Aspergillus Fumigatus, One Uninucleate Species with Disparate Offspring
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction to Mycology
INTRODUCTION TO MYCOLOGY The term "mycology" is derived from Greek word "mykes" meaning mushroom. Therefore mycology is the study of fungi. The ability of fungi to invade plant and animal tissue was observed in early 19th century but the first documented animal infection by any fungus was made by Bassi, who in 1835 studied the muscardine disease of silkworm and proved the that the infection was caused by a fungus Beauveria bassiana. In 1910 Raymond Sabouraud published his book Les Teignes, which was a comprehensive study of dermatophytic fungi. He is also regarded as father of medical mycology. Importance of fungi: Fungi inhabit almost every niche in the environment and humans are exposed to these organisms in various fields of life. Beneficial Effects of Fungi: 1. Decomposition - nutrient and carbon recycling. 2. Biosynthetic factories. The fermentation property is used for the industrial production of alcohols, fats, citric, oxalic and gluconic acids. 3. Important sources of antibiotics, such as Penicillin. 4. Model organisms for biochemical and genetic studies. Eg: Neurospora crassa 5. Saccharomyces cerviciae is extensively used in recombinant DNA technology, which includes the Hepatitis B Vaccine. 6. Some fungi are edible (mushrooms). 7. Yeasts provide nutritional supplements such as vitamins and cofactors. 8. Penicillium is used to flavour Roquefort and Camembert cheeses. 9. Ergot produced by Claviceps purpurea contains medically important alkaloids that help in inducing uterine contractions, controlling bleeding and treating migraine. 10. Fungi (Leptolegnia caudate and Aphanomyces laevis) are used to trap mosquito larvae in paddy fields and thus help in malaria control. Harmful Effects of Fungi: 1. -
Pdf 258.73 K
Iran J Biotech. 2015 December;13(4): e1175 DOI:10.15171/ijb.1175 Research Article An Alternative Bacterial Expression System Using Bacillus pumilus SG2 Chitinase Promoter Kambiz Morabbi Heravi 1, Garshasb Rigi 2, Maryam Rezaei Arjomand 3, Amin Rostami 3, Gholamreza Ahmadian 3,* 1Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany 2Department of Biology, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran 3Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran *Corresponding author: Gholamreza Ahmadian, Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran. Tel: +98-2144787301-10, Fax: +98-2144787399, E-mail: [email protected] Received: April 27, 2015; Revised: September 20, 2015; Accepted: October 03, 2015 Background: Chitin is an abundant natural polysaccharide found in fungi, algae, and exoskeleton of insects. Several bac- terial species are capable of utilizing chitin as their carbon source. These bacteria produce chitinases for degradation of chitin into N-acetyl-D-glucosamine. So far, regulation of the chitinase encoding genes has been studied in different bacte- rial species. Among Bacillus species, B. pumilus strain SG2 encodes two chitinases, ChiS and ChiL. The promoter region of chiSL genes (PchiS) is mainly regulated by the general carbon catabolite repression (CCR) system in B. subtilis due to the presence of a catabolite responsive element (cre). Objectives: Use of PchiS in constructing an inducible expression system in B. subtilis was investigated. Materials and Methods: In the first step, complete and shortened versions of PchiS were inserted upstream of the lacZ on a pBS72/pUC18 shuttle plasmid. -
United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips Et Al
USOO598.1835A United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips et al. (45) Date of Patent: Nov. 9, 1999 54) TRANSGENIC PLANTS AS AN Brown and Atanassov (1985), Role of genetic background in ALTERNATIVE SOURCE OF Somatic embryogenesis in Medicago. Plant Cell Tissue LIGNOCELLULOSC-DEGRADING Organ Culture 4:107-114. ENZYMES Carrer et al. (1993), Kanamycin resistance as a Selectable marker for plastid transformation in tobacco. Mol. Gen. 75 Inventors: Sandra Austin-Phillips; Richard R. Genet. 241:49-56. Burgess, both of Madison; Thomas L. Castillo et al. (1994), Rapid production of fertile transgenic German, Hollandale; Thomas plants of Rye. Bio/Technology 12:1366–1371. Ziegelhoffer, Madison, all of Wis. Comai et al. (1990), Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS 73 Assignee: Wisconsin Alumni Research elements. Plant Mol. Biol. 15:373-381. Foundation, Madison, Wis. Coughlan, M.P. (1988), Staining Techniques for the Detec tion of the Individual Components of Cellulolytic Enzyme 21 Appl. No.: 08/883,495 Systems. Methods in Enzymology 160:135-144. de Castro Silva Filho et al. (1996), Mitochondrial and 22 Filed: Jun. 26, 1997 chloroplast targeting Sequences in tandem modify protein import specificity in plant organelles. Plant Mol. Biol. Related U.S. Application Data 30:769-78O. 60 Provisional application No. 60/028,718, Oct. 17, 1996. Divne et al. (1994), The three-dimensional crystal structure 51 Int. Cl. ............................. C12N 15/82; C12N 5/04; of the catalytic core of cellobiohydrolase I from Tricho AO1H 5/00 derma reesei. Science 265:524-528. -
Chapter 5 Conidiophore Initiation and Conidiogenesis 5.1
102 Chapter 5 Conidiophore initiation and conidiogenesis 5.1 INTRODUCTION In this chapter are described the processes of conidiophore initiation and conidiogenesis in some Australian cercosporoid fungi. The involvement of wall layers of the conidiophore mother cell in conidiophore initiation is examined, and the events involved in conidiogenesis are then considered in terms of the following successive developmental steps proposed by Minter et al. (1982). (a) Conidiophore initiation. Ultrastructural studies showed that the production of conidiophores from stroma cells in Cercospora beticola can be enteroblastic or holoblastic (Pons et al., 1985). In enteroblastic initiation, the outer, opaque layer of the conidiophore wall was continuous with the middle wall layer of the stroma cell. The outer layer of the generative cell either stopped abruptly or else merged imperceptibly with the wall of the conidiophore. The latter type of conidiophore initiation resembled that from vegetative hyphae in Pleiochaeta setosa (Kirchn.) Hughes (Harvey, 1974). (b) Conidium ontogeny, described as 'the ways in which conidial cell walls are produced' (Minter et al., 1982). The accepted view that conidium initiation is holoblastic in the cercosporoid fungi (Ellis, 1971) was supported by the results of Pons et al. (1985). (c) Conidium delimitation, described as 'the ways in which delimiting septa are produced' (Minter et al., 1982). Every conidium is delimited by a septum prior to abscission, but the exact structure of the septum, the stage of development at which it is formed (relative to the stage of expansion of the conidium) and the timing of the plugging of the septal pore by Woronin bodies (which interrupt its cytoplasmic connection with the conidiogenous cell) can vary. -
Characterization of a Chitinase and an Endo-Β-1,3-Glucanase from Trichoderma Harzianum Rifai T24 Involved in Control of the Phytopathogen Sclerotium Rolfsii
Appl Microbiol Biotechnol (2001) 56:137–143 DOI 10.1007/s002530100646 ORIGINAL PAPER M.H. El-Katatny · M. Gudelj · K.-H. Robra M.A. Elnaghy · G.M. Gübitz Characterization of a chitinase and an endo-β-1,3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii Received: 23 November 2000 / Received revision: 26 January 2001 / Accepted: 26 January 2001 / Published online: 19 May 2001 © Springer-Verlag 2001 Abstract Of 24 Trichoderma isolates, T. harzianum causes disease in over 500 plant species. Recently, the Rifai (T24) showed a potential for control of the phyto- fungus has also been found in Europe on different hosts, pathogenic basidiomycete Sclerotium rolfsii. When T24 including juglans and sunflowers (Belisario and Corazza was grown on different carbon sources, growth inhibi- 1996; Infantino et al. 1997). Mycoparasitic fungi have tion of S. rolfsii by the T24 culture filtrate correlated been shown to have a potential for the control of plant with the activity of extracellular chitinase and β-1,3- diseases caused by S. rolfsii (Maoa et al. 2000). Lectins glucanase. The 43-kilodalton (kDa) chitinase and the of S. rolfsii were found to be the recognition signal initi- 74-kDa β-1,3-glucanase were purified from the T24 cul- ating the coiling process in Trichoderma harzianum ture filtrate in two and three steps, respectively, using (Inbar and Chet 1995) (Fig. 1), while it has been sug- ammonium sulphate precipitation followed by hydropho- gested that constitutive carbohydrolases of T. harzianum bic interaction chromatography (phenyl-Sepharose) and release oligosaccharides from Rhizoctonia solani cell β gel filtration ( -1,3-glucanase). -
Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility. -
Real-Time Dynamics of Plasmodium NDC80 Reveals Unusual Modes of Chromosome Segregation During Parasite Proliferation Mohammad Zeeshan1,*, Rajan Pandey1,*, David J
© 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2021) 134, jcs245753. doi:10.1242/jcs.245753 RESEARCH ARTICLE SPECIAL ISSUE: CELL BIOLOGY OF HOST–PATHOGEN INTERACTIONS Real-time dynamics of Plasmodium NDC80 reveals unusual modes of chromosome segregation during parasite proliferation Mohammad Zeeshan1,*, Rajan Pandey1,*, David J. P. Ferguson2,3, Eelco C. Tromer4, Robert Markus1, Steven Abel5, Declan Brady1, Emilie Daniel1, Rebecca Limenitakis6, Andrew R. Bottrill7, Karine G. Le Roch5, Anthony A. Holder8, Ross F. Waller4, David S. Guttery9 and Rita Tewari1,‡ ABSTRACT eukaryotic organisms to proliferate, propagate and survive. During Eukaryotic cell proliferation requires chromosome replication and these processes, microtubular spindles form to facilitate an equal precise segregation to ensure daughter cells have identical genomic segregation of duplicated chromosomes to the spindle poles. copies. Species of the genus Plasmodium, the causative agents of Chromosome attachment to spindle microtubules (MTs) is malaria, display remarkable aspects of nuclear division throughout their mediated by kinetochores, which are large multiprotein complexes life cycle to meet some peculiar and unique challenges to DNA assembled on centromeres located at the constriction point of sister replication and chromosome segregation. The parasite undergoes chromatids (Cheeseman, 2014; McKinley and Cheeseman, 2016; atypical endomitosis and endoreduplication with an intact nuclear Musacchio and Desai, 2017; Vader and Musacchio, 2017). Each membrane and intranuclear mitotic spindle. To understand these diverse sister chromatid has its own kinetochore, oriented to facilitate modes of Plasmodium cell division, we have studied the behaviour movement to opposite poles of the spindle apparatus. During and composition of the outer kinetochore NDC80 complex, a key part of anaphase, the spindle elongates and the sister chromatids separate, the mitotic apparatus that attaches the centromere of chromosomes to resulting in segregation of the two genomes during telophase. -
N-Acetylglucosamine: Production and Applications
Mar. Drugs 2010, 8, 2493-2516; doi:10.3390/md8092493 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review N-Acetylglucosamine: Production and Applications Jeen-Kuan Chen 1,†, Chia-Rui Shen 2,† and Chao-Lin Liu 3,* 1 Department of Environment and Biotechnology, Refining & Manufacturing Research Institute, CPC Corporation, 217 Min-Sheng S. Rd, Chiayi, Taiwan; E-Mail: [email protected] (J.-K.C.) 2 Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Kweishan, Taoyuan, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan, Taiwan; E-Mail: [email protected] (C.-R.S.) 3 Graduate School of Biochemical Engineering and Department of Chemical Engineering, Ming Chi University of Technology, Taishan, Taipei, 84 Gung-Juan Road, Taishan, Taipei, Taiwan † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +886-2-2908-9899; Fax: +886-3-211-8698. Received: 22 March 2010; in revised form: 19 April 2010 / Accepted: 23 April 2010 / Published: 15 September 2010 Abstract: N-Acetylglucosamine (GlcNAc) is a monosaccharide that usually polymerizes linearly through (1,4)-β-linkages. GlcNAc is the monomeric unit of the polymer chitin, the second most abundant carbohydrate after cellulose. In addition to serving as a component of this homogeneous polysaccharide, GlcNAc is also a basic component of hyaluronic acid and keratin sulfate on the cell surface. In this review, we discuss the industrial production of GlcNAc, using chitin as a substrate, by chemical, enzymatic and biotransformation methods. Also, newly developed methods to obtain GlcNAc using glucose as a substrate in genetically modified microorganisms are introduced. -
Substrate and Cell Fusion Influence on Slime Mold Network Dynamics
www.nature.com/scientificreports OPEN Substrate and cell fusion infuence on slime mold network dynamics Fernando Patino‑Ramirez1*, Chloé Arson1,3 & Audrey Dussutour2,3* The acellular slime mold Physarum polycephalum provides an excellent model to study network formation, as its network is remodelled constantly in response to mass gain/loss and environmental conditions. How slime molds networks are built and fuse to allow for efcient exploration and adaptation to environmental conditions is still not fully understood. Here, we characterize the network organization of slime molds exploring homogeneous neutral, nutritive and adverse environments. We developed a fully automated image analysis method to extract the network topology and followed the slime molds before and after fusion. Our results show that: (1) slime molds build sparse networks with thin veins in a neutral environment and more compact networks with thicker veins in a nutritive or adverse environment; (2) slime molds construct long, efcient and resilient networks in neutral and adverse environments, whereas in nutritive environments, they build shorter and more centralized networks; and (3) slime molds fuse rapidly and establish multiple connections with their clone‑mates in a neutral environment, whereas they display a late fusion with fewer connections in an adverse environment. Our study demonstrates that slime mold networks evolve continuously via pruning and reinforcement, adapting to diferent environmental conditions. Transportation networks where fuids are transported from one point of the network to another are ubiquitous in nature. Vascular networks in animals, plants, fungi and slime molds are commonly cited examples of such natural transportation networks. Tese networks are ofen studied as static architectures, although most of them have the ability to alter their morphology in space and time in response to environmental conditions1. -
Escovopsis Trichodermoides Sp. Nov., Isolated from a Nest of the Lower Attine Ant Mycocepurus Goeldii
Antonie van Leeuwenhoek (2015) 107:731–740 DOI 10.1007/s10482-014-0367-1 ORIGINAL PAPER Escovopsis trichodermoides sp. nov., isolated from a nest of the lower attine ant Mycocepurus goeldii Virginia E. Masiulionis • Marta N. Cabello • Keith A. Seifert • Andre Rodrigues • Fernando C. Pagnocca Received: 30 April 2014 / Accepted: 18 December 2014 / Published online: 10 January 2015 Ó Springer International Publishing Switzerland 2015 Abstract Currently, five species are formally other species by highly branched, trichoderma-like described in Escovopsis, a specialized mycoparasitic conidiophores lacking swollen vesicles, with reduced genus of fungus gardens of attine ants (Hymenoptera: conidiogenous cells and distinctive conidia morphol- Formicidae: tribe Attini). Four species were isolated ogy. Phylogenetic analyses based on partial tef1 gene from leaf-cutting ants in Brazil, including Escovopsis sequences support the distinctiveness of this species. moelleri and Escovopsis microspora from nests of A portion of the internal transcribed spacers of the Acromyrmex subterraneus molestans, Escovopsis nuclear rDNA was sequenced to serve as a DNA weberi from a nest of Atta sp. and Escovopsis barcode. Future molecular and morphological studies lentecrescens from a nest of Acromyrmex subterran- in this group of fungi will certainly unravel the eus subterraneus. The fifth species, Escovopsis taxonomic diversity of Escovopsis associated with aspergilloides was isolated from a nest of the higher fungus-growing ants. attine ant Trachymyrmex ruthae from Trinidad. Here, we describe a new species, Escovopsis trichodermo- Keywords Attini Á Fungus-growing ant Á ides isolated from a fungus garden of the lower attine Hypocreales Á Mycoparasitism ant Mycocepurus goeldii, which differs from the five V. -
S41598-020-68694-9.Pdf
www.nature.com/scientificreports OPEN Delayed cytokinesis generates multinuclearity and potential advantages in the amoeba Acanthamoeba castellanii Nef strain Théo Quinet1, Ascel Samba‑Louaka2, Yann Héchard2, Karine Van Doninck1 & Charles Van der Henst1,3,4,5* Multinuclearity is a widespread phenomenon across the living world, yet how it is achieved, and the potential related advantages, are not systematically understood. In this study, we investigate multinuclearity in amoebae. We observe that non‑adherent amoebae are giant multinucleate cells compared to adherent ones. The cells solve their multinuclearity by a stretchy cytokinesis process with cytosolic bridge formation when adherence resumes. After initial adhesion to a new substrate, the progeny of the multinucleate cells is more numerous than the sibling cells generated from uninucleate amoebae. Hence, multinucleate amoebae show an advantage for population growth when the number of cells is quantifed over time. Multiple nuclei per cell are observed in diferent amoeba species, and the lack of adhesion induces multinuclearity in diverse protists such as Acanthamoeba castellanii, Vermamoeba vermiformis, Naegleria gruberi and Hartmannella rhysodes. In this study, we observe that agitation induces a cytokinesis delay, which promotes multinuclearity. Hence, we propose the hypothesis that multinuclearity represents a physiological adaptation under non‑adherent conditions that can lead to biologically relevant advantages. Te canonical view of eukaryotic cells is usually illustrated by an uninucleate organization. However, in the liv- ing world, cells harbouring multiple nuclei are common. Tis multinuclearity can have diferent origins, being either generated (i) by fusion events between uninucleate cells or by (ii) uninucleate cells that replicate their DNA content without cytokinesis. -
Mapping the Transglycosylation Relevant Sites of Cold-Adapted -D
International Journal of Molecular Sciences Article Mapping the Transglycosylation Relevant Sites of Cold-Adapted β-d-Galactosidase from Arthrobacter sp. 32cB Maria Rutkiewicz 1,2,* , Marta Wanarska 3 and Anna Bujacz 1 1 Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; [email protected] 2 Macromolecular Structure and Interaction, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany 3 Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; [email protected] * Correspondence: [email protected] Received: 30 June 2020; Accepted: 24 July 2020; Published: 28 July 2020 Abstract: β-Galactosidase from Arthrobacter sp. 32cB (ArthβDG) is a cold-adapted enzyme able to catalyze hydrolysis of β-d-galactosides and transglycosylation reaction, where galactosyl moiety is being transferred onto an acceptor larger than a water molecule. Mutants of ArthβDG: D207A and E517Q were designed to determine the significance of specific residues and to enable formation of complexes with lactulose and sucrose and to shed light onto the structural basis of the transglycosylation reaction. The catalytic assays proved loss of function mutation E517 into glutamine and a significant drop of activity for mutation of D207 into alanine. Solving crystal structures of two new mutants, and new complex structures of previously presented mutant E441Q enables description of introduced changes within active site of enzyme and determining the importance of mutated residues for active site size and character.