Androstenedione

Total Page:16

File Type:pdf, Size:1020Kb

Androstenedione NTP TECHNICAL REPORT ON THE TOXICOLOGY ANd CARCINOGENESIS STUdIES OF ANdROSTENEdIONE (CAS NO. 63-05-8) IN F344/N RATS ANd B6C3F1 MICE (GAVAGE STUdIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 September 2010 NTP TR 560 NIH Publication No. 10-5901 National Institutes of Health Public Health Service U.S. dEPARTMENT OF HEALTH ANd HUMAN SERVICES FOREWORd The National Toxicology Program (NTP) is an interagency program within the Public Health Service (PHS) of the Department of Health and Human Services (HHS) and is headquartered at the National Institute of Environmental Health Sciences of the National Institutes of Health (NIEHS/NIH). Three agencies contribute resources to the program: NIEHS/NIH, the National Institute for Occupational Safety and Health of the Centers for Disease Control and Prevention (NIOSH/CDC), and the National Center for Toxicological Research of the Food and Drug Administration (NCTR/FDA). Established in 1978, the NTP is charged with coordinating toxicological testing activities, strengthening the science base in toxicology, developing and validating improved testing methods, and providing information about potentially toxic substances to health regulatory and research agencies, scientific and medical communities, and the public. The Technical Report series began in 1976 with carcinogenesis studies conducted by the National Cancer Institute. In 1981, this bioassay program was transferred to the NTP. The studies described in the Technical Report series are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected substances in laboratory animals (usually two species, rats and mice). Substances selected for NTP toxicity and carcinogenicity studies are chosen primarily on the basis of human exposure, level of production, and chemical structure. The interpretive conclusions presented in NTP Technical Reports are based only on the results of these NTP studies. Extrapolation of these results to other species, including characterization of hazards and risks to humans, requires analyses beyond the intent of these reports. Selection per se is not an indicator of a substance’s carcinogenic potential. The NTP conducts its studies in compliance with its laboratory health and safety guidelines and FDA Good Laboratory Practice Regulations and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use are in accordance with the Public Health Service Policy on Humane Care and Use of Animals. Studies are subjected to retrospective quality assurance audits before being presented for public review. NTP Technical Reports are indexed in the NIH/NLM PubMed database and are available free of charge electronically on the NTP website (http://ntp.niehs.nih.gov) or in hardcopy upon request from the NTP Central Data Management group at [email protected] or (919) 541-3419. NTP TECHNICAL REPORT ON THE TOXICOLOGY ANd CARCINOGENESIS STUdIES OF ANdROSTENEdIONE (CAS NO. 63-05-8) IN F344/N RATS ANd B6C3F1 MICE (GAVAGE STUdIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 September 2010 NTP TR 560 NIH Publication No. 10-5901 National Institutes of Health Public Health Service U.S. dEPARTMENT OF HEALTH ANd HUMAN SERVICES 2 CONTRIBUTORS National Toxicology Program TherImmune Research Corporation Evaluated and interpreted results and reported findings Provided SMVCE analysis C.R. Blystone, Ph.D., Study Scientist G.W. Wolfe, Ph.D., Principal Investigator S.A. Elmore, D.V.M., M.S., Study Pathologist H.S. Seung, M.S. J.B. Bishop, Ph.D. D.W. Bristol, Ph.D. dynamac Corporation J.R. Bucher, Ph.D. Prepared quality assessment audits R.S. Chhabra, Ph.D. P.M. Foster, Ph.D. S. Brecher, Ph.D., Principal Investigator R.A. Herbert, D.V.M., Ph.D. S. Iyer, B.S. M.J. Hooth, Ph.D. V.S. Tharakan, D.V.M. A.P. King-Herbert, D.V.M. G.E. Kissling, Ph.D. NTP Pathology Working Group D.E. Malarkey, D.V.M., Ph.D. Evaluated slides and contributed to pathology report on rats (October 23, 2007) J.H. Roycroft, Ph.D. J.M. Sanders, Ph.D. L.H. Kooistra, D.V.M., Ph.D., Coordinator C.S. Smith, Ph.D. Pathology Associates International, A Charles River Company G.S. Travlos, D.V.M. M.F. Cesta, D.V.M. N.J. Walker, Ph.D. National Toxicology Program K.L. Witt, M.S. D. Dixon, D.V.M., Ph.D. National Toxicology Program S.A. Elmore, D.V.M., M.S. Battelle Columbus Operations National Toxicology Program Conducted 2-week studies and evaluated pathology findings G.P. Flake, M.D. National Toxicology Program M.R. Hejtmancik, Ph.D., Principal Investigator R.A. Herbert, D.V.M., Ph.D. D.K. Gerken, D.V.M., Ph.D. National Toxicology Program H.M. Kolenda-Roberts, D.V.M., Ph.D. Southern Research Institute Experimental Pathology Laboratories, Inc. Conducted 3-month and 2-year studies and evaluated pathology R.R. Maronpot, D.V.M. findings Consultant J.B. Nold, D.V.M. C.D. Hébert, Ph.D., Principal Investigator GlaxoSmithKline J.E. Heath, D.V.M. B.P. Singh, D.V.M., M.S. R.B. Thompson, D.V.M., Ph.D. National Toxicology Program Experimental Pathology Laboratories, Inc. Provided pathology review M.H. Hamlin, II, D.V.M., Principal Investigator E.T. Adams, D.V.M., Ph.D. H.M. Kolenda-Roberts, D.V.M., Ph.D. Androstenedione, NTP TR 560 3 NTP Pathology Working Group SRA International, Inc. Evaluated slides and contributed to pathology report on mice Provided statistical analyses (July 26 and September 18, 2007) P.W. Crockett, Ph.D., Principal Investigator L.H. Kooistra, D.V.M., Ph.D., Coordinator L.J. Betz, M.S. Pathology Associates International, A Charles River Company K.P. McGowan, M.B.A. E.T. Adams, D.V.M., Ph.D. Experimental Pathology Laboratories, Inc. M.F. Cesta, D.V.M. Biotechnical Services, Inc. National Toxicology Program Prepared Technical Report J.M. Cullen, V.M.D., Ph.D. North Carolina State University S.R. Gunnels, M.A., Principal Investigator S.A. Elmore, D.V.M., M.S. L.M. Harper, B.S. National Toxicology Program P.C. Rathman, B.S.E. G.P. Flake, M.D. D.C. Serbus, Ph.D. National Toxicology Program R.A. Herbert, D.V.M., Ph.D. National Toxicology Program T. Koujitani, D.V.M., Ph.D. National Toxicology Program D.E. Malarkey, D.V.M., Ph.D. National Toxicology Program J.B. Nold, D.V.M. GlaxoSmithKline 4 CONTENTS ABSTRACT . 7 EXPLANATION OF LEVELS OF EVIdENCE OF CARCINOGENIC ACTIVITY . 12 TECHNICAL REPORTS REVIEW SUBCOMMITTEE . 13 SUMMARY OF TECHNICAL REPORTS REVIEW SUBCOMMITTEE COMMENTS . 14 INTROdUCTION . 15 MATERIALS ANd METHOdS . 21 RESULTS . 33 dISCUSSION ANd CONCLUSIONS . 61 REFERENCES . 65 APPENdIX A Summary of Lesions in Male Rats in the 2-Year Gavage Study of Androstenedione . 73 APPENdIX B Summary of Lesions in Female Rats in the 2-Year Gavage Study of Androstenedione . 93 APPENdIX C Summary of Lesions in Male Mice in the 2-Year Gavage Study of Androstenedione . 107 APPENdIX d Summary of Lesions in Female Mice in the 2-Year Gavage Study of Androstenedione . 123 APPENdIX E Genetic Toxicology . 139 APPENdIX F Clinical Pathology Results . 147 APPENdIX G Hepatic Biomarkers . 155 APPENdIX H Organ Weights and Organ-Weight-to-Body-Weight Ratios . 159 APPENdIX I Reproductive Tissue Evaluations and Estrous Cycle Characterization . 165 APPENdIX J Chemical Characterization and dose Formulation Studies . 169 APPENdIX K Ingredients, Nutrient Composition, and Contaminant Levels in NTP-2000 Rat and Mouse Ration . 185 APPENdIX L Sentinel Animal Program . 189 Androstenedione, NTP TR 560 5 SUMMARY Background Androstenedione is a natural androgen steroid hormone that is synthesized in men and women. Commercially it is used as an intermediate in the production of other steroids including oral contraceptives and anti-inflammatory products. Until its over-the-counter sales were banned in 2004, androstenedione was marketed as a supplement to aid athletes in gaining muscle mass. We studied the effects of androstenedione on male and female rats and mice to identify potential toxic or cancer-related hazards. Methods We deposited androstenedione dissolved in methylcellulose solutions through a tube directly into the stomach to groups of 50 male and female rats and mice for two years. Male and female rats and male mice received 10, 20, or 50 milligrams of androstenedione per kilogram of body weight each day; female mice received 2,10, or 50 mg/kg. Control animals received methylcellulose solutions with no chemical added by the same method. At the end of the study tissues from more than 40 sites were examined for every animal. Results A few adenomas and one carcinoma of the lung were seen in male rats receiving androstenedione and there was a slight increase in the rate of mononuclear cell leukemia in exposed female rats. Male and female mice given androstenedione had marked increases in a variety of liver tumors, including adenomas, carcinomas and hepato- blastomas. There were also increases in the rates of pancreatic islet adenomas in male and female mice. Female rats also had increased rates of hyperplasia of the pancreatic islets and atrophy of the exocrine pancreas. Female mice had very marked increases in the rates of hyperplasia of the clitoral gland, metaplasia in the kidney, and cyto- plasmic alteration of the salivary gland. Conclusions We conclude that androstenedione caused liver cancer and pancreatic islet cancer in male and female mice. The occurrence of lung tumors in male rats and mononuclear cell leukemia in female rats may have been related to androstendione exposure. Increases in nonneoplastic lesions of the pancreas in female rats and of the clitoral gland, kidney, and salivary gland in female mice were attributed to androstenedione exposure. 6 Androstenedione, NTP TR 560 7 ABSTRACT ANdROSTENEdIONE CAS No.
Recommended publications
  • Androgenic and Anabolic Activities of Some Newly Synthesized Epiandrosterone and Progesterone Derivatives
    Scientia Pharmazeutica (Sci. Pharm.) 68, 141-1 57 (2000) O Osterreichische Apotheker-Verlagsgesellschaft m. b. H, Wien, Printed in Austria Androgenic and Anabolic Activities of Some Newly Synthesized Epiandrosterone and Progesterone Derivatives. Y. A. ~aklaai"and M. M. ~osseir'~' Abstract Derivatives of eplandrosterone and progesterone were synthesized. The androgenic and the anabolic activities of some of tlieln were investigated on prepubertal male albino rats of 21 days old by:-i determining tlie weight gain of the body, levator ani muscle, ventral prostate gland, testis, selniilal vesicles, vas deferens and epididymis, ii- esti~natioi~of serum luteinizing (LH) hor~none,iii- liistopatliological examination of the testis and ventral prostate glands. The results from this study showed that the presence of an appended substituted 2- aminopyridine ring at the C- 17 of testosterone gave the maximuin a~idrogenicactivity, whereas the presence of a substituted piperidine ring fused to ring D of 5 a- androstane exhibited tlie maxiini~inanabolic activity. However, filsio~~of a pyrazoline moiety with the ring D of 5 a- androstane led to a compo~undwith considerable androgenic and anabolic act~v~ty. Keywords: epiandrosterone, progesterone, a~idrogenicactivity, anabolic activity, prepubertal rat, inale sex accessory glands, luteinizing horinone, I~istopatl~ology Introduction A~idrogensare a class of steroids responsible for tlie primary and secondary sex characteristics of the male. In addition, these steroids have bee11 found to possess potent anabolic promoting properties. The androgens are formed by the Leydig cells of the testis which is regulated by tlie gonadotropic luteinizing hormone (LH). The latter is secreted by tlie (J - cells of the anterior pitiltary gland under tlie control of the liypotlialainic gonadotropin - releasing l~oni~one.LH polypeptide -cliaiii is bioclie~nically unique and confers the LH biological and il~~~~~l~~~ologicnlspecificity "'".
    [Show full text]
  • REVIEW Effects of Androgens on Cardiovascular Remodeling
    1 REVIEW Effects of androgens on cardiovascular remodeling Yasumasa Ikeda1,2, Ken-ichi Aihara2, Sumiko Yoshida2, Masashi Akaike3 and Toshio Matsumoto2 Departments of 1Pharmacology, 2Medicine and Bioregulatory Sciences and 3Medical Education, The University of Tokushima, Graduate School of Health Biosciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan (Correspondence should be addressed to K Aihara; Email: [email protected]) Abstract Androgens, the male sex hormones, exert various biological cardiovascular mortality. However, the influence of androgens effects on many target organs through the transcriptional effects on the cardiovascular system has not been fully elucidated. of the nuclear androgen receptor (AR). ARs are expressed not Toclarify this issue, we analyzed the effects of administration of only in classical target organs, such as the brain, genital organs, angiotensin II and doxorubicin, an anticancer agent, in a bone, and skeletal muscles, but also in the cardiovascular loading model in male wild-type and AR-deficient mice. In system. Because the female sex hormones estrogens are well- this review, we focus on the actions of androgens as potential known to protect against cardiovascular disease, sex has targets for the prevention of cardiovascular diseases in males. been considered to have a significant clinical impact on Journal of Endocrinology (2012) 214, 1–10 Introduction In addition, previous studies have shown that testosterone replacement tends to increase cardiovascular risk among Cardiovascular disease remains a major cause of death in both men of all ages (Calof et al. 2005, Haddad et al. 2007, womenandmenworldwideandappearstoincrease Fernandez-Balsells et al. 2010). On the other hand, recent morbidity and mortality in industrial countries.
    [Show full text]
  • Steroid Profiling in Urine of Intact Glucuronidated and Sulfated
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Ghent University Academic Bibliography Journal of Chromatography A 1624 (2020) 461231 Contents lists available at ScienceDirect Journal of Chromatography A journal homepage: www.elsevier.com/locate/chroma Steroid profiling in urine of intact glucuronidated and sulfated steroids using liquid chromatography-mass spectrometry ∗ Laurie De Wilde , Kris Roels, Pieter Van Renterghem, Peter Van Eenoo, Koen Deventer 1 Doping Control Laboratory (DoCoLab), Ghent University (UGent), Department Diagnostic Sciences, Technologiepark 30B, B-9052 Zwijnaarde, Belgium a r t i c l e i n f o a b s t r a c t Article history: Detection of endogenous anabolic androgenic steroids (EAAS) misuse is a major challenge in doping con- Received 26 November 2019 trol analysis. Currently, a number of endogenous steroids, which constitute the steroid profile, are quanti- Revised 6 May 2020 fied using gas chromatography (GC). With this methodology, only the sum of the free and glucuronidated Accepted 10 May 2020 steroids is measured together. A dilute-and-shoot LC-MS method, which is compliant with the quality Available online 23 May 2020 requirements for measuring EAAS established by the World Anti-Doping Agency (WADA), was devel- Keywords: oped and validated containing glucuronidated and sulfated steroids in order to gain some extra infor- Doping mation and to expand the existing steroid profile. The developed method is, to the best of our knowl- Urine edge, the first method to combine both steroid glucuronides and sulfates, which is compliant with the Steroid profile quality standards of the technical document on EAAS, established by WADA.
    [Show full text]
  • The Metabolism of Anabolic Agents in the Racing Greyhound
    The Metabolism of Anabolic Agents In the Racing Greyhound A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy by Mr. Keith Robert Williams, B.Sc. July 1999 Department of Forensic Medicine & Science University of Glasgow Copyright © 1999 by Keith R. Williams. All rights reserved. No part o f this thesis may be reproduced in any forms or by any means without the written permission o f the author. I ProQuest Number: 13833925 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13833925 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 GLASGOW UNIVERSITY LIBRARY 111-X (coK To my parents for all their help, support and encouragement i Table of Contents i List of Figures V List of Tables VIII Summary IX Chapter 1: Drugs in Sport ...............................................................................................................................1 Introduction .................................................................................................................................................
    [Show full text]
  • Pharmaceutical and Veterinary Compounds and Metabolites
    PHARMACEUTICAL AND VETERINARY COMPOUNDS AND METABOLITES High quality reference materials for analytical testing of pharmaceutical and veterinary compounds and metabolites. lgcstandards.com/drehrenstorfer [email protected] LGC Quality | ISO 17034 | ISO/IEC 17025 | ISO 9001 PHARMACEUTICAL AND VETERINARY COMPOUNDS AND METABOLITES What you need to know Pharmaceutical and veterinary medicines are essential for To facilitate the fair trade of food, and to ensure a consistent human and animal welfare, but their use can leave residues and evidence-based approach to consumer protection across in both the food chain and the environment. In a 2019 survey the globe, the Codex Alimentarius Commission (“Codex”) was of EU member states, the European Food Safety Authority established in 1963. Codex is a joint agency of the FAO (Food (EFSA) found that the number one food safety concern was and Agriculture Office of the United Nations) and the WHO the misuse of antibiotics, hormones and steroids in farm (World Health Organisation). It is responsible for producing animals. This is, in part, related to the issue of growing antibiotic and maintaining the Codex Alimentarius: a compendium of resistance in humans as a result of their potential overuse in standards, guidelines and codes of practice relating to food animals. This level of concern and increasing awareness of safety. The legal framework for the authorisation, distribution the risks associated with veterinary residues entering the food and control of Veterinary Medicinal Products (VMPs) varies chain has led to many regulatory bodies increasing surveillance from country to country, but certain common principles activities for pharmaceutical and veterinary residues in food and apply which are described in the Codex guidelines.
    [Show full text]
  • Development and Application of Methods for Extraction and LC/MS/MS Analysis of Sex Steroids and Conjugates from Fish Feces
    Development and Application of Methods for Extraction and LC/MS/MS Analysis of Sex Steroids and Conjugates from Fish Feces By Lisa E. Peters A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of the requirements of the degree of Doctor of Philosophy Department of Environment and Geography University of Manitoba Winnipeg Copyright © 2014 Lisa E. Peters 1 Acknowledgments I would like to start by thanking my supervisor, Dr. Gregg Tomy, for his support, patience and resources during my Ph.D. program. He took a chance when I tried to convince him that my biology background would be a great addition to his chemistry lab. My husband, Vince Palace, and I also appreciated his support and genuine happiness for us when I announced we were expecting a baby in the middle of my studies. A sincere thanks also goes to my co-supervisor, Dr. Mark Hanson, for his support on so many levels (I wouldn’t even know where to start), and for doing his best to keep me on track, which was no small task. I would also like to thank my other thesis committee members, Drs. Gary Anderson and Feiyue Wang, for their encouragement and insightful comments. Gary gave a lot of extra time to review various thesis chapters and data, and to lend his expertise during the fish surgeries. I also had the pleasure of taking his Endocrinology course, which was probably the most informative and enjoyable class of my entire university student career. I would like to thank the technical staff and students from DFO, Suzanne Mittermuller, Kerry Wautier, Alea Goodmanson, Danielle Godard, Lisa Friedrich and Kirstin Dangerfield, and my lab mates Bruno Rosenberg, Kerri Pleskach, Colin Darling, Bonnie Gemmill and Lianna Bestvater for their technical input and help during my experiments.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,284,263 B1 Place (45) Date of Patent: Sep
    USOO6284263B1 (12) United States Patent (10) Patent No.: US 6,284,263 B1 Place (45) Date of Patent: Sep. 4, 2001 (54) BUCCAL DRUG ADMINISTRATION IN THE 4,755,386 7/1988 Hsiao et al. TREATMENT OF FEMALE SEXUAL 4,764,378 8/1988 Keith et al.. DYSFUNCTION 4,877,774 10/1989 Pitha et al.. 5,135,752 8/1992 Snipes. 5,190,967 3/1993 Riley. (76) Inventor: Virgil A. Place, P.O. Box 44555-10 5,346,701 9/1994 Heiber et al. Ala Kahua, Kawaihae, HI (US) 96743 5,516,523 5/1996 Heiber et al. 5,543,154 8/1996 Rork et al. ........................ 424/133.1 (*) Notice: Subject to any disclaimer, the term of this 5,639,743 6/1997 Kaswan et al. patent is extended or adjusted under 35 6,180,682 1/2001 Place. U.S.C. 154(b) by 0 days. * cited by examiner (21) Appl. No.: 09/626,772 Primary Examiner Thurman K. Page ASSistant Examiner-Rachel M. Bennett (22) Filed: Jul. 27, 2000 (74) Attorney, Agent, or Firm-Dianne E. Reed; Reed & Related U.S. Application Data ASSciates (62) Division of application No. 09/237,713, filed on Jan. 26, (57) ABSTRACT 1999, now Pat. No. 6,117,446. A buccal dosage unit is provided for administering a com (51) Int. Cl. ............................. A61F 13/02; A61 K9/20; bination of Steroidal active agents to a female individual. A61K 47/30 The novel buccal drug delivery Systems may be used in (52) U.S. Cl. .......................... 424/435; 424/434; 424/464; female hormone replacement therapy, in female 514/772.3 contraception, to treat female Sexual dysfunction, and to treat or prevent a variety of conditions and disorders which (58) Field of Search ....................................
    [Show full text]
  • Steroid Hormones and Neurosteroids in Normal and Pathological Aging of the Nervous System M
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC Progress in Neurobiology 71 (2003) 3–29 Steroid hormones and neurosteroids in normal and pathological aging of the nervous system M. Schumacher a,∗, S. Weill-Engerer a, P. Liere a, F. Robert a, R.J.M. Franklin b, L.M. Garcia-Segura c, J.J. Lambert d, W. Mayo e, R.C. Melcangi f, A. Parducz g, U. Suter h, C. Carelli a, E.E. Baulieu a, Y. Akwa a a Inserm U488, 80 rue du Général Leclerc, Kremlin-Bicˆetre 94276, France b Department of Clinical and Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK c Instituto Cajal, CSIC, 37 Avenida Doctor Arce, Madrid 28002, Spain d Department of Pharmacology, University of Dundee, Dundee DD1 9SY, UK e Inserm U259, Domaine de Carreire, Bordeaux 33077, France f Department of Endocrinology, Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan 20133, Italy g Biological Research Center Szeged, Temesvari krt 62, Szeged 6726, Hungary h Institut of Cell Biology, ETH Hönggerberg, Zürich CH-8093, Switzerland Received 20 June 2003; accepted 11 September 2003 Abstract Without medical progress, dementing diseases such as Alzheimer’s disease will become one of the main causes of disability. Preventing or delaying them has thus become a real challenge for biomedical research. Steroids offer interesting therapeutical opportunities for promoting successful aging because of their pleiotropic effects in the nervous system: they regulate main neurotransmitter systems, promote the viability of neurons, play an important role in myelination and influence cognitive processes, in particular learning and memory.
    [Show full text]
  • DHEA Sulfate, and Aging: Contribution of the Dheage Study to a Sociobiomedical Issue
    Dehydroepiandrosterone (DHEA), DHEA sulfate, and aging: Contribution of the DHEAge Study to a sociobiomedical issue Etienne-Emile Baulieua,b, Guy Thomasc, Sylvie Legraind, Najiba Lahloue, Marc Rogere, Brigitte Debuiref, Veronique Faucounaug, Laurence Girardh, Marie-Pierre Hervyi, Florence Latourj, Marie-Ce´ line Leaudk, Amina Mokranel, He´ le` ne Pitti-Ferrandim, Christophe Trivallef, Olivier de Lacharrie` ren, Stephanie Nouveaun, Brigitte Rakoto-Arisono, Jean-Claude Souberbiellep, Jocelyne Raisonq, Yves Le Boucr, Agathe Raynaudr, Xavier Girerdq, and Franc¸oise Foretteg,j aInstitut National de la Sante´et de la Recherche Me´dicale Unit 488 and Colle`ge de France, 94276 Le Kremlin-Biceˆtre, France; cInstitut National de la Sante´et de la Recherche Me´dicale Unit 444, Hoˆpital Saint-Antoine, 75012 Paris, France; dHoˆpital Bichat, 75877 Paris, France; eHoˆpital Saint-Vincent de Paul, 75014 Paris, France; fHoˆpital Paul Brousse, 94804 Villejuif, France; gFondation Nationale de Ge´rontologie, 75016 Paris, France; hHoˆpital Charles Foix, 94205 Ivry, France; iHoˆpital de Biceˆtre, 94275 Biceˆtre, France; jHoˆpital Broca, 75013 Paris, France; kCentre Jack-Senet, 75015 Paris, France; lHoˆpital Sainte-Perine, 75016 Paris, France; mObservatoire de l’Age, 75017 Paris, France; nL’Ore´al, 92583 Clichy, France; oInstitut de Sexologie, 75116 Paris, France; pHoˆpital Necker, 75015 Paris, France; qHoˆpital Broussais, 75014 Paris, France; and rHoˆpital Trousseau, 75012 Paris, France Contributed by Etienne-Emile Baulieu, December 23, 1999 The secretion and the blood levels of the adrenal steroid dehydro- number of consumers. Extravagant publicity based on fantasy epiandrosterone (DHEA) and its sulfate ester (DHEAS) decrease pro- (‘‘fountain of youth,’’ ‘‘miracle pill’’) or pseudoscientific asser- foundly with age, and the question is posed whether administration tion (‘‘mother hormone,’’ ‘‘antidote for aging’’) has led to of the steroid to compensate for the decline counteracts defects unfounded radical assertions, from superactivity (‘‘keep young,’’ associated with aging.
    [Show full text]
  • The Combined Cardiac Effect of the Anabolic Steroid, Nandrolone And
    ù1. v -¿. rlc) 77.- *n*hi.rnool oowol,ù*o ffi"/fu -lo *rn*(o fii'o fio¿o¿¿, /v&"ùún lonno **al cooaiæe';¿vfl"- oã. Benjamin D. Phillis, B.Sc. (Hons) Phatmacology Depattment of Clinical & Experimental Pharmacology Ftome Rd. , Medical School Noth Adelaide Univetsity ADEIAIDE SA 5OOO û.)r.'-*hr/7enveltîù Foremost, I would like to thank my two supervisors for the direction that they have given this ptojecr. To Rod, for his unfailing troubleshooting abiJity and to Jenny fot her advice and ability to add scientific rigour' Many thanks to Michael Adams for his technical assistance and especially fot performing the surgery for the ischaemia-reperfusion projects and for his willingness to work late nights and public holidays. Lastly I would like to thank my v¡ife for her extreme patience during the tumult of the last 5 years. Her love, suppoït, patience and undetstanding have been invaluable in this endeavout. Beniamin D. Phillis Octobet,2005 ADE,I-AIDE ii T*(¿t of Ao,t",tù DECI.ARATION I ACKNOWLEDGEMENTS il TABLE OF CONTENTS UI ABBREVIATIONS x ABSTRACT )ilr CÉIAPTER t-l Inttoduction 1-1 1.1 Background 1,-1, 1.2What ate anabolic stetoids? 7-1 1,3 General pharmacology of Anabolic steroids t-2 '1,-2 1.3.1 Genomic effects of anabolic steroids 1.3.2 Non-genomic effects of anabolic steroids 1-3 1.4 Clinical use of AS 1.-4 1.5 Patterns of AS abuse 1.-4 1.5.1 Steroid abuse by athletes 1.-+ 1.5.2 Stetoid abuse by sedentary teenagers r-6 1.5.3 Prevalence of abuse 1-6 1.5.4 Abuse ptevalence in Australia 1.-9 1.6 Cardiotoxicity of anabolic steroids r-9 1.6.1 Reduced cotonary flow 1.-1.1, 1,.6.2 Dtect myocatdial eff ects 1-1 5 1.6.3 Hypertension 1-21 1.7 Difficulties associated with anabolic steroid research 1.-24 1-25 1.8 The polydrug abuse Phenomenon 1.9 The pharmacology of cocaine 1-26 1.10 Pteparations 1-28 1-29 1.11 Metabolism lll 1-30 1.
    [Show full text]
  • The Boar Testis: the Most Versatile Steroid Producing Organ Known
    The boar testis: the most versatile steroid producing organ known Raeside', H.L. Christie', R.L. Renaud' and P.A. Sinclair" 'Department of Biomedical Sciences and 2Department of Animal and Poultry Science, University of Guelph, Guelph, ON Canada N IG 2WI A review of the remarkable production of steroids by the testes of the boar is presented, with the principal aims of highlighting the achievements of the Leydig cells and, at the same time, pointing to the considerable deficiencies in our understanding of its biological relevance. The onset of gonadal steroidogenesis at an early stage of sex differentiation and the pattern of pre- and postnatal secretion of steroids are outlined. This is followed by a list of steroids identified in extracts of the boar testis, with emphasis on those that can reasonably be assumed to be secretory products of the Leydig cells. For example, the high concentrations of 16- unsaturated C19and sulphoconjugated compounds are noted. Next, an impressive list of steroids found in venous blood from the boar testis is given; among them are the 16-unsaturated steroids, the oestrogens and dehydroepiandrosterone, all mainly in the form of sulphates. However, the list also includes some less likely members, such as 11-0H and 19- OH androgens as well as Sce-reduced steroids. Lastly, the high concentrations of steroids reported in testicular lymph, especially sulphates, are mentioned. Although roles for testosterone are uncontested, and even for the pheromone-like Co steroids, there is little that can be said with assurance about the other compounds listed. Some speculations are made on their possible contributions to the reproductive physiology of the boar.
    [Show full text]
  • Androgens in Women – Critical Evaluation of the Methods for Their Determination in Diagnostics of Endocrine Disorders
    Physiol. Res. 67 (Suppl. 3): S379-S390, 2018 https://doi.org/10.33549/physiolres.933964 REVIEW Androgens in Women – Critical Evaluation of the Methods for Their Determination in Diagnostics of Endocrine Disorders M. DUŠKOVÁ1,2, L. KOLÁTOROVÁ1, L. STÁRKA1 1Department of Steroids and Proteofactors, Institute of Endocrinology, Prague, Czech Republic, 2Department of Medicine Strahov, General University Hospital, Prague, Czech Republic Received June 12, 2018 Accepted June 27, 2018 Summary plasma, and this seems to be most appropriate, but they The androgens dehydroepiandrosterone sulfate, dehydro- can also be measured in mucus and urine. The advantages epiandrosterone, androstenedione and testosterone are routinely and disadvantages of each body fluid are still the subject assessed in women, and circulating levels of these androgens of much discussion. reflect their production. These androgens are measured in most Increased androgenization in women can be laboratories using various immuno-analytical methods. Recently, caused by either a higher level of androgens – termed however, androgen assays have begun to be performed using hyperandrogenemia – or a higher sensitivity of target gas or liquid chromatography combined with mass spectrometry. organs to androgens, the levels of which may actually be To better understand the difficulties and issues of androgen within reference ranges. It must be noted that women are laboratory diagnostics, it is important to assess each of the much more sensitive to androgens than men. Changes in methods used, how and why they were introduced into practice, the levels of testosterone that lead to hirsutism in women and their advantages, limits, historic milestones and current cause no changes in hair richness in men.
    [Show full text]