David Hartley a Promise of Funding Has Been Received and an Outline Plan Including Cost Estimates and Timescales Has Been Drawn Up
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Technical Details of the Elliott 152 and 153
Appendix 1 Technical Details of the Elliott 152 and 153 Introduction The Elliott 152 computer was part of the Admiralty’s MRS5 (medium range system 5) naval gunnery project, described in Chap. 2. The Elliott 153 computer, also known as the D/F (direction-finding) computer, was built for GCHQ and the Admiralty as described in Chap. 3. The information in this appendix is intended to supplement the overall descriptions of the machines as given in Chaps. 2 and 3. A1.1 The Elliott 152 Work on the MRS5 contract at Borehamwood began in October 1946 and was essen- tially finished in 1950. Novel target-tracking radar was at the heart of the project, the radar being synchronized to the computer’s clock. In his enthusiasm for perfecting the radar technology, John Coales seems to have spent little time on what we would now call an overall systems design. When Harry Carpenter joined the staff of the Computing Division at Borehamwood on 1 January 1949, he recalls that nobody had yet defined the way in which the control program, running on the 152 computer, would interface with guns and radar. Furthermore, nobody yet appeared to be working on the computational algorithms necessary for three-dimensional trajectory predic- tion. As for the guns that the MRS5 system was intended to control, not even the basic ballistics parameters seemed to be known with any accuracy at Borehamwood [1, 2]. A1.1.1 Communication and Data-Rate The physical separation, between radar in the Borehamwood car park and digital computer in the laboratory, necessitated an interconnecting cable of about 150 m in length. -
Computer Conservation Society
Issue Number 88 Winter 2019/20 Computer Conservation Society Aims and Objectives The Computer Conservation Society (CCS) is a co-operative venture between BCS, The Chartered Institute for IT; the Science Museum of London; and the Science and Industry Museum (SIM) in Manchester. The CCS was constituted in September 1989 as a Specialist Group of the British Computer Society. It is thus covered by the Royal Charter and charitable status of BCS. The objects of the Computer Conservation Society (“Society”) are: To promote the conservation, restoration and reconstruction of historic computing systems and to identify existing computing systems which may need to be archived in the future; To develop awareness of the importance of historic computing systems; To develop expertise in the conservation, restoration and reconstruction of historic computing systems; To represent the interests of the Society with other bodies; To promote the study of historic computing systems, their use and the history of the computer industry; To publish information of relevance to these objectives for the information of Society members and the wider public. Membership is open to anyone interested in computer conservation and the history of computing. The CCS is funded and supported by a grant from BCS and from donations. There are a number of active projects on specific computer restorations and early computer technologies and software. Younger people are especially encouraged to take part in order to achieve skills transfer. The CCS also enjoys a close relationship with the National Museum of Computing. Resurrection The Journal of the Computer Conservation Society ISSN 0958-7403 Number 88 Winter 2019/20 Contents Society Activity 2 News Round-Up 9 The Data Curator 10 Paul Cockshott From Tea Shops to Computer Company: The Improbable 15 Story of LEO John Aeberhard Book Review: Early Computing in Britain Ferranti Ltd. -
Computer Conservation Society
Computer Conservation Society Aims and objectives The Computer Conservation Society (CCS) is a co-operative venture between the British Computer Society, the Science Museum of London and the Museum of Science and Industry in Manchester. The CCS was constituted in September 1989 as a Specialist Group of the British Computer Society (BCS). It is thus covered by the Royal Charter and charitable status of the BCS. The aims of the CCS are to Promote the conservation of historic computers and to identify existing computers which may need to be archived in the future Develop awareness of the importance of historic computers Encourage research on historic computers and their impact on society Membership is open to anyone interested in computer conservation and the history of computing. The CCS is funded and supported by voluntary subscriptions from members, a grant from the BCS, fees from corporate membership, do- nations, and by the free use of Science Museum facilities. Some charges may be made for publications and attendance at seminars and conferences. There are a number of active Working Parties on specific computer restorations and early computer technologies and software. Younger peo- ple are especially encouraged to take part in order to achieve skills transfer. Resurrection The Bulletin of the Computer Conservation Society ISSN 0958 - 7403 Number 30 Spring 2003 Contents Generous BCS Support for Bombe Rebuild Project Ernest Morris, Chairman 2 AGM 2 News Round-Up 3 Society Activity 6 CCS Collection Policy 11 DAP snippets Brian M Russell 12 CCS Web Site Information 12 British Computer Corporation | a 1956 Venture Hugh McGregor Ross 13 Edsger Dijkstra remembered Brian Shearing 22 Deciphering Ancient Floppy Discs Kevin Murrell 26 The ICL Archive Hamish Carmichael 28 Forthcoming Events 31 Generous BCS Support for Bombe Rebuild Project Ernest Morris, Chairman CCS members will be familiar with the good progress of the Bombe re- build from the regular reports in Resurrection by John Harper, the project manager. -
Fiendish Designs
Fiendish Designs A Software Engineering Odyssey © Tim Denvir 2011 1 Preface These are notes, incomplete but extensive, for a book which I hope will give a personal view of the first forty years or so of Software Engineering. Whether the book will ever see the light of day, I am not sure. These notes have come, I realise, to be a memoir of my working life in SE. I want to capture not only the evolution of the technical discipline which is software engineering, but also the climate of social practice in the industry, which has changed hugely over time. To what extent, if at all, others will find this interesting, I have very little idea. I mention other, real people by name here and there. If anyone prefers me not to refer to them, or wishes to offer corrections on any item, they can email me (see Contact on Home Page). Introduction Everybody today encounters computers. There are computers inside petrol pumps, in cash tills, behind the dashboard instruments in modern cars, and in libraries, doctors’ surgeries and beside the dentist’s chair. A large proportion of people have personal computers in their homes and may use them at work, without having to be specialists in computing. Most people have at least some idea that computers contain software, lists of instructions which drive the computer and enable it to perform different tasks. The term “software engineering” wasn’t coined until 1968, at a NATO-funded conference, but the activity that it stands for had been carried out for at least ten years before that. -
Please Note That Copyright in This Article Has Been Transferred to the IEEE for the Purposes of Publication
Please note that copyright in this article has been transferred to the IEEE for the purposes of publication. This version is a preprint of the article as submitted for publication. The First Computer in New Zealand Brian E. Carpenter The University of Auckland ________________________________________________________________________________ Abstract Dainty.2 However, the workload for these machines was constantly increasing. When How quickly did the computer revolution reach the electronic computers capable of handling punched most remote Westernised country? Conventional cards became commercially available in the late history holds that the first modern computer in 1950s, they were of immediate interest to the New Zealand – where ‘modern’ means electronic, Treasury in particular. Treasury installed its first and with stored programs – was an IBM 650 computer, an IBM 650, in 1960 and this is leased from IBM Australia by the New Zealand normally recognized as the first modern computer Treasury in November 1960, and officially in New Zealand. However, there is an alternative inaugurated in March 1961. This paper discusses contender. an alternative hypothesis – that the pioneer was in fact an ICT 1201 ordered in 1959 and installed by the New Zealand Department of Education a few The Conventional History months before the arrival of the IBM 650. The historical record for the IBM 650 is quite clear. According to A.C. Shailes, who was New Keywords: History, Government, Computers, New Zealand’s Controller and Auditor-General from Zealand 1975 to 1983, but an ordinary Treasury official at the relevant time, IBM Australia proposed the Introduction lease of an IBM 650 to the New Zealand Treasury The modern computer age was announced to New in 1957.3 This was a safe choice; well before 1960, Zealand almost as soon as it began. -
PERQ Workstations by R. D. Davis
PERQ Workstations R. D. Davis Last Updated: November 6, 2003 from the Sept. 7, 1991 edition. 2 Contents 1 Preface and Dedication 11 2 History 13 2.1 PERQ History as Told by Those Who Were There . 13 2.2 PERQ History as Otherwise Researched . 16 2.3 Late 1960's . 16 2.4 1972/1973 . 17 2.5 1973 . 17 2.6 1974 . 17 2.7 1975 . 18 2.8 1976 . 18 2.9 Late 1970's . 18 2.10 1978 . 18 2.11 1979 . 19 2.12 1980 . 19 2.13 1981 . 20 2.14 1982/1983: . 22 2.15 1983-1984? . 22 2.16 1984: . 23 2.17 1985 . 24 2.18 1986: . 25 2.19 1986/1987 . 26 2.20 1997 . 27 2.21 Things whose time period is questionable . 27 3 Accent Systems Corp. 31 4 More PERQ History 33 4.1 Graphic Wonder . 33 3 4 CONTENTS 4.1.1 Historical notes from Chris Lamb . 35 4.2 Alt.sys.perq . 36 4.3 PERQ-Fanatics Mailing Lists . 36 4.4 Original uCode . 37 5 The Accent OS 39 5.1 The Accent Kernel . 42 5.2 Co-Equal Environments . 44 5.3 Accent Window Manager: Sapphire . 44 5.4 Matchmaker . 45 5.5 Microprogramming . 45 5.6 Other Info. 46 5.7 Accent and Printing/Publishing . 46 5.8 Porting POS Code to Accent . 47 5.9 Accent S5 . 47 5.10 Naming of Accent . 47 6 The Action List 49 7 Adverts and Etc. 53 7.1 PERQ-1 . 53 7.1.1 PERQ Systems and cooperative agreements: . -
Resurrection
Issue Number 10 Summer 1994 Computer Conservation Society Aims and objectives The Computer Conservation Society (CCS) is a co-operative venture between the British Computer Society and the Science Museum of London. The CCS was constituted in September 1989 as a Specialist Group of the British Computer Society (BCS). It thus is covered by the Royal Charter and charitable status of the BCS. The aims of the CCS are to o Promote the conservation of historic computers o Develop awareness of the importance of historic computers o Encourage research on historic computers Membership is open to anyone interested in computer conservation and the history of computing. The CCS is funded and supported by a grant from the BCS, fees from corporate membership, donations, and by the free use of Science Museum facilities. Membership is free but some charges may be made for publications and attendance at seminars and conferences. There are a number of active Working Parties on specific computer restorations and early computer technologies and software. Younger people are especially encouraged to take part in order to achieve skills transfer. The corporate members who are supporting the Society are Bull HN Information Systems, Digital Equipment, ICL, Unisys and Vaughan Systems. Resurrection The Bulletin of the Computer Conservation Society ISSN 0958 - 7403 Number 10 Summer 1994 Contents Society News Tony Sale, Secretary 2 Evolution of the Ace drum system Fred Osborne 3 Memories of the Manchester Mark I Frank Sumner 9 Ferranti in the 1950s Charlie Portman 14 Very early computer music Donald Davies 19 Obituary: John Gray Doron Swade 21 Book Review - the Leo story 22 Letters to the Editor 24 Letters Extra - on identifying Pegasi 27 Working Party Reports 29 Forthcoming Events 32 Society News Tony Sale, Secretary Things have been progressing well for the Society at Bletchley Park. -
Another ICL Anthology
Foreword On June 21st 1948 Tom Kilburn ran a program on the first electronically stored program computer in the world. Freddy Williams and Tom had been struggling for some time to make their cathode ray tube store work. Demonstrating the store was the key thing, for without a store the computer as we know it today could never be. This simple machine, always known as the 'BABY', was developed into the Ferranti Mark 1, the first computer to go on commercial sale anywhere in the world. Tom's program was the first program to be written and run. Some of us here in Manchester felt that the fiftieth anniversary of such stupendous achievements should not go unnoticed. So at 11 a.m. on June 21st 1998, fifty years to the dot later, Tom ran that same program again on a reconstructed BABY that had earlier been ceremonially switched on by the widow of Freddy Williams. A team of enthusiasts, almost all members or retired members of ICL, researched the design and built the machine from genuine 1940s components. This would not have been possible without the usual ICL drive and enthusiasm, typified at the personal level by Chris Burton (ex- ICL West Gorton) who led the team, and marked at the corporate level by sponsorship of the project. Anyone interested can now see BABY at the Museum of Science and Industry in Manchester. Tom Kilburn says that it looks exactly like the original - except that it's cleaner. I mention this story because it illustrates vividly what has happened to our industry over fifty years. -
6Th Jan. 2016. Catalogue F, for Box-Files F1
Version 1: 6 th Jan. 2016. Catalogue F, for box-files F1 – F9. Scope: all the technical reports, scientific journal papers and equipment/software manuals that exist in paper form (originals or photocopies of originals) for the following Elliott analogue and digital computers: Nicholas, 401, 402, 403 (WREDAC), (404), 405, 802, 803, 503. Also, documents relevant to Automation, Industrial Process Control, ARCH & analogue computers. (For much more on these automation topics, and for extra data on Nicholas, 401 and ARCH, see CatV1). Box- Date Description Comment file ID F1 March Elliott Journal, vol. 1, no. Quarto, buff, 36 pages including a foreword by Sir Ben 1951 1, March 1951. Lockspeiser and two pages of Elliott adverts. Only five issues of this House Journal (as listed here) were produced. Two have buff covers, three have light grey covers. This first issue has a short typed note, sent by John Bunt in about 2001 to SHL, explaining that ‘George Olah was Dr Ross’s brother-in-law’. This first issue contains the following research papers: (a) 150 years of instrument making, (Anon); (b) Magnetic amplifiers and their application to industrial purposes,(H M Gale). (c) Pulsed circuits for resistance strain gauges, (J G Yates). (d) Application of the force-balance principle to pneumatic instruments for process control, (D T Broadbent). (e) A photo-electric curve follower, (K L Selig). (f) Precision alternating current measurement with a DC/AC comparator, (G F Shotter & H D Hawkes). (g) A phase front plotte for testing microwave aerials, (C A Cochrane) (h) A precision sine-cosine potentiometer, (W H Pearse). -
Company Histories
British companies delivering digital computers in the period 1950 – 1965. Elliott Brothers (London) Ltd. and Elliott-Automation. The Elliott Instrument Company was founded in 1804. By the 1870s, telegraph equipment and electrical equipment were added to the company’s products. Naval instrumentation became an area of increasing importance from about 1900, the company working with the Admiralty to develop Fire Control (ie gunnery control) electro-mechanical analogue computers. Elliott Brothers (London) Ltd. provided fire-control equipment to the Royal Navy from 1908 until shortly after the end of the Second World War. By 1946 the company’s main factory at Lewisham in south London had become a technological backwater. Although still skilled in manufacturing electro-mechanical equipment and precision electrical instrumentation, it had been bypassed by the huge war- time flow of government contracts for radar and allied electronic equipment. Compared with firms such as Ferranti Ltd., there was practically no electronic activity at Elliott’s Lewisham factory. The company actually traded at a loss between 1946 and 1951. Somewhat surprisingly, fresh discussions between the Admiralty and Elliott Brothers (London) Ltd. started in 1946, with the objective of persuading the company to host a new research team whose prime objective was to work on an advanced digital electronic Fire Control system and target-tracking radar. The Admiralty leased to the company a redundant factory at Borehamwood in Hertfordshire. This became known as Elliott’s Borehamwood Research Laboratory. It was at Borehamwood that a team of specially- recruited young scientists and engineers designed and built several secret digital computers for various classified projects. -
MY WORKING LIFE the Story of a 20Th Century Computer Programmer
MY WORKING LIFE The story of a 20th century computer programmer An Autobiography by D. J. Pentecost November 2018, with corrections in 2020 © 2018, 2020 ISBN 978-0-9518719-3-5 D. J. Pentecost, 2. St. Andrews Close, Leighton Buzzard, Bedfordshire, LU7 1DB To Kai and other members of my family. To historians of the computer industry. ii CONTENTS Chapter 1 The Shortlands Press Page 1 Chapter 2 The National Physical Laboratory Page 2 Chapter 3 Elliott Brothers (London) Ltd Page 7 Chapter 4 Mills Associates Limited, ISIS Page 29 Chapter 5 Dataco Limited Page 41 Chapter 6 Unit Trust Services Ltd Page 43 Chapter 7 CMG (City of London) Limited Page 50 Chapter 8 Attwood Computer Projects Limited Page 53 Chapter 9 Coward Chance, Clifford Chance Page 56 Chapter 10 I.T. Consultant Page 70 Chapter 11 Our Computer Heritage Page 85 iii Chapter 1: THE SHORTLANDS PRESS The Shortlands Press former premises (2015 photo), and a Thompson letterpress machine In some of the school holidays around 1950, I worked in my father’s printing shop at 650/652 High Road, Leyton, E10; the business was listed in the local Chamber of Commerce Trade Directory for 1957-58, and for some earlier years too, certainly in 1949, and up to 1974 in Kelly’s directories. The business was opened in 1946 with Percy Budd, my father’s business partner, whom I think he had met during their service in the Royal Marines during the second world war. My father and I travelled by bus from North Finchley to Leyton, leaving early in the morning. -
General Computing Facilities at the University of Aberdeen, 1960 – 1996
©JSR 2011 General Computing Facilities at the University of Aberdeen, 1960 – 1996 Dr John S. Reid Hon. Curator of the Natural Philosophy Collection of Historical Scientific Instruments Introduction What I really wanted to find was an account of how computing facilities had developed over the decades at the University of Aberdeen. I wanted to put into the local context many of the computer related artefacts we have in the University’s Collection of Historical Scientific Instruments. These are particularly relevant to the early decades of the subject and not to 21st century developments. I didn’t find what I was looking for. This is my effort to create what I wanted to see. It is, by and large, a chronology. All the embedded illustrations are of Aberdeen material. The account concentrates on technology and equipment, and relates the growth of services provided. It doesn’t say much about software and even less about the personalities involved. I suggest that chapter has to be written by someone ‘in the system’ and not a mere user such as myself, albeit one who experienced almost all of the events related here. Mechanical days I remember 1960 better than some other years. It was the year I came to the University of Aberdeen. There were no digital electronic computing facilities. Hand operated mechanical calculators were common on campus and numerical techniques using these were present in some student courses as well as in academic offices and laboratories. The first use of these in coursework was probably that introduced in the 1930s by the Professor of Natural Philosophy, John A.