Bacterial Symbioses and the Innate Immune Response of the Model Host: Euprymna Scolopes Andrew J

Total Page:16

File Type:pdf, Size:1020Kb

Bacterial Symbioses and the Innate Immune Response of the Model Host: Euprymna Scolopes Andrew J University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 8-14-2014 Bacterial Symbioses and the Innate Immune Response of the Model Host: Euprymna scolopes Andrew J. Collins University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Collins, Andrew J., "Bacterial Symbioses and the Innate Immune Response of the Model Host: Euprymna scolopes" (2014). Doctoral Dissertations. 516. https://opencommons.uconn.edu/dissertations/516 Bacterial Symbioses and the Innate Immune Response of the Model Host: Euprymna scolopes Andrew Collins University of Connecticut, 2014 All animals enter into beneficial relationships with bacteria. The light organ of the Hawaiian Bobtail squid, Euprymna scolopes, is a unique model for studying the establishment and maintenance of a symbiosis between a host and a single bacterial species, Vibrio fischeri. This bacterium inhabits a specialized structure known as the light organ and provides counter-illumination to mask the silhouette of the predator as it hunts for food during the night. Hemocytes, the primary innate immune cells, preferentially bind and phagocytose non-symbiotic at higher rates than their symbiont, but this can change with the colonization state of the animal. A goal of this work was to use high-throughput sequencing to identify genes expressed within hemocytes of adult animals. Of the many genes identified was a novel peptidoglycan recognition protein, EsPGRP5, which is one of the most abundant transcripts in circulating hemocytes. In addition to the light organ, female squid have an accessory nidamental gland (ANG) which contributes to making the jelly coat that covers the squid’s eggs. This gland is full of epithelium-lined tubules, most of which support a dense population of bacteria. Unlike the light organ however, the bacterial population in the ANG is a consortium of several species, not just one. This work characterized the bacterial symbionts within the ANG and showed that the population is partitioned, with certain tubules containing a single taxon. The dominant members of the ANG consortium are members of the ubiquitous Roseobacter clade, a group of marine bacteria within the Rhodobacterales. Several Andrew Jeffrey Collins – University of Connecticut, 2014 organisms were cultured from the ANGs of Euprymna scolopes. The genomes of these organisms were sequenced and analyzed for secondary metabolites. Among these were siderophores and homoserine lactones. The results of this work establish a database for future research into the molecular mechanisms of hemocytes. The presence of several genes can lead to the future characterization of many proteins and signaling pathways within hemocytes. This work also established the accessory nidamental gland as new model for consortial symbioses in E. scolopes. Comparisons between this new symbiosis and the light organ will shed light on how animals maintain many different bacterial communities. Bacterial Symbioses and the Innate Immune Response of the Model Host: Euprymna scolopes By Andrew Jeffrey Collins B.S. University of Puget Sound, 2007 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy At the University of Connecticut 2014 Copyright by Andrew Jeffrey Collins 2014 i APPROVAL PAGE Doctor of Philosophy Dissertation Bacterial Symbioses and the Innate Immune Response of the Model Host: Euprymna scolopes Presented by Andrew Jeffrey Collins, B.S. Major Advisor Dr. Spencer Nyholm Associate Advisor Dr. Joerg Graf Associate Advisor Dr. Daniel Gage Examiner Dr. David Benson Examiner Dr. Steven Geary University of Connecticut 2014 ii Acknowledgements I would first like to thank my advisor, Dr. Spencer Nyholm for supervising my research for the past seven years. I am also grateful to the members of my committee, Dr. Joerg Graf, Dr. Daniel Gage, Dr. David Benson and Dr. Steven Geary, who asked held me to a high standard and asked really good questions. Past and present members of the Nyholm Lab profoundly affected my development as a scientist. I thank our former post-doctoral fellow Dr. Bethany Rader for our constructive discussions on science. I also acknowledge Tyler Schleicher who was a part of our lab for 6 out of my 7 years at UConn. He was an indispensable resource and partner in running the lab, tending to the animals and reviewing my research. I also mentored many students over the years and their inquisitive nature, work ethic and optimism helped me through many long days. I thank many people who helped me behind the scenes, including my parents who always supported me and encouraged me particularly when experiments were not working and I had seemingly reached my limit. My siblings, Courtney, Jon, Laura and Beth, for always making holidays and vacations fun and enjoyable. I especially thank my girlfriend Jess, who sacrificed many weekends to come into lab with me as I took care of the squid and finished up experiments. Finally, I acknowledge my fellow graduate students, who are the soul of research at UConn. It was the people I saw every day, working shoulder-to-shoulder in the lab that provided the greatest wisdom and guidance over the years. I especially need to thank my roommate and my truest friend, Reed Goodwin. Over the five years we lived together, we had many fruitful discussions of experiments, teaching, careers and football. iii I am indebted to him for so much advice, guidance and meaningful conversation over beers. Things would have turned out very differently without his support. iv Table of Contents Approval page ..................................................................................................................... ii Acknowledgements ............................................................................................................ iii Table of Contents ................................................................................................................ v List of Tables ................................................................................................................... viii List of Figures .................................................................................................................... ix Chapter 1. Introduction ...................................................................................................... 1 Beneficial microbes ......................................................................................................... 1 Innate immunity .............................................................................................................. 6 The Roseobacter clade and symbiosis ............................................................................ 8 Summary ....................................................................................................................... 11 Contributions of other researchers ................................................................................ 11 Chapter 2. Hemocyte Transcriptomics and EsPGRP5 ..................................................... 12 Introduction ................................................................................................................... 12 Materials and Methods .................................................................................................. 15 Hemocyte Collection ................................................................................................. 16 Curing Experiments ................................................................................................... 16 Transcriptome Sequencing ........................................................................................ 17 Bioinformatics ........................................................................................................... 17 Western Blot Analysis ............................................................................................... 18 Immunocytochemistry ............................................................................................... 18 Polymerase Chain Reaction ....................................................................................... 19 Results ........................................................................................................................... 20 Discussion ..................................................................................................................... 22 Chapter 3. The Accessory Nidamental Gland................................................................... 43 Introduction ................................................................................................................... 43 Materials and Methods .................................................................................................. 44 Animal maintenance ...................................................................................................... 44 Dissection and DNA extraction ................................................................................. 45 Culturing bacteria from the ANG .............................................................................. 46 Microscopy ................................................................................................................ 46 16S clone library construction and RFLP analysis .................................................... 47 454 Metagenomic Sequencing ..................................................................................
Recommended publications
  • Characterization of Α-L-Fucosidase and Other Digestive Hydrolases From
    Acta Tropica 141 (2015) 118–127 Contents lists available at ScienceDirect Acta Tropica journal homepage: www.elsevier.com/locate/actatropica Characterization of ␣-L-fucosidase and other digestive hydrolases from Biomphalaria glabrata Natalia N. Perrella a,b, Rebeca S. Cantinha c,d, Eliana Nakano c, Adriana R. Lopes a,∗ a Laboratory of Biochemistry and Biophysics—Instituto Butantan, São Paulo, Brazil b Programa de Pós Graduac¸ ão Interunidades em Biotecnologia PPIB, Universidade de São Paulo, São Paulo, SP, Brazil c Laboratory of Parasitology—Instituto Butantan, São Paulo, Brazil d Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo, São Paulo, SP, Brazil article info abstract Article history: Schistosoma mansoni is one of the major agents of the disease Schistosomiasis, which is one of the Received 10 February 2014 major global public health concerns. Biomphalaria glabrata is an obligate intermediate mollusc host of Received in revised form 3 July 2014 S. mansoni. Although the development of S. mansoni occurs in the snail hepatopancreas, studies that Accepted 12 August 2014 focus on this organ remain limited. In this study, we biochemically identified five distinct carbohy- Available online 16 September 2014 drases (amylase, maltase, ␣-glucosidase, trehalase, and ␣-L-fucosidase), lipases, and peptidases in the B. glabrata hepatopancreas and focused on the isolation and characterization of the activity of ␣-L- Keywords: fucosidase. The isolated ␣-L-fucosidase has a molecular mass of 141 kDa, an optimum pH of 5.8, and Hepatopancreas ␣ Enzymes is inhibited by Tris, fucose, and 1-deoxyfuconojirimycin. B. glabrata -L-fucosidase is an exoglycosidase ␮ ␣-L-Fucosidase that can hydrolyze the natural substrate fucoidan to fucose residues.
    [Show full text]
  • Feasibility of Bacterial Probiotics for Mitigating Coral Bleaching
    Feasibility of bacterial probiotics for mitigating coral bleaching Ashley M. Dungan ORCID: 0000-0003-0958-2177 Thesis submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy September 2020 School of BioSciences The University of Melbourne Declaration This is to certify that: 1. This thesis comprises only of my original work towards the PhD, except where indicated in the preface. 2. Due acknowledgements have been made in the text to all other material used. 3. The thesis is under 100,000 words, exclusive of tables, bibliographies, and appendices. Signed: Date: 11 September 2020 ii General abstract Given the increasing frequency of climate change driven coral mass bleaching and mass mortality events, intervention strategies aimed at enhancing coral thermal tolerance (assisted evolution) are urgently needed in addition to strong action to reduce carbon emissions. Without such interventions, coral reefs will not survive. The seven chapters in my thesis explore the feasibility of using a host-sourced bacterial probiotic to mitigate bleaching starting with a history of reactive oxygen species (ROS) as a biological explanation for bleaching (Chapter 1). In part because of the difficulty to experimentally manipulate corals post-bleaching, I use Great Barrier Reef (GBR)-sourced Exaiptasia diaphana as a model organism for this system, which I describe in Chapter 2. The comparatively high levels of physiological and genetic variability among GBR anemone genotypes make these animals representatives of global E. diaphana diversity and thus excellent model organisms. The ‘oxidative stress theory for coral bleaching’ provides rationale for the development of a probiotic with a high free radical scavenging ability.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips Et Al
    USOO598.1835A United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips et al. (45) Date of Patent: Nov. 9, 1999 54) TRANSGENIC PLANTS AS AN Brown and Atanassov (1985), Role of genetic background in ALTERNATIVE SOURCE OF Somatic embryogenesis in Medicago. Plant Cell Tissue LIGNOCELLULOSC-DEGRADING Organ Culture 4:107-114. ENZYMES Carrer et al. (1993), Kanamycin resistance as a Selectable marker for plastid transformation in tobacco. Mol. Gen. 75 Inventors: Sandra Austin-Phillips; Richard R. Genet. 241:49-56. Burgess, both of Madison; Thomas L. Castillo et al. (1994), Rapid production of fertile transgenic German, Hollandale; Thomas plants of Rye. Bio/Technology 12:1366–1371. Ziegelhoffer, Madison, all of Wis. Comai et al. (1990), Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS 73 Assignee: Wisconsin Alumni Research elements. Plant Mol. Biol. 15:373-381. Foundation, Madison, Wis. Coughlan, M.P. (1988), Staining Techniques for the Detec tion of the Individual Components of Cellulolytic Enzyme 21 Appl. No.: 08/883,495 Systems. Methods in Enzymology 160:135-144. de Castro Silva Filho et al. (1996), Mitochondrial and 22 Filed: Jun. 26, 1997 chloroplast targeting Sequences in tandem modify protein import specificity in plant organelles. Plant Mol. Biol. Related U.S. Application Data 30:769-78O. 60 Provisional application No. 60/028,718, Oct. 17, 1996. Divne et al. (1994), The three-dimensional crystal structure 51 Int. Cl. ............................. C12N 15/82; C12N 5/04; of the catalytic core of cellobiohydrolase I from Tricho AO1H 5/00 derma reesei. Science 265:524-528.
    [Show full text]
  • (10) Patent No.: US 8119385 B2
    US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall Et Al
    USOO9689046B2 (12) United States Patent (10) Patent No.: US 9,689,046 B2 Mayall et al. (45) Date of Patent: Jun. 27, 2017 (54) SYSTEM AND METHODS FOR THE FOREIGN PATENT DOCUMENTS DETECTION OF MULTIPLE CHEMICAL WO O125472 A1 4/2001 COMPOUNDS WO O169245 A2 9, 2001 (71) Applicants: Robert Matthew Mayall, Calgary (CA); Emily Candice Hicks, Calgary OTHER PUBLICATIONS (CA); Margaret Mary-Flora Bebeselea, A. et al., “Electrochemical Degradation and Determina Renaud-Young, Calgary (CA); David tion of 4-Nitrophenol Using Multiple Pulsed Amperometry at Christopher Lloyd, Calgary (CA); Lisa Graphite Based Electrodes', Chem. Bull. “Politehnica” Univ. Kara Oberding, Calgary (CA); Iain (Timisoara), vol. 53(67), 1-2, 2008. Fraser Scotney George, Calgary (CA) Ben-Yoav. H. et al., “A whole cell electrochemical biosensor for water genotoxicity bio-detection”. Electrochimica Acta, 2009, 54(25), 6113-6118. (72) Inventors: Robert Matthew Mayall, Calgary Biran, I. et al., “On-line monitoring of gene expression'. Microbi (CA); Emily Candice Hicks, Calgary ology (Reading, England), 1999, 145 (Pt 8), 2129-2133. (CA); Margaret Mary-Flora Da Silva, P.S. et al., “Electrochemical Behavior of Hydroquinone Renaud-Young, Calgary (CA); David and Catechol at a Silsesquioxane-Modified Carbon Paste Elec trode'. J. Braz. Chem. Soc., vol. 24, No. 4, 695-699, 2013. Christopher Lloyd, Calgary (CA); Lisa Enache, T. A. & Oliveira-Brett, A. M., "Phenol and Para-Substituted Kara Oberding, Calgary (CA); Iain Phenols Electrochemical Oxidation Pathways”, Journal of Fraser Scotney George, Calgary (CA) Electroanalytical Chemistry, 2011, 1-35. Etesami, M. et al., “Electrooxidation of hydroquinone on simply prepared Au-Pt bimetallic nanoparticles'. Science China, Chem (73) Assignee: FREDSENSE TECHNOLOGIES istry, vol.
    [Show full text]
  • Substrate Specificity and Transfucosylation Activity of GH29 Α-L-Fucosidases for Enzymatic Production of Human Milk Oligosaccharides
    Downloaded from orbit.dtu.dk on: Oct 01, 2021 Substrate specificity and transfucosylation activity of GH29 -l-fucosidases for enzymatic production of human milk oligosaccharides Zeuner, Birgitte; Muschiol, Jan; Holck, Jesper; Lezyk, Mateusz; Gedde, Mattias Raae; Jers, Carsten; Mikkelsen, Jørn Dalgaard; Meyer, Anne S. Published in: New Biotechnology Link to article, DOI: 10.1016/j.nbt.2017.12.002 Publication date: 2018 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Zeuner, B., Muschiol, J., Holck, J., Lezyk, M., Gedde, M. R., Jers, C., Mikkelsen, J. D., & Meyer, A. S. (2018). Substrate specificity and transfucosylation activity of GH29 -l-fucosidases for enzymatic production of human milk oligosaccharides. New Biotechnology, 41, 34-45. https://doi.org/10.1016/j.nbt.2017.12.002 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Accepted Manuscript Title: Substrate specificity and transfucosylation activity of GH29 ␣-L-fucosidases for enzymatic production of human milk oligosaccharides Authors: Birgitte Zeuner, Jan Muschiol, Jesper Holck, Mateusz Lezyk, Mattias Raae Gedde, Carsten Jers, Jørn Dalgaard Mikkelsen, Anne S.
    [Show full text]
  • Mitigating Biofouling on Reverse Osmosis Membranes Via Greener Preservatives
    Mitigating biofouling on reverse osmosis membranes via greener preservatives by Anna Curtin Biology (BSc), Le Moyne College, 2017 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF APPLIED SCIENCE in the Department of Civil Engineering, University of Victoria © Anna Curtin, 2020 University of Victoria All rights reserved. This Thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. Supervisory Committee Mitigating biofouling on reverse osmosis membranes via greener preservatives by Anna Curtin Biology (BSc), Le Moyne College, 2017 Supervisory Committee Heather Buckley, Department of Civil Engineering Supervisor Caetano Dorea, Department of Civil Engineering, Civil Engineering Departmental Member ii Abstract Water scarcity is an issue faced across the globe that is only expected to worsen in the coming years. We are therefore in need of methods for treating non-traditional sources of water. One promising method is desalination of brackish and seawater via reverse osmosis (RO). RO, however, is limited by biofouling, which is the buildup of organisms at the water-membrane interface. Biofouling causes the RO membrane to clog over time, which increases the energy requirement of the system. Eventually, the RO membrane must be treated, which tends to damage the membrane, reducing its lifespan. Additionally, antifoulant chemicals have the potential to create antimicrobial resistance, especially if they remain undegraded in the concentrate water. Finally, the hazard of chemicals used to treat biofouling must be acknowledged because although unlikely, smaller molecules run the risk of passing through the membrane and negatively impacting humans and the environment.
    [Show full text]
  • “Algae's Sulfated Polysaccharides Modifications: Potential Use Of
    Process Biochemistry 51 (2016) 989–998 Contents lists available at ScienceDirect Process Biochemistry jo urnal homepage: www.elsevier.com/locate/procbio Review “Algae’s sulfated polysaccharides modifications: Potential use of microbial enzymes” a,∗ a a Daniela de Borba Gurpilhares , Tatiane Rodrigues Moreira , Julia da Luz Bueno , a,b c e d Leonardo Paes Cinelli , Priscila Gava Mazzola , Adalberto Pessoa , Lara Durães Sette a Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Aluizio da Silva Gomes, 50, Granja dos Cavaleiros, 27930-560, Macaé, RJ, Brazil b Grupo de Glicofármacos—Laboratório Integrado de Prospecc¸ ão em Produtos Bioativos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Aluizio da Silva Gomes, 50, Granja dos Cavaleiros, 27930-560, Macaé, RJ, Brazil c Faculdade de Ciências Farmacêuticas, Universidade de Campinas—UNICAMP, Sérgio Buarque de Holanda, 250, Piso II, E06, 13083-859 Campinas, SP, Brazil/Departamento de Patologia Clinica, Faculdade de Ciências Médicas, Universidade de Campinas—UNICAMP, R. Alexander Fleming, 105, Bloco FCM 12, 13083-881, Campinas, SP, Brazil d Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho—UNESP, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP, Brazil e Departamento de Tecnologia Bioquímico-Farmacêutica, Escola de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, Bloco 16, 05508-900, São Paulo, SP, Brazil a r t i c l e i n f o a b s t r a c t Article history: Marine algae are valuable sources of structurally diverse bioactive compounds, among them, the group Received 10 December 2015 of sulfated polysaccharides (SPs).
    [Show full text]
  • The Enzymatic Conversion of Major Algal and Cyanobacterial Carbohydrates to Bioethanol
    REVIEW published: 04 November 2016 doi: 10.3389/fenrg.2016.00036 The Enzymatic Conversion of Major Algal and Cyanobacterial Carbohydrates to Bioethanol Qusai Al Abdallah1*, B. Tracy Nixon2 and Jarrod R. Fortwendel1 1 Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA, 2 Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA The production of fuels from biomass is categorized as first-, second-, or third- generation depending upon the source of raw materials, either food crops, lignocellulosic material, or algal biomass, respectively. Thus far, the emphasis has been on using food crops creating several environmental problems. To overcome these problems, there is a shift toward bioenergy production from non-food sources. Algae, which store high amounts of carbohydrates, are a potential producer of raw materials for sustainable production of bioethanol. Algae store their carbohydrates in the form of food storage sugars and structural material. In general, algal food storage polysaccharides are composed of glucose subunits; however, they vary in the glycosidic bond that links Edited by: the glucose molecules. In starch-type polysaccharides (starch, floridean starch, and Arumugam Muthu, Council of Scientific and glycogen), the glucose subunits are linked together by α-(1→4) and α-(1→6) glycosidic Industrial Research, India bonds. Laminarin-type polysaccharides (laminarin, chrysolaminarin, and paramylon) are Reviewed by: made of glucose subunits that are linked together by β-(1→3) and β-(1→6) glycosidic Wenjie Liao, bonds. In contrast to food storage polysaccharides, structural polysaccharides vary in Sichuan University, China Sachin Kumar, composition and glycosidic bond.
    [Show full text]
  • Taxonomic Hierarchy of the Phylum Proteobacteria and Korean Indigenous Novel Proteobacteria Species
    Journal of Species Research 8(2):197-214, 2019 Taxonomic hierarchy of the phylum Proteobacteria and Korean indigenous novel Proteobacteria species Chi Nam Seong1,*, Mi Sun Kim1, Joo Won Kang1 and Hee-Moon Park2 1Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea 2Department of Microbiology & Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea *Correspondent: [email protected] The taxonomic hierarchy of the phylum Proteobacteria was assessed, after which the isolation and classification state of Proteobacteria species with valid names for Korean indigenous isolates were studied. The hierarchical taxonomic system of the phylum Proteobacteria began in 1809 when the genus Polyangium was first reported and has been generally adopted from 2001 based on the road map of Bergey’s Manual of Systematic Bacteriology. Until February 2018, the phylum Proteobacteria consisted of eight classes, 44 orders, 120 families, and more than 1,000 genera. Proteobacteria species isolated from various environments in Korea have been reported since 1999, and 644 species have been approved as of February 2018. In this study, all novel Proteobacteria species from Korean environments were affiliated with four classes, 25 orders, 65 families, and 261 genera. A total of 304 species belonged to the class Alphaproteobacteria, 257 species to the class Gammaproteobacteria, 82 species to the class Betaproteobacteria, and one species to the class Epsilonproteobacteria. The predominant orders were Rhodobacterales, Sphingomonadales, Burkholderiales, Lysobacterales and Alteromonadales. The most diverse and greatest number of novel Proteobacteria species were isolated from marine environments. Proteobacteria species were isolated from the whole territory of Korea, with especially large numbers from the regions of Chungnam/Daejeon, Gyeonggi/Seoul/Incheon, and Jeonnam/Gwangju.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii
    POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii http://rcin.org.pl WSKAZÓWKI DLA AUTORÓW Kwartalnik „Postępy Biochemii” publikuje artykuły monograficzne omawiające wąskie tematy, oraz artykuły przeglądowe referujące szersze zagadnienia z biochemii i nauk pokrewnych. Artykuły pierwszego typu winny w sposób syntetyczny omawiać wybrany temat na podstawie możliwie pełnego piśmiennictwa z kilku ostatnich lat, a artykuły drugiego typu na podstawie piśmiennictwa z ostatnich dwu lat. Objętość takich artykułów nie powinna przekraczać 25 stron maszynopisu (nie licząc ilustracji i piśmiennictwa). Kwartalnik publikuje także artykuły typu minireviews, do 10 stron maszynopisu, z dziedziny zainteresowań autora, opracowane na podstawie najnow­ szego piśmiennictwa, wystarczającego dla zilustrowania problemu. Ponadto kwartalnik publikuje krótkie noty, do 5 stron maszynopisu, informujące o nowych, interesujących osiągnięciach biochemii i nauk pokrewnych, oraz noty przybliżające historię badań w zakresie różnych dziedzin biochemii. Przekazanie artykułu do Redakcji jest równoznaczne z oświadczeniem, że nadesłana praca nie była i nie będzie publikowana w innym czasopiśmie, jeżeli zostanie ogłoszona w „Postępach Biochemii”. Autorzy artykułu odpowiadają za prawidłowość i ścisłość podanych informacji. Autorów obowiązuje korekta autorska. Koszty zmian tekstu w korekcie (poza poprawieniem błędów drukarskich) ponoszą autorzy. Artykuły honoruje się według obowiązujących stawek. Autorzy otrzymują bezpłatnie 25 odbitek swego artykułu; zamówienia na dodatkowe odbitki (płatne) należy zgłosić pisemnie odsyłając pracę po korekcie autorskiej. Redakcja prosi autorów o przestrzeganie następujących wskazówek: Forma maszynopisu: maszynopis pracy i wszelkie załączniki należy nadsyłać w dwu egzem­ plarzach. Maszynopis powinien być napisany jednostronnie, z podwójną interlinią, z marginesem ok. 4 cm po lewej i ok. 1 cm po prawej stronie; nie może zawierać więcej niż 60 znaków w jednym wierszu nie więcej niż 30 wierszy na stronie zgodnie z Normą Polską.
    [Show full text]