fear or necessity no sooner ceases than an upward movement on some scale sets in. A year ago we had to report a further considerable fall in the aggregate of Stock Exchange values; but for 1894 there has been a rise in prices which more than outsets the decline then reported, and to all appearance the upward movement is still in progress. -
A Historical Perspective of the Development of British Computer Manufacturers with Particular Reference to Staffordshire
A historical perspective of the development of British computer manufacturers with particular reference to Staffordshire John Wilcock School of Computing, Staffordshire University Abstract Beginning in the early years of the 20th Century, the report summarises the activities within the English Electric and ICT groups of computer manufacturers, and their constituent groups and successor companies, culminating with the formation of ICL and its successors STC-ICL and Fujitsu-ICL. Particular reference is made to developments within the county of Staffordshire, and to the influence which these companies have had on the teaching of computing at Staffordshire University and its predecessors. 1. After the second world war In Britain several computer research teams were formed in the late 1940s, which concentrated on computer storage techniques. At the University of Manchester, Williams and Kilburn developed the “Williams Tube Store”, which stored binary numbers as electrostatic charges on the inside face of a cathode ray tube. The Manchester University Mark I, Mark II (Mercury 1954) and Atlas (1960) computers were all built and marketed by Ferranti at West Gorton. At Birkbeck College, University of London, an early form of magnetic storage, the “Birkbeck Drum” was constructed. The pedigree of the computers constructed in Staffordshire begins with the story of the EDSAC first generation machine. At the University of Cambridge binary pulses were stored by ultrasound in 2m long columns of mercury, known as tanks, each tank storing 16 words of 35 bits, taking typically 32ms to circulate. Programmers needed to know not only where their data were stored, but when they were available at the top of the delay lines. -
PERQ Workstations by R. D. Davis
PERQ Workstations R. D. Davis Last Updated: November 6, 2003 from the Sept. 7, 1991 edition. 2 Contents 1 Preface and Dedication 11 2 History 13 2.1 PERQ History as Told by Those Who Were There . 13 2.2 PERQ History as Otherwise Researched . 16 2.3 Late 1960's . 16 2.4 1972/1973 . 17 2.5 1973 . 17 2.6 1974 . 17 2.7 1975 . 18 2.8 1976 . 18 2.9 Late 1970's . 18 2.10 1978 . 18 2.11 1979 . 19 2.12 1980 . 19 2.13 1981 . 20 2.14 1982/1983: . 22 2.15 1983-1984? . 22 2.16 1984: . 23 2.17 1985 . 24 2.18 1986: . 25 2.19 1986/1987 . 26 2.20 1997 . 27 2.21 Things whose time period is questionable . 27 3 Accent Systems Corp. 31 4 More PERQ History 33 4.1 Graphic Wonder . 33 3 4 CONTENTS 4.1.1 Historical notes from Chris Lamb . 35 4.2 Alt.sys.perq . 36 4.3 PERQ-Fanatics Mailing Lists . 36 4.4 Original uCode . 37 5 The Accent OS 39 5.1 The Accent Kernel . 42 5.2 Co-Equal Environments . 44 5.3 Accent Window Manager: Sapphire . 44 5.4 Matchmaker . 45 5.5 Microprogramming . 45 5.6 Other Info. 46 5.7 Accent and Printing/Publishing . 46 5.8 Porting POS Code to Accent . 47 5.9 Accent S5 . 47 5.10 Naming of Accent . 47 6 The Action List 49 7 Adverts and Etc. 53 7.1 PERQ-1 . 53 7.1.1 PERQ Systems and cooperative agreements: .