LD5655.V855 1987.H664.Pdf (6.917Mb)

Total Page:16

File Type:pdf, Size:1020Kb

LD5655.V855 1987.H664.Pdf (6.917Mb) IN VITR0 CHARACTERIZATION 0F AROMATASE, ESTRONE SULFOTRANSFERASE AND ESTRONE SULFATASE ACTIVITIES IN THE RORCINE RLACENTA AND ENDOMETRIUM AT 30, 60 AND 90 DAYS 0F GESTATION bv Katherine Lee Hopkins Thesis submitted to the Faculty of the Virginia Rolytechnic Institute and State University in partial fulfullment of the requirements for the degree of MASTER 0F SCIENCE in Animal Science (Reproductive Rhysiology) APPROVED: i J. W. Knight hairman W. E. Beal D.R. Notter R. R. Frahm, Dept. Head July, l987 Blacksburg, Virginia I IN \/ITI?20 CHARACTERIZATION 0F AROMATASE, ESTRONE SULFOTRANSFERASE AND ESTRONE SULFATASE ACTIVITES IN THE PORCINE PILACENTA AND ENDOIVIETRIUIYI AT 30, 60 AND 90 DAYS 0F GESTATION bv Katherine I.ee Hopkins (ABSTRACT) The purpose of this investigation was to characterize the activities of three enzymes, aromatase, estrone (E1) sulfotransferase and E] sulfatase, in the porcine placenta and endometrium on d 30, 60 and 90 of gestation. These enzymes play key roles in determining in utero concentrations of estrogens. Days 30, 60 and 90 were chosen because previous investigations had determined that these were times of substantial changes in in vitro estrogen production by the porcine placenta and endometrium. Each enzyme assay was performed in separate tissue culture systems, and the level of enzyme was determined by measuring product formation from tritium—Iabelled (3H) substrates provided in the incubation medium. Aromatase activity was determined by the formation of 3H20 and estradiol from 3H—testosterone (T). E] sulfotransferase activity was determined by the formation of 3H-estrone sulfate (EISOA) from 3H-E]. Estrone sulfatase activity was 1 determined by the formation of 3H—E] from 3H-E]504 Concentrations of T, E]504 and E] in plasma collected from the anterior vena cava (AVC), uterine artery (UA) and uterine vein (UV) were determined py radioimmunoassay. There were no significant differences in mean enzyme activity of the placenta or the endometrium among the three days of gestation examined. Endometrial aromatase activity was twice that of placental aromatase on all three days that were examined. The ratio of placental to endometrial sulfotransferase activity underwent a reversal from 1:1.3 on d 30 to 2.3:1 on d 60 and 90. The ratio of placental to endometrial sulfatase activity changed from 1:1.6 on d 30 to 1:2.2 on d 60 and 1:3.0 on d 90. There were significant differences in response of enzyme activity to extended periods (3 h) in incubation which varied with tissue type, gestational age and enzyme of interest. Overall, placental enzymes did not respond consistently to increased time in incubation with increased product formation. Endometrial aromatase activity on all three days and endometrial sulfatase activity on d 90 responded to increased time in incubation with increased product formation. In vivo, the uterus appears to oe involved in T, E] and E]504 production since UV steroid concentrations were greater than those of the UA. The E1504 to E] ratio of the UV decreased from 15:1 on d 30 to 4:1 on d 60 and 1:2 on d 90. I ACKNOWLEDGEMENTS I would like to take this opportunity to recognize the contributions of several individuals who have assisted me in the construction of this thesis, promoted my education and who have become my firm friends during my three years at \/irginia Tech. First, I would like to thank Dr. J. W. Knight, committee chairman, Dr. W. E. Beal and Dr. D. R. Notter for agreeing to serve on my committee, oversee my career as a Masters candidate and for assisting me in getting my thesis transformed into the final product. Their willingness to offer advice and direction was greatly appreciated. Almost last, by certainly not least, I would like to recognize the contributions iv I TABLE 0F CONTENTS ABSTPACT ............................................................................................ ii ACKNDWLEDGEMENTB.......................................................................... iv QQQQ INTPODUCTION..................................................................................... I PE\/IEW 0F LITEPATUPE...................................................................... 4 Porcine Placental Development and Function........................... 4 Placental Development................................................. 4 Placental Function....................................................... I7 Estrogens......,..........,..................................................,.............. IQ Aromatase............................................................,..................... 30 Bulfotransferase........................................................................ 36 Sulfatase.............................,................,..................................... 42 Steroidogenic and Enzymatic Profile of the Pig Durihg Gestation........................................................................ 46 MATEPIAL5 AND PIETHODS.................................................................. BB Tissue Collection Procedures.................................................... BB Tissue Incupation Procedures................................................... 6I Assay of Aromatase Activity.........................„...........,................ 62 Assay of Estrone Sulfotransferase and Estrone Bulfatase Activity...................................................................................... 64 Soluble Protein Determination................................,.......„......... 6Q Assays of Blood Steroid Concentrations..................................... 70 Testosterone................................................................ 70 vi I i Estrone and Estrone Sulfate....................................... 71 Statistical Analysis.................................................................... 73 PESULTS............................................................................................... 77 Protein Content of Incubated Tissue Samples........................... 77 In vitro Aromatase Activity on d 30, 60 and 90 of Gestation........................................................................,............ 82 In vitro Sulfotransferase Activity on d 30, 60 and 90 of Gestation................................................................................. 91 In vitro Sulfatase Activity on d 30, 60 and 90 of Gestation..... 97 Steroid Concentrations in Maternal Plasma on d 30, 60 and 90 of Gestation.................................................................... 103 Testosterone............................................................. 103 Estrone....................................................,,............... 106 Estrone Sulfate..............................,.......................„. 106 Comparison of Ivlaternal Plasma Testosterone, Estrone and Estrone Sulfate........................................... 111 DISCUSSION......................................................................................... 114 CONCLUSION......................................................................................... 134 LITEPATUPE CITED...................................,........................................... 136 APPENDICES......................................................................................... 149 vITA...................................................................................................... 161 vii I I LIST 0F TABLES TabIe page I. Spontaneous suifation of estrone................................................... 67 2. Spontaneous nydroIysis of estrone sulfate..................................... 68 3. Regression of coefficients and mean protein content.................... 74 4. Aromatization of testosterone py microwaved pIacentaI tissue over a 3 n incubation period at 30, 60 and 90 d of gestation....... 83 5. Aromatization of testosterone py microwaved endometriaI tissue over a 3 n incubation period at 30, 60 and 90 d of gestation....... 84 6. Mean aromatase activity of pIacentaI, endometriaI, microwaved pIacentaI and microwaved endometriaI tissue at 30, 60 and 90 d of gestation................................................................................. 85 7. Aromatization of testosterone py pIacentaI tissue over a 3 n incubation period at 30, 60 and 90 d of gestation...................... 88 8. Aromatization of testosterone by endometriaI tissue over a 3 n incuoation period at 30, 60 and 90 d of gestation....................... 89 9. Riacentai suIfotransferase activity over a 3 n incubation period I at 30, 60 and 90 d of gestation........................................................................................ 92 I0. EndometriaI suifotransferase activity over a 3 n incubation period at 30, 60 and 90 d of gestation.......................................... 93 I I. Mean suIfotransferse activity of pIacentaI and endometriaI tissue at 30, 60 and 90 d of gestation.......................................... 94 I2. RIacentaI suIfatase activity over a 3 n incuoation period at 30, 60 and 90 day of gestation........................................................... 98 I3. Endometrial suIfatase activity over a 3 n incubation period at 30, 60 and 90 d of gestation........................................................ 99 viii 14. Mean sulfatase activity of placental endometrial tissue at 30, 60 and 90 d of gestation.............................................................. 100 15. Plasma testosterone concentrations in the anterior vena cava, uterine artery and uterine vein at 30, 60, and 90 d of gestation.......................................................................................
Recommended publications
  • Hormonal Regulation During Initial Berry Development in Grapevine
    1 Année 2013 Thèse N° 2064 THESE pour le DOCTORAT DE L’UNIVERSITE BORDEAUX 2 Ecole Doctorale des Sciences de la Vie et de la Santé de l’Université Bordeaux-Segalen Spécialité: Biologie Végétale Hormonal regulation during initial berry development in grapevine par María Francisca Godoy Santin Née le 20 Février 1985 à Santiago, Chili Soutenue publiquement le 15 Novembre, à Pontificia Universidad Católica de Chile, Santiago, Chili Membres du Jury : Pr. Alexis KALERGIS, Universidad Católica de Chile Pr. Michael HANDFORD, University of Chile Rapporteur Pr. Claudia STANGE, University of Chile Rapportrice Pr. Loreto HOLUIGUE, Universidad Católica de Chile Examinatrice Pr. Serge DELROT, Université Victor Ségalen Bordeaux2 Examinateur Pr. Patricio ARCE-JONHSON, Universidad Católica de Chile Co-Directeur de thèse Dr. Virginie LAUVERGEAT, Université Bordeaux1 Co-Directrice de thèse 2 Acknowledgements I would like to thank my advisors Dr Patricio Arce and Dr Virginie Lauvergeat for their guidance, patience and help at every step of the way. I also want to specially acknowledge to all my labmates for their ideas, support, laughs and much more: Jenn, Xime, Amparo, Mindy, Anita, Felipe, Tomás, Susan, Mónica, Jessy, Claudia, Dani H, and everyone else who made the working place the best one ever. Special thanks to Consuelo, who guided me from the first day, and to Anibal, who has been an amazing help during these lasts years. I want to thank Nathalie Kühn for all her ideas, discussion, company and help during these experiments, where she played a fundamental part. Also, I am very grateful to my other lab across the sea, in INRA, for receiving me there: Mariam, María José, Julien, Eric, Pierre, Le, Huan, Messa, David, Fatma and all the staff for all their help.
    [Show full text]
  • Selective Spatial Upregulation of Intratumoral Stromal Aromatase in Breast Cancer Patients: Evidence for Imbalance of Local Estrogen Metabolism
    Endocrine-Related Cancer (2006) 13 1101–1107 Selective spatial upregulation of intratumoral stromal aromatase in breast cancer patients: evidence for imbalance of local estrogen metabolism Christian F Singer1,2, Anneliese Fink-Retter1, Daphne Gschwantler-Kaulich1, Theresia Thalhammer 3, Gernot Hudelist1, Ruth Mueller1,2, Klaus Czerwenka4 and Ernst Kubista1,2 1Division of Special Gynecology, University of Vienna Medical Center, Waehringer Guertel 18-20, 1090, Vienna, Austria 2Ludwig-Boltzmann-Institute of Clinical Experimental Oncology, 3Center for Physiology and Pathophysiology, 4Division of Gynecopathology, Medical University of Vienna, Vienna, Austria (Requests for offprints should be addressed to C F Singer; Email: [email protected]) Abstract The suppression of local estrogens levels is of key importance in the treatment of ER-positive breast cancer. Essentially all endocrine strategies act by either suppressing estrogen formation or competitively inhibiting receptor-binding in tumor cells. Nevertheless, little is still known about the local expression of aromatase and sulfotransferase which are the key modulators of intra-tumoral estrogen levels. We have performed immunohistochemostry to investigate the expression of aromatase and sulfotransferase in 42 samples obtained directly from malignant breast tumors, and compared it to biopsies obtained from uninvolved tissue in the vicinity of the invasion front, and to distant breast tissue. We found that aromatase was equally detectable in both tumor epithelial and stroma, but was mostly epithelial in non-malignant tissues (PZ0.00008, Fisher’s exact test). Also, aromatase protein expression was significantly more common in tumoral stroma when compared with peritumoral and distant breast stroma (PZ0.00005, and P!0.00001 respectively). With the notable exception of cystosarcoma phylloides, sulfotransferase protein was detectable only in epithelial tissues, regardless of the location within the diseased breast.
    [Show full text]
  • The Importance of Thyroid Hormone Sulfation During Fetal Development
    The importance of thyroid hormone sulfation during fetal development Monique H.A. Kester CIP-data Koninklijke Bibliotheek, Den Haag Kester, Monique Helene Agathe The importance of thyroid hormone sulfation during fetal development Thesis Erasmus University Rotterdam - with summary in Dutch ISBN 90 ·901501 0-2 Cover: White Rabbit Photo I Gert-Jan van den Bemd ~ Printed by Ridderprint offsetdrukkerij BV, Ridderkerk The research described in this thesis was financially supported by the Sophia Foundation for Medical Research (project 211). The publication of this thesis was financially supported by Apotheek J.H. van Waert BV and Organon Nederland BV. The importance of thyroid hormone sulfation during fetal development Het belang van schildklierhormoonsulfatering tijdens de foetale ontwikkeling Proefschrift ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam op gezag van de Rector Magnificus Prof.dr.ir. J.H. van Semmel en volgens besluit van het College voor Promoties De openbare verdediging zal plaatsvinden op woensdag 5 september 2001 om 15.45 uur door Monique Helene Agathe Kester geboren te Sint-Michielsgestel Promotiecommisie Promotoren: Prof.dr.ir. T.J. Visser Prof.dr. D. Tibboel Overige leden: Prof.dr. F.H. de Jong Prof.dr. A. Brouwer Dr. M.W.H. Coughtrie The research described in this thesis was performed at the Departments of Internal Medicine and Pediatric Surgery of the Erasmus University Medical Center Rotterdam, The Netherlands. Labor improbius omnia vinci! De aanhouder win! Vergilius Contents List of abbreviations
    [Show full text]
  • Produktinformation
    Produktinformation Diagnostik & molekulare Diagnostik Laborgeräte & Service Zellkultur & Verbrauchsmaterial Forschungsprodukte & Biochemikalien Weitere Information auf den folgenden Seiten! See the following pages for more information! Lieferung & Zahlungsart Lieferung: frei Haus Bestellung auf Rechnung SZABO-SCANDIC Lieferung: € 10,- HandelsgmbH & Co KG Erstbestellung Vorauskassa Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 Zuschläge F. +43(0)1 489 3961-7 [email protected] • Mindermengenzuschlag www.szabo-scandic.com • Trockeneiszuschlag • Gefahrgutzuschlag linkedin.com/company/szaboscandic • Expressversand facebook.com/szaboscandic SULT1E1 MaxPab mouse polyclonal antibody (B02) Catalog # : H00006783-B02 規格 : [ 50 uL ] List All Specification Application Image Product Mouse polyclonal antibody raised against a full-length human SULT1E1 Western Blot (Tissue lysate) Description: protein. Immunogen: SULT1E1 (AAH27956.1, 1 a.a. ~ 294 a.a) full-length human protein. Sequence: MNSELDYYEKFEEVHGILMYKDFVKYWDNVEAFQARPDDLVIATYPKSG TTWVSEIVYMIYKEGDVEKCKEDVIFNRIPFLECRKENLMNGVKQLDEMN enlarge SPRIVKTHLPPELLPASFWEKDCKIIYLCRNAKDVAVSFYYFFLMVAGHPN PGSLPEFVEKFMQGQVPYGSWYKHVKSWWEKGKSPRVLFLFYEDLKE Western Blot (Transfected DIRKEVIKLIHFLERKPSEELVDRIIHHTSFQEMKNNPSTNYTTLPDEIMNQK lysate) LSPFMRKGITGDWKNHFTVALNEKFDKHYEQQMKESTLKFRTEI Host: Mouse Reactivity: Human Quality Control Antibody reactive against mammalian transfected lysate. enlarge Testing: Storage Buffer: No additive Storage Store at -20°C or lower. Aliquot to avoid repeated freezing and
    [Show full text]
  • Neetika Nath Phd Thesis
    QUANTITATIVE AND EVOLUTIONARY GLOBAL ANALYSIS OF ENZYME REACTION MECHANISMS Neetika Nath A Thesis Submitted for the Degree of PhD at the University of St Andrews 2015 Full metadata for this item is available in Research@StAndrews:FullText at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/6899 This item is protected by original copyright PhD Thesis Quantitative and Evolutionary Global Analysis of Enzyme Reaction Mechanisms Author: Supervisor: Neetika Nath Dr. John BO Mitchell This thesis presented for the degree of Doctor of Philosophy School of Chemistry University of St Andrews United Kingdom Friday 17th March, 2015 Declaration I, Neetika Nath, declare that this thesis titled, ‘Quantitative and Evolution- ary Global Analysis of Enzyme Reaction Mechanisms’ and the work pre- sented in it are my own. I confirm that: This work was done wholly or mainly while in candidature for a re- search degree at this University. Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other insti- tution, this has been clearly stated. Where I have consulted the published work of others, this is always clearly attributed. Where I have quoted from the work of others, the source is always given. Except such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.
    [Show full text]
  • Dissertation / Doctoral Thesis
    DISSERTATION / DOCTORAL THESIS Titel der Dissertation /Title of the Doctoral Thesis „ The natural compound curcumin: impact of cellular uptake and metabolism on in vitro activity “ verfasst von / submitted by Qurratul Ain Jamil angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of Doktorin der Naturwissenschaften (Dr.rer.nat.) Wien, 2018 / Vienna 2018 Studienkennzahl lt. Studienblatt / A 796 610 449 degree programme code as it appears on the student record sheet: Dissertationsgebiet lt. Studienblatt / Pharmazie, Klinische Pharmazie und Diagnostik field of study as it appears on the student record sheet: Pharmacy, Clinical Pharmacy and Diagnostics Betreut von / Supervisor: Ao.Univ.Prof.Magpharm.Dr.rer.nat.WalterJӓger “Verily in the Creation of the Heavens and the Earth, and in the Alteration of Night and Day, and the Ships which Sail through the Sea with that which is of used to Mankind, and the Water (Rain) which God sends down from the Sky and makes Earth Alive there with after its Death, and the moving Creatures of all kind that he has Scattered therein, and the Veering of Winds and Clouds which are held between the Sky and the Earth, are indeed Signs for Peoples of Understanding.” Acknowledgements While writing this section, I remember the first day in my lab, having a warm welcome from my supervisor; ao. Univ.-Prof. Mag. Dr. Walter Jӓger (Division of Clinical Pharmacy and Diagnostics, University of Vienna). He was waiting for me, offered me coffee and told me how to operate the coffee machine. He showed me, my office and asked me to make a list of all stuff, I need for daily work.
    [Show full text]
  • The Steroid Alcohol and Estrogen Sulfotransferases in Rodent and Human Mammary Tumors1
    [CANCER RESEARCH 35,1791-1798, July 1975] The Steroid Alcohol and Estrogen Sulfotransferases in Rodent and Human Mammary Tumors1 Viviane C. Godefroi, Elizabeth R. Locke,2 Dharm V. Singh,3 and S. C. Brooks Michigan Cancer Foundation (V. C. G., E. R. L.. D. V. S.. S. C. B.} and Department of Biochemistry, Wayne State University School of Medicine (S C a.], Detroit. Michigan 48201 SUMMARY products as intermediates (21, 23). Several studies also indicate that sulfate conjugation may play an essential role Rodent and human mammary tumor systems were in the metabolism of estrogens, particularly in hepatic tissue investigated to relate the steroid alcohol and estrogen (7, 10, 27). Furthermore, it has been demonstrated that sulfotransferase activities to the hormonal dependency of breast carcinoma, unlike normal breast tissue, is active in the tumor as determined by estrogen receptor content. sulfating 3j8-hydroxy-A5-steroids and the 3-phenolic group Unlike the normal mammary gland or the hyperplastic of estrogens (I, 12). If, in fact, sulfate conjugates are in alveolar nodule, rodent mammary neoplasms displayed volved in steroid biosynthesis and metabolism, sulfation by significant levels of these two sulfotransferases. In the breast tumor extracts may reflect the 1st stage of a meta hormone-independent mouse tumors produced from out bolic sequence leading to more profound changes in the growth lines D!, D2, and D8, high dehydroepiandrosterone steroid moiety. Indeed, Adams and Wong (3) have shown sulfotransferase activity was characteristic of the rapidity breast carcinomas to exhibit a "paraendocrine" behavior with which hyperplastic alveolar nodules developed into a that is normally confined to endocrine glands in their neoplasm (Vmax = 52.8 versus 1.8 fmoles/min/mg protein) capacity to produce changes in steroid structure.
    [Show full text]
  • The Selective Estrogen Enzyme Modulators in Breast Cancer: a Review
    Biochimica et Biophysica Acta 1654 (2004) 123–143 www.bba-direct.com Review The selective estrogen enzyme modulators in breast cancer: a review Jorge R. Pasqualini* Hormones and Cancer Research Unit, Institut de Pue´riculture, 26 Boulevard Brune, 75014 Paris, France Received 21 January 2004; accepted 12 March 2004 Available online 15 April 2004 Abstract It is well established that increased exposure to estradiol (E2) is an important risk factor for the genesis and evolution of breast tumors, most of which (approximately 95–97%) in their early stage are estrogen-sensitive. However, two thirds of breast cancers occur during the postmenopausal period when the ovaries have ceased to be functional. Despite the low levels of circulating estrogens, the tissular concentrations of these hormones are significantly higher than those found in the plasma or in the area of the breast considered as normal tissue, suggesting a specific tumoral biosynthesis and accumulation of these hormones. Several factors could be implicated in this process, including higher uptake of steroids from plasma and local formation of the potent E2 by the breast cancer tissue itself. This information extends the concept of ‘intracrinology’ where a hormone can have its biological response in the same organ where it is produced. There is substantial information that mammary cancer tissue contains all the enzymes responsible for the local biosynthesis of E2 from circulating precursors. Two principal pathways are implicated in the last steps of E2 formation in breast cancer tissues: the ‘aromatase pathway’ which transforms androgens into estrogens, and the ‘sulfatase pathway’ which converts estrone sulfate (E1S) into E1 by the estrone-sulfatase.
    [Show full text]
  • Genome-Scale Phylogenetic Function Annotation of Large and Diverse Protein Families
    Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press 1 Genome-scale phylogenetic function annotation of large and diverse protein families 1∗ Barbara E Engelhardt Electrical Engineering and Computer Science Department, University of California, Berkeley, Berkeley, CA, USA Current address: Computer Science Department, University of Chicago, Chicago, IL, USA 2 Michael I Jordan Statistics Department and Electrical Engineering and Computer Science Department, University of California, Berkeley, Berkeley, CA, USA 3 John R Srouji Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA USA Current address: Molecular and Cellular Biology Department, Harvard University, Cambridge, MA, USA 4 Steven E Brenner Plant and Microbial Biology Department, University of California, Berkeley, Berkeley, CA, USA ∗ Corresponding author: [email protected] Running Title: Phylogenetic function annotation Keywords: Protein molecular function annotation, statistical model, protein function evolution, Gene Ontology, whole-genome annotation. Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press 2 Abstract The Statistical Inference of Function Through Evolutionary Relationships (SIFTER) framework uses a statistical graphical model that applies phylogenetic principles to automate precise protein function pre- diction (Engelhardt et al., 2005, 2006). Here we present a significant revision of the approach (SIFTER version 2.0) that allows annotations to be made on a genomic scale. We confirm that SIFTER 2.0 pro- duces equivalently precise predictions to the earlier version of SIFTER on a carefully studied family and on a collection of one hundred protein families with limited functional diversity. We have added an ap- proximation method to SIFTER 2.0, and show a 500-fold improvement in speed with minimal impact on prediction results in the functionally diverse sulfotransferase protein family.
    [Show full text]
  • The Metabolism of Androstenone and Other Steroid Hormone Conjugates in Relation to Boar Taint
    The Metabolism of Androstenone and Other Steroid Hormone Conjugates in Relation to Boar Taint by Heidi M. Laderoute A Thesis presented to The University of Guelph In partial fulfillment of requirements for the degree of Master of Science in Animal and Poultry Science with Toxicology Guelph, Ontario, Canada © Heidi M. Laderoute, April, 2015 ABSTRACT THE METABOLISM OF ANDROSTENONE AND OTHER STEROID HORMONE CONJUGATES IN RELATION TO BOAR TAINT Heidi M. Laderoute Advisor: University of Guelph, 2015 Dr. E.J. Squires Increased public interest in the welfare of pigs reared for pork production has led to an increased effort in finding new approaches for controlling the unpleasant odour and flavour from heated pork products known as boar taint. Therefore, this study investigated the metabolism of androstenone and the enzymes involved in its sulfoconjugation in order to further understand the pathways and genes involved in the development of this meat quality defect. Leydig cells that were incubated with androstenone produced 3-keto- sulfoxy-androstenone, providing direct evidence, for the first time, that sulfoconjugation of this steroid does occur in the boar. In addition, human embryonic kidney cells that were overexpressed with porcine sulfotransferase (SULT) enzymes showed that SULT2A1, but not SULT2B1, was responsible for sulfoconjugating androstenone. These findings emphasize the importance of conjugation in steroid metabolism and its relevance to boar taint is discussed. ACKNOWLEDGEMENTS I would like to gratefully and sincerely thank my advisor, Dr. E. James Squires, for providing me with the opportunity to be a graduate student and for introducing me to the world of boar taint. This project would not have been possible without your guidance, encouragement, and patience over the last few years.
    [Show full text]
  • Intratumoral Estrogen Sulfotransferase Induction Contributes to the Anti-Breast Cancer Effects of the Dithiocarbamate Derivative TM208
    npg Acta Pharmacologica Sinica (2015) 36: 1246–1255 © 2015 CPS and SIMM All rights reserved 1671-4083/15 www.nature.com/aps Original Article Intratumoral estrogen sulfotransferase induction contributes to the anti-breast cancer effects of the dithiocarbamate derivative TM208 Xi-wei JI 1, 2, Guang-ping CHEN4, Yan SONG5, Ming HUA1, Li-jie WANG1, Liang LI1, Yin YUAN1, Si-yuan WANG1, Tian-yan ZHOU1, 3, *, Wei LU1, 3 1Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; 2Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, China; 3State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China; 4Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA; 5Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China Aim: Sulfotransferase-catalyzed sulfation is the most important pathway for inactivating estrogens. Thus, activation of estrogen sulfotransferase (EST) may be an alternative approach for the treatment of estrogen-dependent breast cancer. In this study we investigated the involvement of EST in anti-breast cancer effects of the dithiocarbamate derivative TM208 in vitro and in vivo. Methods: The viability of human breast cancer MCF-7 cells was determined using a SBB assay. Nude mice bearing MCF-7 cells were orally administered TM208 (50 and 150 mg·kg-1·d-1) for 18 days. The xenograft tumors and uteri were collected. The mRNA expression of EST was examined with real-time PCR. EST protein was detected with Western blot, ELISA or immunohistochemical staining assays. A radioactive assay was used to measure the EST activity.
    [Show full text]
  • The Role of Estrogen Sulfotransferase in Ischemic Acute Kidney Injury
    Title Page The role of estrogen sulfotransferase in ischemic acute kidney injury By Anne Caroline Silva Barbosa Bachelor of Pharmacy, UFRN, 2015 Submitted to the Graduate Faculty of the School of Pharmacy in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2020 i Committee Membership Page UNIVERSITY OF PITTSBURGH SCHOOL OF PHARMACY This dissertation was presented By Anne Caroline Silva Barbosa It was defended on July 17, 2020 And approved by Christian Fernandez, PhD, Assistant Professor, Pharmaceutical Sciences Robert B. Gibbs, PhD, Professor, Pharmaceutical Sciences Youhua Liu, MD, PhD, Professor, Pathology Thomas D. Nolin, PhD, Associate Professor, Pharmacy & Therapeutics Dissertation Advisor: Wen Xie, MD, PhD, Professor, Pharmaceutical Sciences ii Copyright © by Anne Caroline Silva Barbosa 2020 iii Abstract The role of estrogen sulfotransferase in ischemic acute kidney injury Anne Caroline Silva Barbosa, PhD University of Pittsburgh, 2020 Acute kidney injury (AKI) is a sudden impairment of kidney function. It has been suggested that estrogens may protect mice from AKI. Estrogen sulfotransferase (SULT1E1/EST) plays an important role in estrogen homeostasis by sulfonating and deactivating estrogens, but the role of SULT1E1 in AKI has not been previously reported. In this dissertation, Wild-type (WT) mice, Sult1e1 knockout (Sult1e1 KO) mice, and Sult1e1 KO mice with hepatic reconstitution of Sult1e1 were subjected to a bilateral kidney ischemia-reperfusion model of AKI, in the absence or presence of gonadectomy. Kidney injury was assessed at biochemical, histological and gene expression levels. WT mice treated with the Sult1e1 inhibitor triclosan were also used to determine the effect of pharmacological inhibition of Sult1e1 on AKI.
    [Show full text]