Update on Marine Carbohydrate Hydrolyzing Enzymes: Biotechnological Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterization of Α-L-Fucosidase and Other Digestive Hydrolases From
Acta Tropica 141 (2015) 118–127 Contents lists available at ScienceDirect Acta Tropica journal homepage: www.elsevier.com/locate/actatropica Characterization of ␣-L-fucosidase and other digestive hydrolases from Biomphalaria glabrata Natalia N. Perrella a,b, Rebeca S. Cantinha c,d, Eliana Nakano c, Adriana R. Lopes a,∗ a Laboratory of Biochemistry and Biophysics—Instituto Butantan, São Paulo, Brazil b Programa de Pós Graduac¸ ão Interunidades em Biotecnologia PPIB, Universidade de São Paulo, São Paulo, SP, Brazil c Laboratory of Parasitology—Instituto Butantan, São Paulo, Brazil d Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo, São Paulo, SP, Brazil article info abstract Article history: Schistosoma mansoni is one of the major agents of the disease Schistosomiasis, which is one of the Received 10 February 2014 major global public health concerns. Biomphalaria glabrata is an obligate intermediate mollusc host of Received in revised form 3 July 2014 S. mansoni. Although the development of S. mansoni occurs in the snail hepatopancreas, studies that Accepted 12 August 2014 focus on this organ remain limited. In this study, we biochemically identified five distinct carbohy- Available online 16 September 2014 drases (amylase, maltase, ␣-glucosidase, trehalase, and ␣-L-fucosidase), lipases, and peptidases in the B. glabrata hepatopancreas and focused on the isolation and characterization of the activity of ␣-L- Keywords: fucosidase. The isolated ␣-L-fucosidase has a molecular mass of 141 kDa, an optimum pH of 5.8, and Hepatopancreas ␣ Enzymes is inhibited by Tris, fucose, and 1-deoxyfuconojirimycin. B. glabrata -L-fucosidase is an exoglycosidase ␣-L-Fucosidase that can hydrolyze the natural substrate fucoidan to fucose residues. -
Pdf 258.73 K
Iran J Biotech. 2015 December;13(4): e1175 DOI:10.15171/ijb.1175 Research Article An Alternative Bacterial Expression System Using Bacillus pumilus SG2 Chitinase Promoter Kambiz Morabbi Heravi 1, Garshasb Rigi 2, Maryam Rezaei Arjomand 3, Amin Rostami 3, Gholamreza Ahmadian 3,* 1Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany 2Department of Biology, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran 3Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran *Corresponding author: Gholamreza Ahmadian, Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran. Tel: +98-2144787301-10, Fax: +98-2144787399, E-mail: [email protected] Received: April 27, 2015; Revised: September 20, 2015; Accepted: October 03, 2015 Background: Chitin is an abundant natural polysaccharide found in fungi, algae, and exoskeleton of insects. Several bac- terial species are capable of utilizing chitin as their carbon source. These bacteria produce chitinases for degradation of chitin into N-acetyl-D-glucosamine. So far, regulation of the chitinase encoding genes has been studied in different bacte- rial species. Among Bacillus species, B. pumilus strain SG2 encodes two chitinases, ChiS and ChiL. The promoter region of chiSL genes (PchiS) is mainly regulated by the general carbon catabolite repression (CCR) system in B. subtilis due to the presence of a catabolite responsive element (cre). Objectives: Use of PchiS in constructing an inducible expression system in B. subtilis was investigated. Materials and Methods: In the first step, complete and shortened versions of PchiS were inserted upstream of the lacZ on a pBS72/pUC18 shuttle plasmid. -
United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips Et Al
USOO598.1835A United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips et al. (45) Date of Patent: Nov. 9, 1999 54) TRANSGENIC PLANTS AS AN Brown and Atanassov (1985), Role of genetic background in ALTERNATIVE SOURCE OF Somatic embryogenesis in Medicago. Plant Cell Tissue LIGNOCELLULOSC-DEGRADING Organ Culture 4:107-114. ENZYMES Carrer et al. (1993), Kanamycin resistance as a Selectable marker for plastid transformation in tobacco. Mol. Gen. 75 Inventors: Sandra Austin-Phillips; Richard R. Genet. 241:49-56. Burgess, both of Madison; Thomas L. Castillo et al. (1994), Rapid production of fertile transgenic German, Hollandale; Thomas plants of Rye. Bio/Technology 12:1366–1371. Ziegelhoffer, Madison, all of Wis. Comai et al. (1990), Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS 73 Assignee: Wisconsin Alumni Research elements. Plant Mol. Biol. 15:373-381. Foundation, Madison, Wis. Coughlan, M.P. (1988), Staining Techniques for the Detec tion of the Individual Components of Cellulolytic Enzyme 21 Appl. No.: 08/883,495 Systems. Methods in Enzymology 160:135-144. de Castro Silva Filho et al. (1996), Mitochondrial and 22 Filed: Jun. 26, 1997 chloroplast targeting Sequences in tandem modify protein import specificity in plant organelles. Plant Mol. Biol. Related U.S. Application Data 30:769-78O. 60 Provisional application No. 60/028,718, Oct. 17, 1996. Divne et al. (1994), The three-dimensional crystal structure 51 Int. Cl. ............................. C12N 15/82; C12N 5/04; of the catalytic core of cellobiohydrolase I from Tricho AO1H 5/00 derma reesei. Science 265:524-528. -
Characterization of a Chitinase and an Endo-Β-1,3-Glucanase from Trichoderma Harzianum Rifai T24 Involved in Control of the Phytopathogen Sclerotium Rolfsii
Appl Microbiol Biotechnol (2001) 56:137–143 DOI 10.1007/s002530100646 ORIGINAL PAPER M.H. El-Katatny · M. Gudelj · K.-H. Robra M.A. Elnaghy · G.M. Gübitz Characterization of a chitinase and an endo-β-1,3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii Received: 23 November 2000 / Received revision: 26 January 2001 / Accepted: 26 January 2001 / Published online: 19 May 2001 © Springer-Verlag 2001 Abstract Of 24 Trichoderma isolates, T. harzianum causes disease in over 500 plant species. Recently, the Rifai (T24) showed a potential for control of the phyto- fungus has also been found in Europe on different hosts, pathogenic basidiomycete Sclerotium rolfsii. When T24 including juglans and sunflowers (Belisario and Corazza was grown on different carbon sources, growth inhibi- 1996; Infantino et al. 1997). Mycoparasitic fungi have tion of S. rolfsii by the T24 culture filtrate correlated been shown to have a potential for the control of plant with the activity of extracellular chitinase and β-1,3- diseases caused by S. rolfsii (Maoa et al. 2000). Lectins glucanase. The 43-kilodalton (kDa) chitinase and the of S. rolfsii were found to be the recognition signal initi- 74-kDa β-1,3-glucanase were purified from the T24 cul- ating the coiling process in Trichoderma harzianum ture filtrate in two and three steps, respectively, using (Inbar and Chet 1995) (Fig. 1), while it has been sug- ammonium sulphate precipitation followed by hydropho- gested that constitutive carbohydrolases of T. harzianum bic interaction chromatography (phenyl-Sepharose) and release oligosaccharides from Rhizoctonia solani cell β gel filtration ( -1,3-glucanase). -
Review Article Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications
Hindawi Publishing Corporation Enzyme Research Volume 2012, Article ID 921362, 14 pages doi:10.1155/2012/921362 Review Article Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications Siew Ling Hii,1 Joo Shun Tan,2 Tau Chuan Ling,3 and Arbakariya Bin Ariff4 1 Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia 2 Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia 3 Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia 4 Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia Correspondence should be addressed to Arbakariya Bin Ariff, [email protected] Received 26 March 2012; Revised 12 June 2012; Accepted 12 June 2012 Academic Editor: Joaquim Cabral Copyright © 2012 Siew Ling Hii et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The use of pullulanase (EC 3.2.1.41) has recently been the subject of increased applications in starch-based industries especially those aimed for glucose production. Pullulanase, an important debranching enzyme, has been widely utilised to hydrolyse the α-1,6 glucosidic linkages in starch, amylopectin, pullulan, and related oligosaccharides, which enables a complete and efficient conversion of the branched polysaccharides into small fermentable sugars during saccharification process. The industrial manufacturing of glucose involves two successive enzymatic steps: liquefaction, carried out after gelatinisation by the action of α- amylase; saccharification, which results in further transformation of maltodextrins into glucose. -
Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility. -
GRAS Notice 975, Maltogenic Alpha-Amylase Enzyme Preparation
GRAS Notice (GRN) No. 975 https://www.fda.gov/food/generally-recognized-safe-gras/gras-notice-inventory novozyme~ Rethink Tomorrow A Maltogenic Alpha-Amylase from Geobacillus stearothermophilus Produced by Bacillus licheniformis Janet Oesterling, Regulatory Affairs, Novozymes North America, Inc., USA October 2020 novozyme~ Reth in k Tomorrow PART 2 - IDENTITY, METHOD OF MANUFACTURE, SPECIFICATIONS AND PHYSICAL OR TECHNICAL EFFECT OF THE NOTIFIED SUBSTANCE ..................................................................... 4 2.1 IDENTITY OF THE NOTIFIED SUBSTANCE ................................................................................ 4 2.2 IDENTITY OF THE SOURCE ......................................................................................................... 4 2.2(a) Production Strain .................................................................................................. 4 2.2(b) Recipient Strain ..................................................................................................... 4 2.2(c) Maltogenic Alpha-Amylase Expression Plasmid ................................................... 5 2.2(d) Construction of the Recombinant Microorganism ................................................. 5 2.2(e) Stability of the Introduced Genetic Sequences .................................................... 5 2.2(f) Antibiotic Resistance Gene .................................................................................. 5 2.2(g) Absence of Production Organism in Product ...................................................... -
N-Acetylglucosamine: Production and Applications
Mar. Drugs 2010, 8, 2493-2516; doi:10.3390/md8092493 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review N-Acetylglucosamine: Production and Applications Jeen-Kuan Chen 1,†, Chia-Rui Shen 2,† and Chao-Lin Liu 3,* 1 Department of Environment and Biotechnology, Refining & Manufacturing Research Institute, CPC Corporation, 217 Min-Sheng S. Rd, Chiayi, Taiwan; E-Mail: [email protected] (J.-K.C.) 2 Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Kweishan, Taoyuan, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan, Taiwan; E-Mail: [email protected] (C.-R.S.) 3 Graduate School of Biochemical Engineering and Department of Chemical Engineering, Ming Chi University of Technology, Taishan, Taipei, 84 Gung-Juan Road, Taishan, Taipei, Taiwan † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +886-2-2908-9899; Fax: +886-3-211-8698. Received: 22 March 2010; in revised form: 19 April 2010 / Accepted: 23 April 2010 / Published: 15 September 2010 Abstract: N-Acetylglucosamine (GlcNAc) is a monosaccharide that usually polymerizes linearly through (1,4)-β-linkages. GlcNAc is the monomeric unit of the polymer chitin, the second most abundant carbohydrate after cellulose. In addition to serving as a component of this homogeneous polysaccharide, GlcNAc is also a basic component of hyaluronic acid and keratin sulfate on the cell surface. In this review, we discuss the industrial production of GlcNAc, using chitin as a substrate, by chemical, enzymatic and biotransformation methods. Also, newly developed methods to obtain GlcNAc using glucose as a substrate in genetically modified microorganisms are introduced. -
Application A1204 Βeta-Amylase from Soybean (Glycine Max)
OFFICIAL 27 October 2020 [139-20] Supporting document 1 Risk and Technical assessment – Application A1204 Βeta-amylase from soybean (Glycine max) as a processing aid (enzyme) Executive summary The purpose of the application is to amend Schedule 18 – Processing Aids of the Australia New Zealand Food Standards Code (the Code) to include the enzyme beta-amylase (β- amylase) (EC 3.2.1.2) produced from soybeans (Glycine max). β-Amylase is proposed as a processing aid in starch processing for the production of maltose syrup. The evidence presented to support the proposed use of the enzyme provides adequate assurance that the enzyme, in the quantity and form proposed to be used, is technologically justified and has been demonstrated to be effective in achieving its stated purpose. The enzyme meets international identity and purity specifications. β-Amylase from soybean is derived from the edible parts of the Glycine max plant, for which a history of safe use over generations is well known. FSANZ considers that soybean β-amylase is unlikely to pose an allergenicity concern. Bioinformatic analysis identified a degree of amino acid sequence homology between β- amylase from soybean and an allergenic protein from wheat, but FSANZ does not consider β-amylase to be of allergenic concern in wheat allergic individuals given the likely very low exposure and that the enzyme is likely to be digested in the stomach like other dietary proteins. The WHO/IUIS Allergen Nomenclature Database lists seven soy proteins that are food allergens. β-amylase from soybean is not one of these seven allergenic soy proteins and is not an allergen to individuals with soybean food allergy. -
Mapping the Transglycosylation Relevant Sites of Cold-Adapted -D
International Journal of Molecular Sciences Article Mapping the Transglycosylation Relevant Sites of Cold-Adapted β-d-Galactosidase from Arthrobacter sp. 32cB Maria Rutkiewicz 1,2,* , Marta Wanarska 3 and Anna Bujacz 1 1 Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; [email protected] 2 Macromolecular Structure and Interaction, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany 3 Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; [email protected] * Correspondence: [email protected] Received: 30 June 2020; Accepted: 24 July 2020; Published: 28 July 2020 Abstract: β-Galactosidase from Arthrobacter sp. 32cB (ArthβDG) is a cold-adapted enzyme able to catalyze hydrolysis of β-d-galactosides and transglycosylation reaction, where galactosyl moiety is being transferred onto an acceptor larger than a water molecule. Mutants of ArthβDG: D207A and E517Q were designed to determine the significance of specific residues and to enable formation of complexes with lactulose and sucrose and to shed light onto the structural basis of the transglycosylation reaction. The catalytic assays proved loss of function mutation E517 into glutamine and a significant drop of activity for mutation of D207 into alanine. Solving crystal structures of two new mutants, and new complex structures of previously presented mutant E441Q enables description of introduced changes within active site of enzyme and determining the importance of mutated residues for active site size and character. -
Characterization of Chitinase Activities, and Cloning, Analysis, And
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2002 Characterization of chitinase activities, and cloning, analysis, and expression of genes encoding pathogenesis-related proteins in strawberry Anwar Ahmad Khan Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Khan, Anwar Ahmad, "Characterization of chitinase activities, and cloning, analysis, and expression of genes encoding pathogenesis- related proteins in strawberry" (2002). LSU Doctoral Dissertations. 2350. https://digitalcommons.lsu.edu/gradschool_dissertations/2350 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. CHARACTERIAZATION OF CHITINASE ACTIVITIES, AND CLONING, ANALYSIS, AND EXPRESSION OF GENES ENCODING PATHOGENESIS- RELATED PROTEINS IN STRAWBERRY A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College In partial fulfillment of the Requirements for the degree of Doctor of Philosophy In The Department of Biological Sciences By Anwar A. Khan B.Sc. University of Karachi, 1987 B.S. Winona State University, 1994 December, 2002 DEDICATION This dissertation is dedicated to the memory of my dear brother Ayaz Ahmed Khan (late). He was one of the most brilliant persons I have known in my early age. His encouragement and help is one reason I am able to reach this point in my life. I was fortunate to have him as a brother and it would have made him proud to see me complete a doctorate degree. -
(10) Patent No.: US 8119385 B2
US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.