The Metabolism of Androstenone and Other Steroid Hormone Conjugates in Relation to Boar Taint

Total Page:16

File Type:pdf, Size:1020Kb

The Metabolism of Androstenone and Other Steroid Hormone Conjugates in Relation to Boar Taint The Metabolism of Androstenone and Other Steroid Hormone Conjugates in Relation to Boar Taint by Heidi M. Laderoute A Thesis presented to The University of Guelph In partial fulfillment of requirements for the degree of Master of Science in Animal and Poultry Science with Toxicology Guelph, Ontario, Canada © Heidi M. Laderoute, April, 2015 ABSTRACT THE METABOLISM OF ANDROSTENONE AND OTHER STEROID HORMONE CONJUGATES IN RELATION TO BOAR TAINT Heidi M. Laderoute Advisor: University of Guelph, 2015 Dr. E.J. Squires Increased public interest in the welfare of pigs reared for pork production has led to an increased effort in finding new approaches for controlling the unpleasant odour and flavour from heated pork products known as boar taint. Therefore, this study investigated the metabolism of androstenone and the enzymes involved in its sulfoconjugation in order to further understand the pathways and genes involved in the development of this meat quality defect. Leydig cells that were incubated with androstenone produced 3-keto- sulfoxy-androstenone, providing direct evidence, for the first time, that sulfoconjugation of this steroid does occur in the boar. In addition, human embryonic kidney cells that were overexpressed with porcine sulfotransferase (SULT) enzymes showed that SULT2A1, but not SULT2B1, was responsible for sulfoconjugating androstenone. These findings emphasize the importance of conjugation in steroid metabolism and its relevance to boar taint is discussed. ACKNOWLEDGEMENTS I would like to gratefully and sincerely thank my advisor, Dr. E. James Squires, for providing me with the opportunity to be a graduate student and for introducing me to the world of boar taint. This project would not have been possible without your guidance, encouragement, and patience over the last few years. I would also like to thank Dr. James Raeside and Dr. John Cant for serving on my committee and taking the time to provide me with valuable advice, information, and support on numerous aspects of my project. I am very grateful to Yanping Lou for her technical expertise and friendship. I wouldn’t have finished my studies without her ability to troubleshoot and keep the HPLC ‘Frankenstein monster’ alive. I am also grateful to Heather Christie for the time she spent assisting with early morning Leydig cell isolations and for her advice on different experimental approaches. I would also like to thank Dr. Dyanne Brewer from the Mass Spectrometry Facility at the University of Guelph for her help with sample analysis and interpretation. My thanks and appreciation also goes to my friends and colleagues in the Department of Animal and Poultry Science. To Dr. Matthew Gray, thank you for your patience in answering my many questions, for helping to isolate hepatocytes, and for teaching me how to run a Western blot. To my lab mates, both past and present, thank you for the well-needed distractions and for reminding me that it was okay to take breaks. Finally, thank you to my family and my amazing husband Chris. Your love and support were vital in keeping me sane throughout the writing process. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS ........................................................................................... III TABLE OF CONTENTS ............................................................................................... IV LIST OF FIGURES ...................................................................................................... VII LIST OF TABLES .......................................................................................................... IX LIST OF ABBREVIATIONS ......................................................................................... X CHAPTER 1: LITERATURE REVIEW ....................................................................... 1 1.1 INTRODUCTION ........................................................................................................... 1 1.2 ANDROSTENONE BIOSYNTHESIS ................................................................................. 4 1.2.1 Steroidogenesis ................................................................................................... 4 1.2.2 Biological Function ............................................................................................ 8 1.2.3 Accumulation in Adipose Tissue ....................................................................... 10 1.3 ANDROSTENONE METABOLISM ................................................................................ 11 1.3.1 Phase I Metabolism .......................................................................................... 11 1.3.2 Phase II Metabolism ......................................................................................... 13 1.3.2.1 Sulfoconjugation ........................................................................................ 13 1.3.2.2 Glucuronidation ......................................................................................... 20 1.3.3 Enterohepatic Circulation ................................................................................ 24 1.4 CONTROLLING BOAR TAINT ..................................................................................... 25 1.4.1 Early Slaughter ................................................................................................. 25 1.4.2 Sperm Sorting ................................................................................................... 26 1.4.3 Immunocastration ............................................................................................. 27 1.4.4 Genetic Selection .............................................................................................. 28 iv CHAPTER 2: HYPOTHESIS AND RESEARCH OBJECTIVES ............................ 30 2.1 HYPOTHESIS ............................................................................................................. 30 2.2 RESEARCH OBJECTIVES ............................................................................................ 30 CHAPTER 3: METABOLISM OF ANDROSTENONE IN PRIMARY CULTURED PORCINE LEYDIG CELLS AND HEPATOCYTES ............................................. 32 3.1 ABSTRACT ................................................................................................................ 32 3.2 INTRODUCTION ......................................................................................................... 33 3.3 MATERIALS AND METHODS ...................................................................................... 35 3.3.1 Reagents ........................................................................................................... 35 3.3.2 Research Animals ............................................................................................. 35 3.3.3 Leydig cell isolation ......................................................................................... 35 3.3.4 Hepatocyte isolation ......................................................................................... 36 3.3.5 Biosynthesis studies .......................................................................................... 37 3.3.6 High-Performance Liquid Chromatography (HPLC) ...................................... 37 3.3.7 Steroid Conjugate Analyses .............................................................................. 38 3.3.8 Mass Spectrometry ........................................................................................... 39 3.3.9 Data Analysis .................................................................................................... 40 3.4 RESULTS ................................................................................................................... 40 3.5 DISCUSSION .............................................................................................................. 49 CHAPTER 4: THE SULFOCONJUGATION OF ANDROSTENONE AND DEHYDROEPIANDROSTERONE BY HUMAN AND PORCINE SULT2A1 AND SULT2B1 ENZYMES ....................................................................................... 56 4.1 ABSTRACT ................................................................................................................ 56 v 4.2 INTRODUCTION ......................................................................................................... 57 4.3 MATERIALS AND METHODS ...................................................................................... 59 4.3.1 Materials ........................................................................................................... 59 4.3.2 Plasmid Constructs ........................................................................................... 60 4.3.3 Cell Culture Transfection and Enzyme Expression .......................................... 61 4.3.4 HPLC ................................................................................................................ 62 4.3.5 Steroid Conjugate Analyses .............................................................................. 63 4.3.6 Western Blot Analysis ....................................................................................... 63 4.3.7 Data Analysis .................................................................................................... 64 4.4 RESULTS ................................................................................................................... 65 4.5 DISCUSSION .............................................................................................................. 77 CHAPTER 5: GENERAL
Recommended publications
  • Hormonal Regulation During Initial Berry Development in Grapevine
    1 Année 2013 Thèse N° 2064 THESE pour le DOCTORAT DE L’UNIVERSITE BORDEAUX 2 Ecole Doctorale des Sciences de la Vie et de la Santé de l’Université Bordeaux-Segalen Spécialité: Biologie Végétale Hormonal regulation during initial berry development in grapevine par María Francisca Godoy Santin Née le 20 Février 1985 à Santiago, Chili Soutenue publiquement le 15 Novembre, à Pontificia Universidad Católica de Chile, Santiago, Chili Membres du Jury : Pr. Alexis KALERGIS, Universidad Católica de Chile Pr. Michael HANDFORD, University of Chile Rapporteur Pr. Claudia STANGE, University of Chile Rapportrice Pr. Loreto HOLUIGUE, Universidad Católica de Chile Examinatrice Pr. Serge DELROT, Université Victor Ségalen Bordeaux2 Examinateur Pr. Patricio ARCE-JONHSON, Universidad Católica de Chile Co-Directeur de thèse Dr. Virginie LAUVERGEAT, Université Bordeaux1 Co-Directrice de thèse 2 Acknowledgements I would like to thank my advisors Dr Patricio Arce and Dr Virginie Lauvergeat for their guidance, patience and help at every step of the way. I also want to specially acknowledge to all my labmates for their ideas, support, laughs and much more: Jenn, Xime, Amparo, Mindy, Anita, Felipe, Tomás, Susan, Mónica, Jessy, Claudia, Dani H, and everyone else who made the working place the best one ever. Special thanks to Consuelo, who guided me from the first day, and to Anibal, who has been an amazing help during these lasts years. I want to thank Nathalie Kühn for all her ideas, discussion, company and help during these experiments, where she played a fundamental part. Also, I am very grateful to my other lab across the sea, in INRA, for receiving me there: Mariam, María José, Julien, Eric, Pierre, Le, Huan, Messa, David, Fatma and all the staff for all their help.
    [Show full text]
  • Testosterone and the Incidence of Boar Taint: Effects of Testosterone Or Testosterone Propionate on the Incidence of Boar Taint in Implanted Barrows
    Meat Science 13 (1985) 237-245 Testosterone and the Incidence of Boar Taint: Effects of Testosterone or Testosterone Propionate on the Incidence of Boar Taint in Implanted Barrows B. D. Schanbacher, J. T. Yen & W. G. Pond USDA, ARS, Roman L. Hruska US Meat Animal Research Center, PO Box 166, Clay Center, NE 68933, USA (Received: 2 June, 1984) S UMMA R Y Boars, barrows and barrows implanted with testosterone or testosterone propionate via polydimethylsiloxane (Silastic) capsules were placed on test in individual pens at 10 weeks of age. Each animal was slaughtered at 110kg and evaluated for growth rate, efficiency of feed utilization, carcass merit and the incidence of objectionable odors (boar taint). Five capsules of testosterone or testosterone propionate were used in barrows since they substantially elevated concentrations of serum testosterone, decreased serum LH and stimulated weights of the accessory sex glands. Large variations within and between litters of pigs were found for performance and carcass traits; thus, the influences of castration and testosterone replacement therapy on these traits were inconclusive. In contrast, the effects of castration and hormone treatment on the incidence of boar taint were more definitive. The incidence of boar taint was relatively high in boars, according to a consumer taste panel. This characteristic odor was appreciably lower in barrows and was not reinstated with either testosterone or testosterone propionate implants. These results suggest that testosterone is not itself responsible for boar taint and that 5~t-androstenone, the pheromone most closely associated with boar taint, is not produced by peripheral metabolism of testosterone. Additional studies are warranted to provide insight into the regulation of testicular steroid secretion in the boar and the contribution of these steroids to boar taint and protein anabolism.
    [Show full text]
  • Intramuscular Injections of Male Pheromone 5Α-Androstenol Change the Secretory Ovarian Function in Gilts During Sexual Maturation
    Vol. 3, No. 3 241 ORIGINAL RESEARCH Intramuscular injections of male pheromone 5α-androstenol change the secretory ovarian function in gilts during sexual maturation Stanisława Stefańczyk-Krzymowska1, Tadeusz Krzymowski, Barbara Wąsowska, Barbara Jana, Jarosław Słomiński Division of Reproductive Endocrinology and Pathophysiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland Received: 8 September 2003; accepted: 4 November 2003 SUMMARY In addition to the standard olfactory pathway typical for signaling phero- mones, the existence of a humoral pathway for the priming action of phero- mones has been earlier postulated. In this study in vivo experiment was performed to establish whether intramuscular injections of boar pheromone, 5α-androstenol (5α-androst-16-en-3-ol), might change the development and secretory function of the ovarian follicles during sexual maturation of gilts. Gilts from groups I (n=15) and II (n=13) received androstenol (10 μg/gilt/injection; i.m.) three times a week from day 192 to 234 of age. Similar, control gilts (group C; n=13) received saline. Additionally, the na- sal cavity of animals from group II was irrigated with zinc sulfate solution to depress olfactory function. The reproductive organs and follicular fl uid 1Corresponding author: Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn, Poland; E-mail: [email protected] Copyright © 2003 by the Society for Biology of Reproduction 242 Male pheromonepheromone in gilts were collected on day 240 of age. There were no signifi cant differences among groups concerning the weight of the ovary and uterus, the length of the uterine horns and intensity of cytochrome P450scc and P450arom im- munoexpression.
    [Show full text]
  • BMC Genetics Biomed Central
    BMC Genetics BioMed Central Research article Open Access Association between SNPs within candidate genes and compounds related to boar taint and reproduction Maren Moe*1,2, Sigbjørn Lien2,3, Torunn Aasmundstad1, Theo HE Meuwissen2, Marianne HS Hansen1,3, Christian Bendixen4 and Eli Grindflek1 Address: 1The Norwegian Pig Breeders Association (NORSVIN), Hamar, Norway, 2Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway, 3Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, Ås, Norway and 4Faculty of Agricultural Sciences, University of Aarhus, Tjele, Denmark Email: Maren Moe* - [email protected]; Sigbjørn Lien - [email protected]; Torunn Aasmundstad - [email protected]; Theo HE Meuwissen - [email protected]; Marianne HS Hansen - [email protected]; Christian Bendixen - [email protected]; Eli Grindflek - [email protected] * Corresponding author Published: 5 July 2009 Received: 9 October 2008 Accepted: 5 July 2009 BMC Genetics 2009, 10:32 doi:10.1186/1471-2156-10-32 This article is available from: http://www.biomedcentral.com/1471-2156/10/32 © 2009 Moe et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Boar taint is an unpleasant odour and flavour of the meat from some uncastrated male pigs primarily caused by elevated levels of androstenone and skatole in adipose tissue. Androstenone is produced in the same biochemical pathway as testosterone and estrogens, which represents a particular challenge when selecting against high levels of androstenone in the breeding programme, without simultaneously decreasing levels of other steroids.
    [Show full text]
  • Drug Testing Program
    DRUG TESTING PROGRAM Copyright © 2021 CrossFit, LLC. All Rights Reserved. CrossFit is a registered trademark ® of CrossFit, LLC. 2021 DRUG TESTING PROGRAM 2021 DRUG TESTING CONTENTS 1. DRUG-FREE COMPETITION 2. ATHLETE CONSENT 3. DRUG TESTING 4. IN-COMPETITION/OUT-OF-COMPETITION DRUG TESTING 5. REGISTERED ATHLETE TESTING POOL (OUT-OF-COMPETITION DRUG TESTING) 6. REMOVAL FROM TESTING POOL/RETIREMENT 6A. REMOVAL FROM TESTING POOL/WATCH LIST 7. TESTING POOL REQUIREMENTS FOLLOWING A SANCTION 8. DRUG TEST NOTIFICATION AND ADMINISTRATION 9. SPECIMEN ANALYSIS 10. REPORTING RESULTS 11. DRUG TESTING POLICY VIOLATIONS 12. ENFORCEMENT/SANCTIONS 13. APPEALS PROCESS 14. LEADERBOARD DISPLAY 15. EDUCATION 16. DIETARY SUPPLEMENTS 17. TRANSGENDER POLICY 18. THERAPEUTIC USE EXEMPTION APPENDIX A: 2020-2021 CROSSFIT BANNED SUBSTANCE CLASSES APPENDIX B: CROSSFIT URINE TESTING PROCEDURES - (IN-COMPETITION) APPENDIX C: TUE APPLICATION REQUIREMENTS Drug Testing Policy V4 Copyright © 2021 CrossFit, LLC. All Rights Reserved. CrossFit is a registered trademark ® of CrossFit, LLC. [ 2 ] 2021 DRUG TESTING PROGRAM 2021 DRUG TESTING 1. DRUG-FREE COMPETITION As the world’s definitive test of fitness, CrossFit Games competitions stand not only as testaments to the athletes who compete but to the training methodologies they use. In this arena, a true and honest comparison of training practices and athletic capacity is impossible without a level playing field. Therefore, the use of banned performance-enhancing substances is prohibited. Even the legal use of banned substances, such as physician-prescribed hormone replacement therapy or some over-the-counter performance-enhancing supplements, has the potential to compromise the integrity of the competition and must be disallowed. With the health, safety, and welfare of the athletes, and the integrity of our sport as top priorities, CrossFit, LLC has adopted the following Drug Testing Policy to ensure the validity of the results achieved in competition.
    [Show full text]
  • Pheromone Advantage Review Examining Dr. Virgil Amend's
    Pheromone Advantage: Review Examining Dr. Virgil Amend’s Pheromone Cologne Product Released Pheromone Advantage reviews have been popping up all over the Internet and GentlemensUniversity.com reveals the truth about this cologne that claims it makes it so much easier to attract the opposite gender. (PRWEB) February 08, 2014 Pheromone Advantage that claims people can amplify their sexual appeal to the opposite sex and even intimidate others from the same sex by simply spritzing some of the pheromone cologne on has caught the attention of GentlemensUniversity.com’s Stan Stevenson, prompting an investigative review. “Our Pheromone Advantage review shows that it is a pheromone cologne product developed by Dr. Virgil Amend. It triggers emotions and sexual attraction without the opposite sex ever realizing that they are actually being influenced by pheromones,” reports Stevenson. “Most other pheromone scents contain very small amounts of pheromones, certainly not enough to have much of an impact on the opposite sex. Pheromone Advantage comes in two variants, one meant to attract men, and the other for targeting women. Each variant is formulated accordingly with the correct pheromones with a large enough concentration, so they can’t easily be washed away or masked.” Pheromone Advantage for attracting women is formulated with Androstenone, Androstenol, and Androstadienone. Produced by both men and women, although Androstenone is considered to be a predominantly male pheromone, it gives off a good strong vibe akin to that of an alpha male. Androstenol helps the wearer seem less intimidating and more approachable, and helps elevate the mood of a woman. Pheromone Advantage for attracting men contains Copulins, Estratetraenol, and Androstenol.
    [Show full text]
  • Steroid Profiling in Urine of Intact Glucuronidated and Sulfated
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Ghent University Academic Bibliography Journal of Chromatography A 1624 (2020) 461231 Contents lists available at ScienceDirect Journal of Chromatography A journal homepage: www.elsevier.com/locate/chroma Steroid profiling in urine of intact glucuronidated and sulfated steroids using liquid chromatography-mass spectrometry ∗ Laurie De Wilde , Kris Roels, Pieter Van Renterghem, Peter Van Eenoo, Koen Deventer 1 Doping Control Laboratory (DoCoLab), Ghent University (UGent), Department Diagnostic Sciences, Technologiepark 30B, B-9052 Zwijnaarde, Belgium a r t i c l e i n f o a b s t r a c t Article history: Detection of endogenous anabolic androgenic steroids (EAAS) misuse is a major challenge in doping con- Received 26 November 2019 trol analysis. Currently, a number of endogenous steroids, which constitute the steroid profile, are quanti- Revised 6 May 2020 fied using gas chromatography (GC). With this methodology, only the sum of the free and glucuronidated Accepted 10 May 2020 steroids is measured together. A dilute-and-shoot LC-MS method, which is compliant with the quality Available online 23 May 2020 requirements for measuring EAAS established by the World Anti-Doping Agency (WADA), was devel- Keywords: oped and validated containing glucuronidated and sulfated steroids in order to gain some extra infor- Doping mation and to expand the existing steroid profile. The developed method is, to the best of our knowl- Urine edge, the first method to combine both steroid glucuronides and sulfates, which is compliant with the Steroid profile quality standards of the technical document on EAAS, established by WADA.
    [Show full text]
  • WO 2018/035095 Al 22 February 2018 (22.02.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/035095 Al 22 February 2018 (22.02.2018) W !P O PCT (51) International Patent Classification: 199 Grandview Road, Skillman, New Jersey 08558 (US). A 61K 31/57 (2006 .01) A 61K 9/127 (2006 .0 1) FUETTERER, Tobias Johannes; 199 Grandview Road, Skillman, New Jersey 08558 (US). (21) International Application Number: PCT/US20 17/046894 (74) Agent: SHIRTZ, Joseph F. et al; JOHNSON & JOHNSON, One Johnson & Johnson Plaza, New (22) International Filing Date: Brunswick, New Jersey 08933 (US). 15 August 2017 (15.08.2017) (81) Designated States (unless otherwise indicated, for every (25) Filing Language: English kind of national protection available): AE, AG, AL, AM, (26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (30) Priority Data: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, 62/375,676 16 August 2016 (16.08.2016) US HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, 62/402,439 30 September 2016 (30.09.2016) US KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 15/354,1 14 17 November 2016 (17. 11.2016) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (71) Applicant: JANSSEN PHARMACEUTICA NV OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, [BE/BE]; Turnhoutseweg 30, B-2340 Beerse (BE).
    [Show full text]
  • The Relationship Between Oral Contraceptive Use and Sensitivity to Olfactory Stimuli
    YHBEH-03499; No. of pages: 6; 4C: Hormones and Behavior xxx (2013) xxx–xxx Contents lists available at SciVerse ScienceDirect Hormones and Behavior journal homepage: www.elsevier.com/locate/yhbeh The relationship between oral contraceptive use and sensitivity to olfactory stimuli Kaytlin J. Renfro ⁎, Heather Hoffmann Psychology Department, Knox College, 2 East South Street, Galesburg, IL 61401-4999, USA article info abstract Article history: The present study examined differences in olfactory sensitivity between 16 naturally cycling (NC) women Received 2 March 2012 and 17 women taking monophasic oral contraceptives (OCs) to six odors: lemon, peppermint, rose, musk, Revised 20 November 2012 androstenone and androsterone. Thresholds were assessed twice for both groups of women (during the Accepted 2 January 2013 periovulatory and luteal phases of their cycles) via a forced-choice discrimination task. NC women in the Available online xxxx periovulatory phase were significantly more sensitive to androstenone, androsterone, and musk than women taking OCs. These findings give support to odor-specific hormonal modulation of olfaction. Further, Keywords: Oral contraceptives due to the social and possibly sexual nature of these odors, future work should address whether there is a re- Olfaction lationship between decreased sensitivity to these odors and reported behavioral side effects among women Odor taking OCs. Ovarian steroids © 2013 Elsevier Inc. All rights reserved. Threshold Introduction problems, such as stroke (Seibert et al., 2003). Women taking OCs have also reported many behavioral side effects, such as emotional la- There are a number of physiological, perceptual, and behavioral bility and decreased sexual desire (Battaglia et al., 2012; Caruso et al., changes that have been reported to co-occur with ovulation in 2004; Sanders et al., 2001; Warner Chilcott, 2009, but see Alexander women; these changes have largely been attributed to the hormonal et al., 1990).
    [Show full text]
  • Development and Application of Methods for Extraction and LC/MS/MS Analysis of Sex Steroids and Conjugates from Fish Feces
    Development and Application of Methods for Extraction and LC/MS/MS Analysis of Sex Steroids and Conjugates from Fish Feces By Lisa E. Peters A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of the requirements of the degree of Doctor of Philosophy Department of Environment and Geography University of Manitoba Winnipeg Copyright © 2014 Lisa E. Peters 1 Acknowledgments I would like to start by thanking my supervisor, Dr. Gregg Tomy, for his support, patience and resources during my Ph.D. program. He took a chance when I tried to convince him that my biology background would be a great addition to his chemistry lab. My husband, Vince Palace, and I also appreciated his support and genuine happiness for us when I announced we were expecting a baby in the middle of my studies. A sincere thanks also goes to my co-supervisor, Dr. Mark Hanson, for his support on so many levels (I wouldn’t even know where to start), and for doing his best to keep me on track, which was no small task. I would also like to thank my other thesis committee members, Drs. Gary Anderson and Feiyue Wang, for their encouragement and insightful comments. Gary gave a lot of extra time to review various thesis chapters and data, and to lend his expertise during the fish surgeries. I also had the pleasure of taking his Endocrinology course, which was probably the most informative and enjoyable class of my entire university student career. I would like to thank the technical staff and students from DFO, Suzanne Mittermuller, Kerry Wautier, Alea Goodmanson, Danielle Godard, Lisa Friedrich and Kirstin Dangerfield, and my lab mates Bruno Rosenberg, Kerri Pleskach, Colin Darling, Bonnie Gemmill and Lianna Bestvater for their technical input and help during my experiments.
    [Show full text]
  • Is 3αœandrostenol Pheromone Related to Menstrual Synchrony?
    116-118-JFPRHC April 07 3/13/07 11:39 AM Page 1 SHORT COMMUNICATION J Fam Plann Reprod Health Care: first published as 10.1783/147118907780254042 on 1 April 2007. Downloaded from Is 3α−androstenol pheromone related to menstrual synchrony? Shayesteh Jahanfar, Che Haslinawati Che Awang, Raihan Abd Rahman, Rinni Damayanti Samsuddin, Chin Pui See Abstract Results A total of 59.1% of the subjects studied were found to have menstrual synchrony. There was no Background and methodology The ovarian cycles significant association between menstrual synchrony of females living and interacting together may and smelling threshold. However, a significant synchronise due to pheromones released from correlation was found between menstrual synchrony and axillary secretary glands, the highest concentration of personal hygiene score (p<0.01). which is produced in the mid-follicular phase, prior to ovulation. The objective of this study was to find Conclusions The phenomenon of menstrual synchrony evidence for menstrual synchrony in a group of may be related to various factors. The results failed to female students living together and to obtain a demonstrate any significant difference between correlation between the ability to smell the putative synchronised and non-synchronised subjects in pheromone, 5α-androst-16-en-3α-ol (3α- detecting the steroid by sense of smell. However, the androstenol), found in apocrine secretions and odours associated with menstrual blood or vaginal menstrual synchrony. This cross-sectional study discharge might have an affect on menstrual synchrony. involved 88 students who completed a standard Keywords 3α-androstenol, menstrual cycle, questionnaire and whose sense of smell was pheromones, synchrony measured using ten varying thresholds.
    [Show full text]
  • Androstenedione
    NTP TECHNICAL REPORT ON THE TOXICOLOGY ANd CARCINOGENESIS STUdIES OF ANdROSTENEdIONE (CAS NO. 63-05-8) IN F344/N RATS ANd B6C3F1 MICE (GAVAGE STUdIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 September 2010 NTP TR 560 NIH Publication No. 10-5901 National Institutes of Health Public Health Service U.S. dEPARTMENT OF HEALTH ANd HUMAN SERVICES FOREWORd The National Toxicology Program (NTP) is an interagency program within the Public Health Service (PHS) of the Department of Health and Human Services (HHS) and is headquartered at the National Institute of Environmental Health Sciences of the National Institutes of Health (NIEHS/NIH). Three agencies contribute resources to the program: NIEHS/NIH, the National Institute for Occupational Safety and Health of the Centers for Disease Control and Prevention (NIOSH/CDC), and the National Center for Toxicological Research of the Food and Drug Administration (NCTR/FDA). Established in 1978, the NTP is charged with coordinating toxicological testing activities, strengthening the science base in toxicology, developing and validating improved testing methods, and providing information about potentially toxic substances to health regulatory and research agencies, scientific and medical communities, and the public. The Technical Report series began in 1976 with carcinogenesis studies conducted by the National Cancer Institute. In 1981, this bioassay program was transferred to the NTP. The studies described in the Technical Report series are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected substances in laboratory animals (usually two species, rats and mice). Substances selected for NTP toxicity and carcinogenicity studies are chosen primarily on the basis of human exposure, level of production, and chemical structure.
    [Show full text]