Hormonal Regulation During Initial Berry Development in Grapevine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Regulation of Plant Monoterpene Biosynthesis in Relation to Fragrance
Molecular Regulation of Plant Monoterpene Biosynthesis In Relation To Fragrance Mazen K. El Tamer Promotor: Prof. Dr. A.G.J Voragen, hoogleraar in de Levensmiddelenchemie, Wageningen Universiteit Co-promotoren: Dr. ir. H.J Bouwmeester, senior onderzoeker, Business Unit Celcybernetica, Plant Research International Dr. ir. J.P Roozen, departement Agrotechnologie en Voedingswetenschappen, Wageningen Universiteit Promotiecommissie: Dr. M.C.R Franssen, Wageningen Universiteit Prof. Dr. J.H.A Kroeze, Wageningen Universiteit Prof. Dr. A.J van Tunen, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam. Prof. Dr. R.G.F Visser, Wageningen Universiteit Mazen K. El Tamer Molecular Regulation Of Plant Monoterpene Biosynthesis In Relation To Fragrance Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. ir. L. Speelman, in het openbaar te verdedigen op woensdag 27 november 2002 des namiddags te vier uur in de Aula Mazen K. El Tamer Molecular Regulation Of Plant Monoterpene Biosynthesis In Relation To Fragrance Proefschrift Wageningen Universiteit ISBN 90-5808-752-2 Cover and Invitation Design: Zeina K. El Tamer This thesis is dedicated to my Family & Friends Contents Abbreviations Chapter 1 General introduction and scope of the thesis 1 Chapter 2 Monoterpene biosynthesis in lemon (Citrus limon) cDNA isolation 21 and functional analysis of four monoterpene synthases Chapter 3 Domain swapping of Citrus limon monoterpene synthases: Impact 57 on enzymatic activity and -
Heterologous Protein Expression in Pichia Pastoris: Latest Research Progress and Applications Veeresh Juturu and Jin Chuan Wu*[A]
DOI: 10.1002/cbic.201700460 Reviews Heterologous Protein Expression in Pichia pastoris: Latest Research Progress and Applications Veeresh Juturu and Jin Chuan Wu*[a] ChemBioChem 2017, 18,1–16 1 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim & These are not the final page numbers! ÞÞ Reviews Pichia pastoris is a well-known platform strain for heterologous aid in recombinant protein folding. Publically available high- protein expression. Over the past five years, different strategies quality genome data from multiple strains of P. pastoris GS115, to improve the efficiency of recombinant protein expression DSMZ 70382, and CBS7435 and the continuous development by this yeast strain have been developed; these include a of yeast expression kits have successfully promoted the meta- patent-free protein expression kit, construction of the P. pasto- bolic engineering of this strain to produce carotenoids, xantho- ris CBS7435Ku70 platform strain with its high efficiency in site- phylls, nootkatone, ricinoleic acid, dammarenediol-II, and hya- specific recombination of plasmid DNA into the genomic DNA, luronic acid. The cell-surface display of enzymes has obviously the design of synthetic promoters and their variants by com- increased enzyme stability, and high-level intracellular expres- bining different core promoters with multiple putative tran- sion of acyl-CoA and ethanol O-acyltransferase, lipase and d- scription factors, the generation of mutant GAP promoter var- amino acid oxidase has opened up applications in whole-cell iants with various promoter strengths, codon optimization, en- biocatalysis for producing flavor molecules and biodiesel, as gineering the a-factor signal sequence by replacing the native well as the deracemization of racemic amino acids. -
Valencene Synthase Polypeptides, Encoding Nucleic Acid Molecules and Uses Thereof
(19) TZZ¥Z_T (11) EP 3 085 778 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 26.10.2016 Bulletin 2016/43 C12N 9/88 (2006.01) C12P 5/00 (2006.01) C12N 15/60 (2006.01) C12N 5/10 (2006.01) (2006.01) (2006.01) (21) Application number: 16171175.9 C12N 15/82 C12P 7/26 (22) Date of filing: 11.03.2014 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • SARAN, Dayal GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Lexington, KY (US) PL PT RO RS SE SI SK SM TR • PARK, Grace Eunyoung Lexington, KY (US) (30) Priority: 14.03.2013 US 201361852462 P (74) Representative: Rees, Kerry (62) Document number(s) of the earlier application(s) in WP Thompson accordance with Art. 76 EPC: 138 Fetter Lane 14718824.7 / 2 970 934 London EC4A 1BT (GB) (71) Applicant: Evolva, Inc. Wilmington, New Castle County, DE 19808 (US) (54) VALENCENE SYNTHASE POLYPEPTIDES, ENCODING NUCLEIC ACID MOLECULES AND USES THEREOF (57) The present invention is directed to a recom- thase polypeptide, or a catalytically active fragment binant cell that produces valencene and aristolochene, thereof. The presnt invention also provides methods of wherein the recombinant cell comprises a heterologous producing valencene and aristolochene using a recom- nucleic acid that encodes a valencene synthase polypep- binant cell of the invention and compositions comprising tide, or a catalytically active fragment thereof; or the re- valencene and aristolochene. -
Evaluation of Drought Resistance and Transcriptome Analysis For
www.nature.com/scientificreports OPEN Evaluation of drought resistance and transcriptome analysis for the identifcation of drought‑responsive genes in Iris germanica Jingwei Zhang1, Dazhuang Huang1*, Xiaojie Zhao1 & Man Zhang2 Iris germanica, a species with very high ornamental value, exhibits the strongest drought resistance among the species in the genus Iris, but the molecular mechanism underlying its drought resistance has not been evaluated. To investigate the gene expression profle changes exhibited by high‑ drought‑resistant I. germanica under drought stress, 10 cultivars with excellent characteristics were included in pot experiments under drought stress conditions, and the changes in the chlorophyll (Chl) content, plasma membrane relative permeability (RP), and superoxide dismutase (SOD), malondialdehyde (MDA), free proline (Pro), and soluble protein (SP) levels in leaves were compared among these cultivars. Based on their drought‑resistance performance, the 10 cultivars were ordered as follows: ‘Little Dream’ > ‘Music Box’ > ‘X’Brassie’ > ‘Blood Stone’ > ‘Cherry Garden’ > ‘Memory of Harvest’ > ‘Immortality’ > ‘White and Gold’ > ‘Tantara’ > ‘Clarence’. Using the high‑drought‑resistant cultivar ‘Little Dream’ as the experimental material, cDNA libraries from leaves and rhizomes treated for 0, 6, 12, 24, and 48 h with 20% polyethylene glycol (PEG)‑6000 to simulate a drought environment were sequenced using the Illumina sequencing platform. We obtained 1, 976, 033 transcripts and 743, 982 unigenes (mean length of 716 bp) through a hierarchical clustering analysis of the resulting transcriptome data. The unigenes were compared against the Nr, Nt, Pfam, KOG/COG, Swiss‑Prot, KEGG, and gene ontology (GO) databases for functional annotation, and the gene expression levels in leaves and rhizomes were compared between the 20% PEG‑6000 stress treated (6, 12, 24, and 48 h) and control (0 h) groups using DESeq2. -
PURIFICATION of the NATIVE ENZYME and CLONING .AND CHARACTERIZATION of a Cdna for (+ )-6-CADINENE SYNTHASE from BACTERIA-INOCULATED COTTON FOLIAR TISSUE
PURIFICATION OF THE NATIVE ENZYME AND CLONING .AND CHARACTERIZATION OF A cDNA FOR (+ )-6-CADINENE SYNTHASE FROM BACTERIA-INOCULATED COTTON FOLIAR TISSUE By EDWARD M. DAVIS Bachelor of Science Oklahoma State University Stillwater, Oklahoma 1987 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May, 1998 PURIFICATION OF THENATIVE ENZYME AND . CLONING AND CHARACTERIZATIQNOFA cDNA FOR (+ )-B-CADINENE SYNTHASE FROM BACTERIA-INOCULATED COTTON FOLIAR TISSUE Thesis Approved: ~··. L) .. ·g pJ ~fthe Graduate College . · · ii ACKNOWLEDGMENTS I would like to express my appreciation to the faculty, staff and graduate students of the Department of Biochemistry and Molecular Biology who have given both time and energy to assist in my scientific training and development. I would like to thank Margaret and Marlee for giving me the opportunity to participate on a project that includes protein and molecular biological methods. I wish to acknowledge the members of my committee for their time, guidance, and support. I would like to acknowledge Phillips 66 Corporation for their generous donation of equipment, the McAlester Scottish Rite Foundation and the OSU Foundation for financial support, and the EPSCOR program,. the NSF, and the USDA for providing the grants which made this work possible. A special thanks to Drs. Blair, Leach, Melcher, Sensharma and Mitchell for helping to maintain a nearly steady salary when the grant money was not available and to Drs. Cushman and Melcher and Janet Rogers fortechnical support. I would like to thank Drs. Gordon Davis and Steve Hartson for their encouragement and scientific advice, Dr. -
Valencene Synthase
(19) & (11) EP 2 336 310 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 22.06.2011 Bulletin 2011/25 C12N 9/88 (2006.01) (21) Application number: 09179499.0 (22) Date of filing: 16.12.2009 (84) Designated Contracting States: • Sonke, Theodorus AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 6143 BK Guttecoven (NL) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • Beekwilder, Martinus Julius PT RO SE SI SK SM TR 6871 WG Renkum (NL) Designated Extension States: • Bouwmeester, Hendrik Jan AL BA RS 6708 LZ Wageningen (NL) • Bosch, Hendrik Jan (71) Applicant: Isobionics B.V. 6708 PB Wageningen (NL) 6167 RD Geleen (NL) (74) Representative: Hatzmann, Martin et al (72) Inventors: Vereenigde • Achkar, Jihane Johan de Wittlaan 7 8049 Zurich (CH) 2517 JR Den Haag (NL) (54) Valencene synthase (57) The present invention relates to a novel va- lencene, comprising converting farnesyl diphosphate to lencene synthase, to a nucleic acid encoding such va- valencene in the presence of a valencene synthase ac- lencenesynthase, to a host cell comprising said encoding cording to the invention. nucleic acid sequence and to a method for preparing va- EP 2 336 310 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 336 310 A1 Description [0001] The invention is directed to a valencene synthase, to a nucleic acid encoding said valencene synthase, to an expression vector comprising said nucleic acid, to a host cell comprising said expression vector, to a method of preparing 5 valencene, to a method of preparing nootkatone and to a method of preparing a valencene synthase. -
The Evaluation of the Impact of Microclimatic Factors on Grapevine Berries in a Vineyard Setting Through Molecular Profiling
The evaluation of the impact of microclimatic factors on grapevine berries in a vineyard setting through molecular profiling by Kari du Plessis Dissertation presented for the degree of Doctor of Philosophy (Agricultural Sciences) at Stellenbosch University Institute for Wine Biotechnology, Faculty of AgriSciences Supervisor: Prof Melané A. Vivier Co-supervisor: Dr Philip R. Young December 2017 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated) that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: December 2017 Copyright © 2017 Stellenbosch University All rights reserved Stellenbosch University https://scholar.sun.ac.za Summary Grape composition is considered to be the result of the grapevine genotype, the environmental factors the grapes are exposed to and the management practices implemented during their development. However, elucidating how each of these components contributes to the outcome is notoriously difficult under field conditions due to the myriad confounding variables that grapes are influenced by. One of the viticultural management practices frequently implemented in the vineyard is the removal of leaves in the berry bunch zone in order to alter the microclimate of the developing grapes with various potentially advantageous outcomes. However, this common viticultural practice of leaf removal very rarely affects levels of light without elevating bunch temperatures as well. -
Heterologous Production of Flavour and Aroma Compounds in Saccharomyces Cerevisiae
G C A T T A C G G C A T genes Review Heterologous Production of Flavour and Aroma Compounds in Saccharomyces cerevisiae Dariusz R. Kutyna and Anthony R. Borneman * The Australian Wine Research Institute, P.O. Box 197, Glen Osmond, SA 5064, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-8-8313-6600 Received: 28 May 2018; Accepted: 25 June 2018; Published: 28 June 2018 Abstract: Over the last two decades, rapid progress in the field of synthetic biology has opened several avenues for the heterologous de novo production of complex biological compounds, such as biofuels, pharmaceuticals, and food additives in microbial hosts. This minireview addresses the usage of the yeast Saccharomyces cerevisiae as a microbial cell factory for the production of flavour and aroma compounds, thereby providing a path towards a sustainable and efficient means of producing what are normally rare, and often expensive plant-derived chemicals. Keywords: synthetic biology; Saccharomyces cerevisiae; genetic engineering; heterologous production of flavour and aroma compounds 1. Introduction Synthetic biology is one of the most rapidly evolving branches of the biological sciences. It allows the introduction of custom made genetic pathways into organisms that provide them the ability to display biological and/or biochemical properties over-and-above the original, wild type background. Numerous examples have been recently reported of the successful implementation of synthetic biology in microorganisms such as Saccharomyces cerevisiae, such as for the production of valuable biomedical compounds [1] or biofuels [2,3]. Many different microorganisms, like Yarowia lippolitica or Escherichia coli, have also been utilized as hosts for various synthetic biology applications [4,5]. -
Transcriptomic Analysis of Resistant and Susceptible Responses in a New
bioRxiv preprint doi: https://doi.org/10.1101/2021.04.02.438176; this version posted April 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Transcriptomic analysis of resistant and susceptible responses in a new model root-knot 2 nematode infection system using Solanum torvum and Meloidogyne arenaria 3 4 Kazuki Sato1, Taketo Uehara2, Julia Holbein3, Yuko Sasaki-Sekimoto4, Pamela Gan1, Takahiro 5 Bino5, Katsushi Yamaguchi5, Yasunori Ichihashi6, Noriko Maki1, Shuji Shigenobu5, Hiroyuki 6 Ohta4, Rochus B. Franke7, Shahid Siddique3, 8, Florian M. W. Grundler3, Takamasa Suzuki9, 7 Yasu hiro Kad ota 1, *, Ken Shirasu1, 10, * 8 9 1 RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Japan 10 2 Central Region Agricultural Research Center, National Agriculture and Food Research 11 Organization (NARO), Tsukuba, Japan 12 3 INRES – Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University of Bonn, 13 Germany 14 4 School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan 15 5 NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Japan 16 6 RIKEN BioResource Research Center (BRC), Tsukuba, Japan 17 7 Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-University of Bonn, 18 Germany 19 8 Department of Entomology and Nematology, University of California, Davis, -
Plant Terpenoid Synthases: Molecular Biology and Phylogenetic Analysis (Terpene Cyclase͞isoprenoids͞plant Defense͞genetic Engineering͞secondary Metabolism)
Proc. Natl. Acad. Sci. USA Vol. 95, pp. 4126–4133, April 1998 Biochemistry This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected on April 29, 1997. Plant terpenoid synthases: Molecular biology and phylogenetic analysis (terpene cyclaseyisoprenoidsyplant defenseygenetic engineeringysecondary metabolism) JO¨RG BOHLMANN*†,GILBERT MEYER-GAUEN‡, AND RODNEY CROTEAU*§ *Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340; and ‡Human Genetics Center, University of Texas, Houston, TX 77225 Contributed by Rodney Croteau, February 25, 1998 ABSTRACT This review focuses on the monoterpene, field is periodically surveyed (10, 11). After brief coverage of the sesquiterpene, and diterpene synthases of plant origin that use three types of terpene synthases from higher plants, with empha- the corresponding C10,C15, and C20 prenyl diphosphates as sis on common features of structure and function, we focus here substrates to generate the enormous diversity of carbon on molecular cloning and sequence analysis of these important skeletons characteristic of the terpenoid family of natural and fascinating catalysts. products. A description of the enzymology and mechanism of Enzymology and Mechanism of Terpenoid Cyclization terpenoid cyclization is followed by a discussion of molecular cloning and heterologous expression of terpenoid synthases. GDP is considered to be the natural substrate for monoterpene Sequence relatedness and phylogenetic reconstruction, based synthases, because all enzymes of this class efficiently utilize this on 33 members of the Tps gene family, are delineated, and precursor without the formation of free intermediates (12). Since comparison of important structural features of these enzymes GDP cannot be cyclized directly because of the C2-C3 trans- is provided. -
The Metabolism of Androstenone and Other Steroid Hormone Conjugates in Relation to Boar Taint
The Metabolism of Androstenone and Other Steroid Hormone Conjugates in Relation to Boar Taint by Heidi M. Laderoute A Thesis presented to The University of Guelph In partial fulfillment of requirements for the degree of Master of Science in Animal and Poultry Science with Toxicology Guelph, Ontario, Canada © Heidi M. Laderoute, April, 2015 ABSTRACT THE METABOLISM OF ANDROSTENONE AND OTHER STEROID HORMONE CONJUGATES IN RELATION TO BOAR TAINT Heidi M. Laderoute Advisor: University of Guelph, 2015 Dr. E.J. Squires Increased public interest in the welfare of pigs reared for pork production has led to an increased effort in finding new approaches for controlling the unpleasant odour and flavour from heated pork products known as boar taint. Therefore, this study investigated the metabolism of androstenone and the enzymes involved in its sulfoconjugation in order to further understand the pathways and genes involved in the development of this meat quality defect. Leydig cells that were incubated with androstenone produced 3-keto- sulfoxy-androstenone, providing direct evidence, for the first time, that sulfoconjugation of this steroid does occur in the boar. In addition, human embryonic kidney cells that were overexpressed with porcine sulfotransferase (SULT) enzymes showed that SULT2A1, but not SULT2B1, was responsible for sulfoconjugating androstenone. These findings emphasize the importance of conjugation in steroid metabolism and its relevance to boar taint is discussed. ACKNOWLEDGEMENTS I would like to gratefully and sincerely thank my advisor, Dr. E. James Squires, for providing me with the opportunity to be a graduate student and for introducing me to the world of boar taint. This project would not have been possible without your guidance, encouragement, and patience over the last few years. -
Transcriptome Analysis of Thapsia
PUBLISHED VERSION Drew, Damian; Dueholm, Bjorn; Weitzel, Corinna; Zhang, Ye; Sensen, Christoph W.; Simonsen, Henrik Transcriptome analysis of Thapsia laciniata rouy provides insights into terpenoid biosynthesis and diversity in apiaceae, International Journal of Molecular Sciences, 2013; 14(5):9080-9098. © 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). PERMISSIONS http://www.mdpi.com/about/openaccess All articles published by MDPI are made immediately available worldwide under an open access license. This means: everyone has free and unlimited access to the full-text of all articles published in MDPI journals, and everyone is free to re-use the published material if proper accreditation/citation of the original publication is given. 8th August 2013 http://hdl.handle.net/2440/79105 Int. J. Mol. Sci. 2013, 14, 9080-9098; doi:10.3390/ijms14059080 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Transcriptome Analysis of Thapsia laciniata Rouy Provides Insights into Terpenoid Biosynthesis and Diversity in Apiaceae Damian Paul Drew 1,2, Bjørn Dueholm 1, Corinna Weitzel 1, Ye Zhang 3, Christoph W. Sensen 3 and Henrik Toft Simonsen 1,* 1 Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Frederiksberg DK-1871, Denmark; E-Mails: [email protected] (D.P.D.); [email protected] (B.D.); [email protected] (C.W.) 2 Wine Science and Business, School of Agriculture Food and Wine, University of Adelaide, South Australia, SA 5064, Australia 3 Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; E-Mails: [email protected] (Y.Z.); [email protected] (C.W.S.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +45-353-33328.