Chapter 5 Conidiophore Initiation and Conidiogenesis 5.1

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 5 Conidiophore Initiation and Conidiogenesis 5.1 102 Chapter 5 Conidiophore initiation and conidiogenesis 5.1 INTRODUCTION In this chapter are described the processes of conidiophore initiation and conidiogenesis in some Australian cercosporoid fungi. The involvement of wall layers of the conidiophore mother cell in conidiophore initiation is examined, and the events involved in conidiogenesis are then considered in terms of the following successive developmental steps proposed by Minter et al. (1982). (a) Conidiophore initiation. Ultrastructural studies showed that the production of conidiophores from stroma cells in Cercospora beticola can be enteroblastic or holoblastic (Pons et al., 1985). In enteroblastic initiation, the outer, opaque layer of the conidiophore wall was continuous with the middle wall layer of the stroma cell. The outer layer of the generative cell either stopped abruptly or else merged imperceptibly with the wall of the conidiophore. The latter type of conidiophore initiation resembled that from vegetative hyphae in Pleiochaeta setosa (Kirchn.) Hughes (Harvey, 1974). (b) Conidium ontogeny, described as 'the ways in which conidial cell walls are produced' (Minter et al., 1982). The accepted view that conidium initiation is holoblastic in the cercosporoid fungi (Ellis, 1971) was supported by the results of Pons et al. (1985). (c) Conidium delimitation, described as 'the ways in which delimiting septa are produced' (Minter et al., 1982). Every conidium is delimited by a septum prior to abscission, but the exact structure of the septum, the stage of development at which it is formed (relative to the stage of expansion of the conidium) and the timing of the plugging of the septal pore by Woronin bodies (which interrupt its cytoplasmic connection with the conidiogenous cell) can vary. The septum of C. beticola is five-layered, comprising a central electron-translucent layer bordered on each side by an electron-opaque layer and then another electron- translucent layer (Pons et al., 1985). The middle layer, which has been referred to as the septal membrane (Griffiths & Swart, 1973) or septal-plate (Gay & Martin, 1971), terminates before reaching the outer layer of the cell wall. The other two layers are continuous with the inner and middle layers of the conidiogenous cell and the conidium (Pons et al., 1985). (d) Conidium secession, described as 'the ways in which conidia become detached' (Minter et al., 1982). Conidium secession can be schizolytic or rhexolytic. Schizolytic secession involves the circumscissile rupture of the periclinal wall in the region of the conidium-delimiting septum, followed by centripetal splitting of the septum (Cole & Samson, 1979). The upper half of the septum becomes the hilum of the conidium, while the lower half forms the scar at the apex of the conidiogenous cell. Schizolytic secession was demonstrated in C. beticola (Pons et al., 1985). Rhexolitic secession, on the other hand, involves rupture of the periclinal wall some distance below the septum, which remains intact. It has not been demonstrated in cercosporoid fungi. 103 (e) Proliferation, described as 'the ways in which conidiogenous cells are modified to produce more than one conidium or a new conidiogenous cell' (Minter et al., 1982). The formation of a new conidiogenous locus in blastic conidiogenesis can involve proliferation of either the inner layer of the conidiophore wall (enteroblastic), all layers (holoblastic) or neither layer, as in phialides (Hawksworth et al., 1983). Proliferation by means of endohyphae has been described in the Spilocaea state of Venturia inaequalis (Corlett et al., 1976), Acrogenospora sphaerocephala (Hammill, 1972) and other dematiaceous fungi (Wang, 1990). Whereas Cole & Samson (1979) apparently regarded sympodial proliferation as holoblastic (in contrast with the enteroblastic proliferations that produce new conidiogenous loci in phialides and annellides), enteroblastic sympodial proliferation is now a well recognised phenomenon (Madelin, 1979; Minter et al., 1982; Sutton & Pascoe, 1987). It occurs when the outer layer of the conidiogenous cell wall is too inflexible to be blown out in the course of proliferation, and is instead ruptured by the emerging inner layer. This is particularly likely to happen when growth is slow or intermittent, as may occur under natural conditions, and in conidiophores with 'brown' outer wall layers (Luttrell, 1979). Ellis (1971) described both Cercospora and Pseudocercospora as exhibiting sympodial proliferation, with Pseudocercospora often also proliferating percurrently in young conidiophores. Pons & Sutton (1988) described both genera as exhibiting enteroblastic sympodial proliferation, and also mentioned Pseudocercospora proliferating percurrently. Their description of Pseudocercospora was presumably intended to also include holoblastic sympodial proliferation, because they described the type of the genus, P. vitis, and four other species of Pseudocercospora as proliferating in this manner. Enteroblastic sympodial proliferation has been demonstrated in Cercospora beticola (Pons et al., 1985). The thickened scar at the apex of the conidiogenous cell was displaced laterally by the emerging cell, which had its origins in the middle and inner wall layers of the conidiogenous cell. Pseudocercospora correae was attributed with enteroblastic sympodial, holoblastic sympodial and percurrent proliferation (Sutton et al., 1987). Percurrent proliferations (referred to by Minter et al. (1982) as enteroblastic percurrent regeneration) were equated by Sutton et al. (1987) with those described by Deighton (1976) as 'falsely percurrent' or 'pseudopercurrent'. Deighton (1976) described the conidiogenous cells of Pseudocercospora as 'sometimes pseudo-percurrent on one and the same conidiophore that is also denticulate, proliferating through the apex and either displacing the old apical scar into a lateral position or, more usually, completely rupturing the old apical scar, to produce annellations...' Deighton (1976) noted that the resulting annellations (which he termed pseudo-annellations) were difficult to detect, and that the clearest examples were found in the type specimens of P. helleri (Earle) Deighton and P. colocasiae Deighton. It is apparent from Deighton's descriptions and illustrations of these species that he uses the term pseudo-percurrent to describe enteroblastic proliferation either straight through the apical scar on the conidiogenous cell or at its periphery, in which case the scar may remain intact but is pushed aside by the emerging proliferation and often then lies flat against the side of the conidiophore. In some fungi, 'pseudo-percurrent proliferations' (Deighton, 1976) or, to use the alternative terminology, 'enteroblastic percurrent regenerations' (Minter et al., 1982) have been shown by ultrastructural 104 examination to result from the production of endohyphae and their extension through or beside the apical scar on the conidiogenous cell (Hammill, 1972; Wang, 1990). The production of endohyphae has frequently been linked with the regeneration of hyphae which were aged, damaged, mutated or otherwise grown under adverse conditions. Such endohyphae were mostly of small diameter, at times branched, and in several cases sporulated within the cell lumen. They were generally reported to have arisen from the septa separating damaged from healthy cells. Hughes (1971) dismissed all such regenerations, including those at conidiophore apices, as simply repair mechanisms, and 'not concerned with the normal production of a succession of reproductive structures'. Evidence from TEM studies has indicated, however, that the regeneration of stromatal and conidiogenous cells by endohyphae may be the normal course of events in certain dematiaceous hyphomycetes. Such regeneration leads to the production of annellate conidiophores to which Wang (1990) applied the term annellophores, a term originally introduced by Hughes (1953), distinguishing them from annellides which produce a plurality of conidia from a meristematic region on the conidiogenous cell. Wang further suggested that Hughes' (1953) Section III readily encompassed fungi that produce annellophores, but not annellidic fungi, which should be excluded. Her suggestions concerning the place of annellophores in Hughes' scheme rested on the percurrent nature of the endoconidiophores. 5.2 METHODS Specimens were mounted in lactic acid and warmed to dispel air bubbles in preparation for examination under Nomarski interference optics and bright field optics. Freshly collected specimens were prepared for ultrastructural examination. A list of the specimens examined by transmission electron microscopy and the method of their preparation are given in Appendices C and E, respectively. The specimens examined by scanning electron microscopy, and the method of their preparation, are given in Appendices D and F, respectively. 5.3 OBSERVATIONS 5.3.1 Conidiophore initiation With two exceptions, only holoblastic conidiophore initiation was seen in the specimens studied by transmission electron microscopy. Enteroblastic conidiophore initiation was, however, observed in some sporodochial conidiophores of P. platylobii (Fig. 5.4). Each conidiophore of P. platylobii had a bulbous base which was originally the stroma cell from which the conidiophore had developed. The dark outer layer of the basal cell wall was not always continuous with the upper part of the conidiophore, which in such cases had developed by extension of the inner wall layers of the basal cell. The outer
Recommended publications
  • Introduction to Mycology
    INTRODUCTION TO MYCOLOGY The term "mycology" is derived from Greek word "mykes" meaning mushroom. Therefore mycology is the study of fungi. The ability of fungi to invade plant and animal tissue was observed in early 19th century but the first documented animal infection by any fungus was made by Bassi, who in 1835 studied the muscardine disease of silkworm and proved the that the infection was caused by a fungus Beauveria bassiana. In 1910 Raymond Sabouraud published his book Les Teignes, which was a comprehensive study of dermatophytic fungi. He is also regarded as father of medical mycology. Importance of fungi: Fungi inhabit almost every niche in the environment and humans are exposed to these organisms in various fields of life. Beneficial Effects of Fungi: 1. Decomposition - nutrient and carbon recycling. 2. Biosynthetic factories. The fermentation property is used for the industrial production of alcohols, fats, citric, oxalic and gluconic acids. 3. Important sources of antibiotics, such as Penicillin. 4. Model organisms for biochemical and genetic studies. Eg: Neurospora crassa 5. Saccharomyces cerviciae is extensively used in recombinant DNA technology, which includes the Hepatitis B Vaccine. 6. Some fungi are edible (mushrooms). 7. Yeasts provide nutritional supplements such as vitamins and cofactors. 8. Penicillium is used to flavour Roquefort and Camembert cheeses. 9. Ergot produced by Claviceps purpurea contains medically important alkaloids that help in inducing uterine contractions, controlling bleeding and treating migraine. 10. Fungi (Leptolegnia caudate and Aphanomyces laevis) are used to trap mosquito larvae in paddy fields and thus help in malaria control. Harmful Effects of Fungi: 1.
    [Show full text]
  • Escovopsis Trichodermoides Sp. Nov., Isolated from a Nest of the Lower Attine Ant Mycocepurus Goeldii
    Antonie van Leeuwenhoek (2015) 107:731–740 DOI 10.1007/s10482-014-0367-1 ORIGINAL PAPER Escovopsis trichodermoides sp. nov., isolated from a nest of the lower attine ant Mycocepurus goeldii Virginia E. Masiulionis • Marta N. Cabello • Keith A. Seifert • Andre Rodrigues • Fernando C. Pagnocca Received: 30 April 2014 / Accepted: 18 December 2014 / Published online: 10 January 2015 Ó Springer International Publishing Switzerland 2015 Abstract Currently, five species are formally other species by highly branched, trichoderma-like described in Escovopsis, a specialized mycoparasitic conidiophores lacking swollen vesicles, with reduced genus of fungus gardens of attine ants (Hymenoptera: conidiogenous cells and distinctive conidia morphol- Formicidae: tribe Attini). Four species were isolated ogy. Phylogenetic analyses based on partial tef1 gene from leaf-cutting ants in Brazil, including Escovopsis sequences support the distinctiveness of this species. moelleri and Escovopsis microspora from nests of A portion of the internal transcribed spacers of the Acromyrmex subterraneus molestans, Escovopsis nuclear rDNA was sequenced to serve as a DNA weberi from a nest of Atta sp. and Escovopsis barcode. Future molecular and morphological studies lentecrescens from a nest of Acromyrmex subterran- in this group of fungi will certainly unravel the eus subterraneus. The fifth species, Escovopsis taxonomic diversity of Escovopsis associated with aspergilloides was isolated from a nest of the higher fungus-growing ants. attine ant Trachymyrmex ruthae from Trinidad. Here, we describe a new species, Escovopsis trichodermo- Keywords Attini Á Fungus-growing ant Á ides isolated from a fungus garden of the lower attine Hypocreales Á Mycoparasitism ant Mycocepurus goeldii, which differs from the five V.
    [Show full text]
  • Aspergillus Fumigatus, One Uninucleate Species with Disparate Offspring
    Journal of Fungi Article Aspergillus fumigatus, One Uninucleate Species with Disparate Offspring François Danion 1,2,3 , Norman van Rhijn 4 , Alexandre C. Dufour 5,† , Rachel Legendre 6, Odile Sismeiro 6, Hugo Varet 6,7 , Jean-Christophe Olivo-Marin 5 , Isabelle Mouyna 1, Georgios Chamilos 8, Michael Bromley 4, Anne Beauvais 1 and Jean-Paul Latgé 1,8,*,‡ 1 Unité des Aspergillus, Institut Pasteur, 75015 Paris, France; [email protected] (F.D.); [email protected] (I.M.); [email protected] (A.B.) 2 Centre d’infectiologie Necker Pasteur, Hôpital Necker-Enfants Malades, 75015 Paris, France 3 Department of Infectious Diseases, CHU Strasbourg, 67000 Strasbourg, France 4 Manchester Fungal Infection Group, University of Manchester, Manchester M13 9PL, UK; [email protected] (N.v.R.); [email protected] (M.B.) 5 Bioimage Analysis Unit, Institut Pasteur, CNRS UMR3691, 75015 Paris, France; [email protected] (A.C.D.); [email protected] (J.-C.O.-M.) 6 Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Plate-Forme Transcriptome et Epigenome, Biomics, 75015 Paris, France; [email protected] (R.L.); [email protected] (O.S.); [email protected] (H.V.) 7 Département Biologie Computationnelle, Hub de Bioinformatique et Biostatistique, Institut Pasteur, USR 3756 CNRS, 75015 Paris, France 8 Institute of Molecular Biology and Biotechnology FORTH and School of Medicine, University of Crete, 70013 Heraklion, Crete, Greece; [email protected] * Correspondence: [email protected] † Current addresses: Centre Scientifique et Technique Jean Féger, Total, 64000 Pau, France. ‡ Current addresses: Institute of Molecular Biology and Biotechnology FORTH, University of Crete Heraklion, 70013 Heraklion, Greece.
    [Show full text]
  • Wood–Inhabiting Marine Fungi from the Coast of Shandong Ⅱ
    Mycosystema 菌 物 学 报 15 January 2008, 27(1): 66-74 [email protected] ISSN1672-6472 CN11-5180Q ©2008 Institute of Microbiology, CAS, all rights reserved. Wood–inhabiting marine fungi from the coast of Shandong, China Ⅲ SUN Su-Li JIN Jing* LI Bao-Du LU Bing-Sheng College of Plant Protection, Qingdao Agricultural University, Qingdao 266109, China Abstract: Five species of higher marine fungi were observed on the incubated drift and intertidal woods collected from the coasts of Yellow Sea and Bohai Sea. Among them, Halosphaeriopsis was a genus newly recorded for China. Taxonomy and morphology of these species were discussed in this paper. The specimens were deposited in Mycology Herbarium at Qingdao Agricultural University (MHQAU). Key words: new record, driftwood, intertidal wood, gelatinous sheath, ascospore appendage 1 INTRODUCTION The marine fungi have been perfectly known in Europe (England, France and Denmark), North America (USA and Canada), South America (Brazil and Chile), Oceania (Australia and New Zealand) and some countries of Asia (Thailand, India, Malaysia, Japan and Brunei). Whereas the marine fungi in China were still imperfectly documented. The early reports on species, distribution, seasonality pattern and the impact of hydrological factors about lignicolous marine fungi were made by Vrijmoed et al. (1982a, 1982b, 1986a, 1986b). In recent years, a number of marine fungi from mangrove along the coast of Hong Kong were recorded (Hyde et al. 1992; Vrijmoed et al. 1994; Hyde & Pointing 2000; Lu et al. 2000; Jones & Vrijmoed 2003), and some compounds which were unique and novel in structure were found (Vrijmoed et al. 1990; Lin et al.
    [Show full text]
  • Classification of the Fungi Lmperfecti
    Proceedings of the Iowa Academy of Science Volume 63 Annual Issue Article 28 1956 Classification of the ungiF lmperfecti Roger D. Goos State University of Iowa Let us know how access to this document benefits ouy Copyright ©1956 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Goos, Roger D. (1956) "Classification of the ungiF lmperfecti," Proceedings of the Iowa Academy of Science, 63(1), 311-320. Available at: https://scholarworks.uni.edu/pias/vol63/iss1/28 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Goos: Classification of the Fungi lmperfecti Classification of the Fungi lmperfecti By RocER D. Goos In recent years, some dissatisfaction has been expressed concern­ ing the commonly used classification of the Fungi Imperfecti. The discontent with the present system has arisen from the fact that the characteristics used to delimit taxa (i.e. spore color and sep­ tation, arrangement of the conidiophores, etc.) often results in the separation of morphologically similar genera, while at the same time placing together what seem to be unrelated genera. The present system was proposed by Saccardo when the major interest in the Fungi Imperfecti was in their role as plant pathogens. Now these fungi are being studied more intensively than ever be­ fore, not only as plant pathogens, but also with reference to the other roles which they play in nature.
    [Show full text]
  • Four New Ophiostoma Species Associated with Conifer- and Hardwood-Infesting Bark and Ambrosia Beetles from the Czech Republic and Poland
    Antonie van Leeuwenhoek (2019) 112:1501–1521 https://doi.org/10.1007/s10482-019-01277-5 (0123456789().,-volV)( 0123456789().,-volV) ORIGINAL PAPER Four new Ophiostoma species associated with conifer- and hardwood-infesting bark and ambrosia beetles from the Czech Republic and Poland Robert Jankowiak . Piotr Bilan´ski . Beata Strzałka . Riikka Linnakoski . Agnieszka Bosak . Georg Hausner Received: 30 November 2018 / Accepted: 14 May 2019 / Published online: 28 May 2019 Ó The Author(s) 2019 Abstract Fungi under the order Ophiostomatales growth rates, and their insect associations. Based on (Ascomycota) are known to associate with various this study four new taxa can be circumscribed and the species of bark beetles (Coleoptera: Curculionidae: following names are provided: Ophiostoma pityok- Scolytinae). In addition this group of fungi contains teinis sp. nov., Ophiostoma rufum sp. nov., Ophios- many taxa that can impart blue-stain on sapwood and toma solheimii sp. nov., and Ophiostoma taphrorychi some are important tree pathogens. A recent survey sp. nov. O. rufum sp. nov. is a member of the that focussed on the diversity of the Ophiostomatales Ophiostoma piceae species complex, while O. pityok- in the forest ecosystems of the Czech Republic and teinis sp. nov. resides in a discrete lineage within Poland uncovered four putative new species. Phylo- Ophiostoma s. stricto. O. taphrorychi sp. nov. together genetic analyses of four gene regions (ITS1-5.8S-ITS2 with O. distortum formed a well-supported clade in region, ß-tubulin, calmodulin, and translation elonga- Ophiostoma s. stricto close to O. pityokteinis sp. nov. tion factor 1-a) indicated that these four species are O.
    [Show full text]
  • Six Key Traits of Fungi: Their Evolutionary Origins and Genetic Bases LÁSZLÓ G
    Six Key Traits of Fungi: Their Evolutionary Origins and Genetic Bases LÁSZLÓ G. NAGY,1 RENÁTA TÓTH,2 ENIKŐ KISS,1 JASON SLOT,3 ATTILA GÁCSER,2 and GÁBOR M. KOVÁCS4,5 1Synthetic and Systems Biology Unit, Institute of Biochemistry, HAS, Szeged, Hungary; 2Department of Microbiology, University of Szeged, Szeged, Hungary; 3Department of Plant Pathology, Ohio State University, Columbus, OH 43210; 4Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary; 5Plant Protection Institute, Center for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary ABSTRACT The fungal lineage is one of the three large provides an overview of some of the most important eukaryotic lineages that dominate terrestrial ecosystems. fungal traits, how they evolve, and what major genes They share a common ancestor with animals in the eukaryotic and gene families contribute to their development. The supergroup Opisthokonta and have a deeper common ancestry traits highlighted here represent just a sample of the with plants, yet several phenotypes, such as morphological, physiological, or nutritional traits, make them unique among characteristics that have evolved in fungi, including po- all living organisms. This article provides an overview of some of larized multicellular growth, fruiting body development, the most important fungal traits, how they evolve, and what dimorphism, secondary metabolism, wood decay, and major genes and gene families contribute to their development. mycorrhizae. However, a great deal of other important The traits highlighted here represent just a sample of the traits also underlie the evolution of the taxonomically characteristics that have evolved in fungi, including polarized and phenotypically hyperdiverse fungal kingdom, which multicellular growth, fruiting body development, dimorphism, could fill up a volume on its own.
    [Show full text]
  • Entomopathogenic Fungal Identification
    Entomopathogenic Fungal Identification updated November 2005 RICHARD A. HUMBER USDA-ARS Plant Protection Research Unit US Plant, Soil & Nutrition Laboratory Tower Road Ithaca, NY 14853-2901 Phone: 607-255-1276 / Fax: 607-255-1132 Email: Richard [email protected] or [email protected] http://arsef.fpsnl.cornell.edu Originally prepared for a workshop jointly sponsored by the American Phytopathological Society and Entomological Society of America Las Vegas, Nevada – 7 November 1998 - 2 - CONTENTS Foreword ......................................................................................................... 4 Important Techniques for Working with Entomopathogenic Fungi Compound micrscopes and Köhler illumination ................................... 5 Slide mounts ........................................................................................ 5 Key to Major Genera of Fungal Entomopathogens ........................................... 7 Brief Glossary of Mycological Terms ................................................................. 12 Fungal Genera Zygomycota: Entomophthorales Batkoa (Entomophthoraceae) ............................................................... 13 Conidiobolus (Ancylistaceae) .............................................................. 14 Entomophaga (Entomophthoraceae) .................................................. 15 Entomophthora (Entomophthoraceae) ............................................... 16 Neozygites (Neozygitaceae) ................................................................. 17 Pandora
    [Show full text]
  • Barotolerance of Fungi Isolated from Deep-Sea Sediments of the Indian Ocean
    AQUATIC MICROBIAL ECOLOGY Vol. 15: 153-163,1998 Published July 2 Aquat Microb Ecol Barotolerance of fungi isolated from deep-sea sediments of the Indian Ocean Chandralata Raghukumar *, S. Raghukumar National Institute of Oceanography. Dona Paula, Coa 403 004, India ABSTRACT: Two species of filamentous fungi, AspergiUus ustus (Bain.)Thom & Church and Graphium sp., were isolated from calcareous animal shells at depths of 860 m in the Arabian Sea and 965 m in the Bay of Bengal. Laboratory experiments showed germination of conidia, growth of hyphae and microconidiation in both the fungi at 100 bar pressure at 10 and 30°C suggesting barotolerance The fungi also secreted barotolerant protease under these conditions. Protease synthesised and secreted in cultures grown at 1 bar was also active under 100 bar pressure at 10 and 30°C. At 1O0C,the fungi showed better conidial germination, growth and protease secretion when subjected to 100 bar than when grown at 1 atmosphere. The results indicate barotolerance of terrestrial species of fungl and sug- gest that they might be active under deep-sea conditions. KEY WORDS: Barotolerance . Deep sea . Fungi . Enzymes . Protease INTRODUCTION problem is to examine the barotolerance of such fungi under laboratory conditions. Earlier, we demonstrated Investigations on the occurrence and role of fungi in spore germination and calcium carbonate dissolution deep-sea sediments have received very little attention. by a shell-boring geofungus under simulated deep-sea Borings of calcareous animal shells in the deep sea, conditions (Raghukumar et al. 1992). Lorenz & Moli- putatively by fungi, have been reported, but the fungi toris (1992) reported barotolerance in several yeasts.
    [Show full text]
  • Escovopsis Trichodermoides Sp. Nov., Isolated from a Nest of the Lower Attine Ant Mycocepurus Goeldii
    Antonie van Leeuwenhoek (2015) 107:731–740 DOI 10.1007/s10482-014-0367-1 ORIGINAL PAPER Escovopsis trichodermoides sp. nov., isolated from a nest of the lower attine ant Mycocepurus goeldii Virginia E. Masiulionis • Marta N. Cabello • Keith A. Seifert • Andre Rodrigues • Fernando C. Pagnocca Received: 30 April 2014 / Accepted: 18 December 2014 / Published online: 10 January 2015 Ó Springer International Publishing Switzerland 2015 Abstract Currently, five species are formally other species by highly branched, trichoderma-like described in Escovopsis, a specialized mycoparasitic conidiophores lacking swollen vesicles, with reduced genus of fungus gardens of attine ants (Hymenoptera: conidiogenous cells and distinctive conidia morphol- Formicidae: tribe Attini). Four species were isolated ogy. Phylogenetic analyses based on partial tef1 gene from leaf-cutting ants in Brazil, including Escovopsis sequences support the distinctiveness of this species. moelleri and Escovopsis microspora from nests of A portion of the internal transcribed spacers of the Acromyrmex subterraneus molestans, Escovopsis nuclear rDNA was sequenced to serve as a DNA weberi from a nest of Atta sp. and Escovopsis barcode. Future molecular and morphological studies lentecrescens from a nest of Acromyrmex subterran- in this group of fungi will certainly unravel the eus subterraneus. The fifth species, Escovopsis taxonomic diversity of Escovopsis associated with aspergilloides was isolated from a nest of the higher fungus-growing ants. attine ant Trachymyrmex ruthae from Trinidad. Here, we describe a new species, Escovopsis trichodermo- Keywords Attini Á Fungus-growing ant Á ides isolated from a fungus garden of the lower attine Hypocreales Á Mycoparasitism ant Mycocepurus goeldii, which differs from the five V.
    [Show full text]
  • DHPSNY General Mold Terminology [Source: Florian, ML (2002) Fungal Facts: Solving Fungal Problems in Heritage Collections]
    DHPSNY General Mold Terminology [Source: Florian, ML (2002) Fungal Facts: Solving Fungal Problems in Heritage Collections] • Activation – the process by which dormancy is broken, but germination does not yet begin. • Aseptic techniques – procedures which prevent microorganism contamination, i.e. using sterile materials and tools, confining moldy materials in airtight bags, etc. • Conidia (plural, conidium) – a single cell or group of cells which is formed by asexual reproduction. • Deactivation (also referred to as “inactivation”) – withdrawing conducive environmental conditions of an activated spore, BEFORE germination has begun. • Dormancy – a stage of low metabolic maintenance activity of a cell or organism which, when broken, will develop into another structure (i.e. a conidia to a mycelium). • Germination – the process of swelling due to water intake, and the formation of a hyphal germination tube. Once germination starts, the fungus begins the process of vegetative growth and development. • Hyphae – threadlike structures of vegetative growth of fungi which excretes enzymes, adsorbs digested materials and water, and transports them. • Mycelium – a group or mass of hyphae. • Spore – a general term for a reproductive unit, which may be a single cell or multicellular. Conidial development stages: • Maturation: the internal development required to become morphologically and physiologically complete. • Dormancy: an inherent low metabolic state which prevents germination even in conducive conditions. • Activation: the result of a treatment which breaks the dormancy of the conidia and prepares it for germination. Conidia can remain active without germinating. • Germination: an irreversible change - once it starts, the conidia cannot revert to an inactive state. maturation dormancy activation germination .
    [Show full text]
  • Mycology Guidebook. INSTITUTICN Mycological Society of America, San Francisco, Calif
    DOCUMENT BEMIRE ED 174 459 SE 028 530 AUTHOR Stevens, Russell B., Ed. TITLE Mycology Guidebook. INSTITUTICN Mycological Society of America, San Francisco, Calif. SPCNS AGENCY National Science Foundation, Washington, D.C. PUB DATE 74 GRANT NSF-GE-2547 NOTE 719p. EDPS PRICE MF04/PC29 Plus Postage. DESCRIPSCRS *Biological Sciences; College Science; *Culturing Techniques; Ecology; *Higher Education; *Laboratory Procedures; *Resource Guides; Science Education; Science Laboratories; Sciences; *Taxonomy IDENTIFIERS *National Science Foundation ABSTT.RACT This guidebook provides information related to developing laboratories for an introductory college-level course in mycology. This information will enable mycology instructors to include information on less-familiar organisms, to diversify their courses by introducing aspects of fungi other than the more strictly taxcncnic and morphologic, and to receive guidance on fungi as experimental organisms. The text is organized into four parts: (1) general information; (2) taxonomic groups;(3) ecological groups; and (4) fungi as biological tools. Data and suggestions are given for using fungi in discussing genetics, ecology, physiology, and other areas of biology. A list of mycological-films is included. (Author/SA) *********************************************************************** * Reproductions supplied by EDRS are the best that can be made * * from the original document. * *********************************************************************** GE e75% Mycology Guidebook Mycology Guidebook Committee,
    [Show full text]