The Relationship Between Oral Contraceptive Use and Sensitivity to Olfactory Stimuli

Total Page:16

File Type:pdf, Size:1020Kb

The Relationship Between Oral Contraceptive Use and Sensitivity to Olfactory Stimuli YHBEH-03499; No. of pages: 6; 4C: Hormones and Behavior xxx (2013) xxx–xxx Contents lists available at SciVerse ScienceDirect Hormones and Behavior journal homepage: www.elsevier.com/locate/yhbeh The relationship between oral contraceptive use and sensitivity to olfactory stimuli Kaytlin J. Renfro ⁎, Heather Hoffmann Psychology Department, Knox College, 2 East South Street, Galesburg, IL 61401-4999, USA article info abstract Article history: The present study examined differences in olfactory sensitivity between 16 naturally cycling (NC) women Received 2 March 2012 and 17 women taking monophasic oral contraceptives (OCs) to six odors: lemon, peppermint, rose, musk, Revised 20 November 2012 androstenone and androsterone. Thresholds were assessed twice for both groups of women (during the Accepted 2 January 2013 periovulatory and luteal phases of their cycles) via a forced-choice discrimination task. NC women in the Available online xxxx periovulatory phase were significantly more sensitive to androstenone, androsterone, and musk than women taking OCs. These findings give support to odor-specific hormonal modulation of olfaction. Further, Keywords: Oral contraceptives due to the social and possibly sexual nature of these odors, future work should address whether there is a re- Olfaction lationship between decreased sensitivity to these odors and reported behavioral side effects among women Odor taking OCs. Ovarian steroids © 2013 Elsevier Inc. All rights reserved. Threshold Introduction problems, such as stroke (Seibert et al., 2003). Women taking OCs have also reported many behavioral side effects, such as emotional la- There are a number of physiological, perceptual, and behavioral bility and decreased sexual desire (Battaglia et al., 2012; Caruso et al., changes that have been reported to co-occur with ovulation in 2004; Sanders et al., 2001; Warner Chilcott, 2009, but see Alexander women; these changes have largely been attributed to the hormonal et al., 1990). fluctuations that characterize ovulation (i.e. the pre-ovulatory spikes Recent studies have elucidated the effects of OCs on the sensory in luteinizing hormone (LH) and estradiol) (e.g. Fehring, 2002; systems, reporting increases in auditory and olfactory thresholds, Gueguen, 2009; Parlee, 1983). Because women taking oral contracep- indicating decreased auditory and olfactory sensitivity, among OC tives (OCs) do not experience hormonal fluctuations as naturally cy- users as compared to nonusers (Caruso et al., 2001, 2003; Snihur cling (NC) women do, and do not ovulate, they provide a and Hampson, 2012). Caruso et al. (2001) tracked women's olfacto- particularly good opportunity to assess which of these mid-cycle ry thresholds across their menstrual cycles, both before they began changes are specifically related to hormonal influences (Cohen and using OCs and then again during the period of use. Participants' Katz, 1979; Elkind-Hirsch et al., 1992). thresholds were significantly higher after beginning a pill regimen. Approximately 82% of women between the ages of 15 and 44 in Before beginning use of OCs, the women showed fluctuations in the United States have at one point in time regularly used an oral con- sensitivity to the olfactory stimuli across their menstrual cycles— traceptive pill as a form of birth control (Mosher and Jones, 2010). becoming more sensitive to many of the olfactory stimuli during The combination pill, containing an estrogen and a progestin, is re- the periovulatory and follicular phases of their cycles, as compared portedly the most common form of the pill in use (Sanders et al., to the luteal phases. However, when on OCs, the women's thresh- 2001). The combination pill targets the hypothalamus and pituitary, olds rose to luteal phase levels, and remained at these levels altering hormone levels, to prevent ovulation. The estrogen component throughout the months. It is presumed that the steroid hormones suppresses the follicle stimulating hormone (FSH), preventing the de- of the pill are responsible for the women's decreased olfactory sen- velopment of a follicle, and the progestin component suppresses the sitivity; however, the specific mechanism underlying these effects LH surge necessary for ovulation (Speroff and Darney, 2010). remains unclear. One possibility is that because thresholds rise to Exogenous hormones can have various physiological effects on luteal phase levels, and the luteal phase of the cycle is character- women's bodies, such as inducing nausea and promoting weight ized by heightened levels of progesterone, it is the progestin in gain, as well as putting women at risk for more serious health the pill driving these effects (Caruso et al., 2001). It is also possible that the decrease in sensitivity is due to the decrease in estradiol in OC users, as NC women experience increases in estradiol through- ⁎ Corresponding author at: Psychology Department, Emory University, 36 Eagle Row, out the follicular phase, and a sharp increase in estradiol just pre- Atlanta, GA 30322, USA. Fax: +1 404 727 0372. E-mail addresses: [email protected] (K.J. Renfro), [email protected] ceding ovulation, both of which are absent in OC users (Cohen (H. Hoffmann). and Katz, 1979; Elkind-Hirsch et al., 1992). 0018-506X/$ – see front matter © 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.yhbeh.2013.01.001 Please cite this article as: Renfro, K.J., Hoffmann, H., The relationship between oral contraceptive use and sensitivity to olfactory stimuli, Hor- mones and Behavior (2013), http://dx.doi.org/10.1016/j.yhbeh.2013.01.001 2 K.J. Renfro, H. Hoffmann / Hormones and Behavior xxx (2013) xxx–xxx Hormonal modulation of olfaction has previously been evidenced Table 1 in work focusing on sex differences in olfactory ability and in research Comprehensive list of the brand names of the oral contraceptives (OCs) used by women in the study (n=17). Manufacturer and dosage of the OC are provided in parentheses. examining changes in women's olfactory sensitivity across the men- strual cycle. The majority of research that has reported sex differences Oral contraceptive brand name and dosage Number of in olfactory sensitivity has shown that, compared to men, women are participants more sensitive to a range of odors and have greater accuracy in Yaz (Bayer)/Gianvi (generic, Teva Pharmaceuticals) 6 odor-identification (for review, see Doty and Cameron, 2009). How- (3 mg of drospirenone and 0.02 mg of ethinyl estradiol) ever, there are disparities in the literature, where some have failed Loestrin 24Fe (Warner Chilcott) 4 fi (1 mg of norethindrone acetate and 0.02 mg of ethinyl estradiol) to nd sex differences in sensitivity. This is similarly the case with ol- Microgestin 1.5/30 (Watson Pharmaceuticals, Inc.) 2 factory fluctuations across the menstrual cycle. Although many stud- (1.5 mg of norethindrone/0.03 mg of ethinyl estradiol) ies have reported that women become more sensitive to odors during Levora (Watson Pharmaceuticals, Inc.) 1 the ovulatory phases of their cycles, this does not appear to hold true (0.15 mg of levenorgestrel and 0.03 mg of ethinyl estradiol) Sronyx (Watson Pharmaceuticals, Inc.) 1 for all odors. It has been suggested that these inconsistent findings are (0.1 mg of levonorgestrel and 0.02 mg of ethinyl estradiol) due to the nature of the odors used in the studies (for discussion, see Yasmin (Bayer) 1 Doty and Cameron, 2009). Whereas, for example, significant sex dif- (3 mg of drospirenone and 0.03 mg of ethinyl estradiol) ferences and menstrual phase differences have been found for sensi- Necon 1/35 (Watson Pharmaceuticals, Inc.) 1 tivity to citral, anise, Exalotide (musk), and coumarin, no differences (1 mg of norethindrone and 0.035 mg of ethinyl estradiol) Desogen (Merck & Co., Inc.) 1 have been found in regard to safrol, n-butanol, amyl-acetate (ba- (0.15 mg of desogestrel and 0.03 mg of ethinyl estradiol) nana), and eucalyptus (Caruso et al., 2001; Le Magnen, 1952; Mair et al., 1978; Navarrete-Palacios et al., 2003; Oberg et al., 2002). Lundstrom et al. (2006) provided data indicating that hormones Materials may have differential effects on olfactory sensitivity, dependent upon the reproductive significance of the odor. Specifically, they showed Time of ovulation for NC women was determined with Answer Quick women in the periovulatory phase of their cycles to be more sensitive & Simple One-Step Ovulation Tests (Church & Dwight Co., Inc., Princeton, to androstadienone, a social odor, than to phenyl-ethyl alcohol (PEA— NJ, USA). Each ovulation test kit contained seven test sticks with the scent of roses); whereas women on OCs were more sensitive to luteinizing hormone (LH) antibodies designed to detect the LH surge PEA, an environmental odor, than the social odor. The authors suggest that occurs approximately 24–36 hours before ovulation. According to that these differences in olfactory sensitivity may be explained by dif- the manufacturer, these tests have a 98% accuracy at detecting the LH ferences in the hormonal profiles of the women, as women taking OCs surge, and thus at predicting ovulation. During each laboratory session, do not ovulate, and thus increased sensitivity to odors of potential olfactory thresholds were determined for four general odors: lemon mates would not prove beneficial. However, this was a cross-sectional (McCormick Pure Lemon Extract, McCormick & Co., Inc. Hunt Valley, study, and NC women's time of ovulation was estimated, not directly MD, USA), peppermint (Tone's Imitation Peppermint flavor, ACH Food measured via blood or urine analyses; therefore, more precise evalua- Companies, Inc. Memphis, TN, USA), rose (Rose Water, Nielson-Massey tion of this hypothesis is warranted. Vanilla's, Inc. Waukegan, IL, USA), and musk (Mystic Memories' Witch The present study sought to further explore hormonal influences Fae Perfume Oil with Genuine Amethyst, Mayfield Heights, OH, USA) on odor sensitivity, and tested the claims that women taking OCs odorants, as well as 5α-androst-16-en-3-one (androstenone), an andro- would have decreased olfactory sensitivity to a range of odors com- gen metabolite found in male bodily secretions (i.e.
Recommended publications
  • Testosterone and the Incidence of Boar Taint: Effects of Testosterone Or Testosterone Propionate on the Incidence of Boar Taint in Implanted Barrows
    Meat Science 13 (1985) 237-245 Testosterone and the Incidence of Boar Taint: Effects of Testosterone or Testosterone Propionate on the Incidence of Boar Taint in Implanted Barrows B. D. Schanbacher, J. T. Yen & W. G. Pond USDA, ARS, Roman L. Hruska US Meat Animal Research Center, PO Box 166, Clay Center, NE 68933, USA (Received: 2 June, 1984) S UMMA R Y Boars, barrows and barrows implanted with testosterone or testosterone propionate via polydimethylsiloxane (Silastic) capsules were placed on test in individual pens at 10 weeks of age. Each animal was slaughtered at 110kg and evaluated for growth rate, efficiency of feed utilization, carcass merit and the incidence of objectionable odors (boar taint). Five capsules of testosterone or testosterone propionate were used in barrows since they substantially elevated concentrations of serum testosterone, decreased serum LH and stimulated weights of the accessory sex glands. Large variations within and between litters of pigs were found for performance and carcass traits; thus, the influences of castration and testosterone replacement therapy on these traits were inconclusive. In contrast, the effects of castration and hormone treatment on the incidence of boar taint were more definitive. The incidence of boar taint was relatively high in boars, according to a consumer taste panel. This characteristic odor was appreciably lower in barrows and was not reinstated with either testosterone or testosterone propionate implants. These results suggest that testosterone is not itself responsible for boar taint and that 5~t-androstenone, the pheromone most closely associated with boar taint, is not produced by peripheral metabolism of testosterone. Additional studies are warranted to provide insight into the regulation of testicular steroid secretion in the boar and the contribution of these steroids to boar taint and protein anabolism.
    [Show full text]
  • BMC Genetics Biomed Central
    BMC Genetics BioMed Central Research article Open Access Association between SNPs within candidate genes and compounds related to boar taint and reproduction Maren Moe*1,2, Sigbjørn Lien2,3, Torunn Aasmundstad1, Theo HE Meuwissen2, Marianne HS Hansen1,3, Christian Bendixen4 and Eli Grindflek1 Address: 1The Norwegian Pig Breeders Association (NORSVIN), Hamar, Norway, 2Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway, 3Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, Ås, Norway and 4Faculty of Agricultural Sciences, University of Aarhus, Tjele, Denmark Email: Maren Moe* - [email protected]; Sigbjørn Lien - [email protected]; Torunn Aasmundstad - [email protected]; Theo HE Meuwissen - [email protected]; Marianne HS Hansen - [email protected]; Christian Bendixen - [email protected]; Eli Grindflek - [email protected] * Corresponding author Published: 5 July 2009 Received: 9 October 2008 Accepted: 5 July 2009 BMC Genetics 2009, 10:32 doi:10.1186/1471-2156-10-32 This article is available from: http://www.biomedcentral.com/1471-2156/10/32 © 2009 Moe et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Boar taint is an unpleasant odour and flavour of the meat from some uncastrated male pigs primarily caused by elevated levels of androstenone and skatole in adipose tissue. Androstenone is produced in the same biochemical pathway as testosterone and estrogens, which represents a particular challenge when selecting against high levels of androstenone in the breeding programme, without simultaneously decreasing levels of other steroids.
    [Show full text]
  • Pheromone Advantage Review Examining Dr. Virgil Amend's
    Pheromone Advantage: Review Examining Dr. Virgil Amend’s Pheromone Cologne Product Released Pheromone Advantage reviews have been popping up all over the Internet and GentlemensUniversity.com reveals the truth about this cologne that claims it makes it so much easier to attract the opposite gender. (PRWEB) February 08, 2014 Pheromone Advantage that claims people can amplify their sexual appeal to the opposite sex and even intimidate others from the same sex by simply spritzing some of the pheromone cologne on has caught the attention of GentlemensUniversity.com’s Stan Stevenson, prompting an investigative review. “Our Pheromone Advantage review shows that it is a pheromone cologne product developed by Dr. Virgil Amend. It triggers emotions and sexual attraction without the opposite sex ever realizing that they are actually being influenced by pheromones,” reports Stevenson. “Most other pheromone scents contain very small amounts of pheromones, certainly not enough to have much of an impact on the opposite sex. Pheromone Advantage comes in two variants, one meant to attract men, and the other for targeting women. Each variant is formulated accordingly with the correct pheromones with a large enough concentration, so they can’t easily be washed away or masked.” Pheromone Advantage for attracting women is formulated with Androstenone, Androstenol, and Androstadienone. Produced by both men and women, although Androstenone is considered to be a predominantly male pheromone, it gives off a good strong vibe akin to that of an alpha male. Androstenol helps the wearer seem less intimidating and more approachable, and helps elevate the mood of a woman. Pheromone Advantage for attracting men contains Copulins, Estratetraenol, and Androstenol.
    [Show full text]
  • 5A-ANDROSTENONE and TESTOSTERONE in PERIPHERAL PLASMA of the BOAR DURING and FOLLOWING COPULATION*
    Acta vet. scand. 1976, 17, 47,!>---48,7. From the Department of Physiology, Veterinary College of Norway, Oslo. 5a-ANDROSTENONE AND TESTOSTERONE IN PERIPHERAL PLASMA OF THE BOAR DURING AND FOLLOWING COPULATION* By fi)ystein Andresen ANDRESEN, 0YSTEIN: 5rx.-Androstenone and testosterone in peri­ pheral plasma of the boar during and following copulation. Acta vet. scain.d. 19<76, 17, 47!>---487. - Copulation was generaJly followed by in­ creases in peripheral plasma ,5rx.-androstenone and testosterone levels lasting for per10ds of about 6i0 to mo min. The effect of copulation on the plasma levels of these steroids did, however, vary between boars. In seven out of eight boars the maximum levels of 5rx.-andro­ stenone in the period 6-0 to 100 min. after copulation were from 114 to 218 % (mean 150 % ) of the levels in samples collected before copu­ lation. The corresponding figures for testosterone were from 104 to 283 % (mean 19,0 % ) . One boar showed decreasing plasma steroid Ievels after copulation. The coefficient of correlation between the peripheral plasma levels of 5rx.-androstenone and testosterone was found to be + -0.6,1 (n = W3). 5 rx. - and r o steno n e; test o st er one; copulation; sexual stimulation; boar. Odorou1s steroids ,represent an irmporta:nit group among ste­ roids secreted by ,the boar testes. Chemically they a1re C10 steroids with a double bond bertrween c16 and c17' and 'their biosyinithesis * This study was supported by the Norwegian Agricultural Research Council. 4 76 (?). Andresen foom pregnenolone * aind progesterone is erutirely diff erenrt from the biosynthesi.s of androgens aind oesitrogens.
    [Show full text]
  • Quantitative-Profiling Method of Serum Steroid Hormones By
    Natural Products and Bioprospecting https://doi.org/10.1007/s13659-019-0204-3 ORIGINAL ARTICLE Quantitative‑Profling Method of Serum Steroid Hormones by Hydroxylamine‑Derivatization HPLC–MS Qi Liu1 · Quan Chi1 · Ru‑Ting Fan1 · Hui‑Dong Tian1 · Xian Wang1 Received: 14 March 2019 / Accepted: 3 April 2019 © The Author(s) 2019 Abstract A sensitive and rapid high performance liquid chromatography–mass spectrometry (HPLC–MS) method was developed and validated for simultaneous quantifcation of ten steroid hormones, including estrogens, androgens, progesterones, and corticosteroids four classes of steroids. The following ten steroid hormones were analyzed: progesterone, 21-deoxycortisol, estrone, 4-androstenedione, testosterone, dihydro-testosterone, androstenone, dehydroepiandrosterone, corticosterone and cortisone. Stable deuterated isotopes were used as internal standards for quantifcation. Sample preparation with and with- out derivatization were performed after liquid–liquid extraction, and the corresponding results were compared according to sensitivity and selectivity. Hydroxylamine derivatization was found to improve the ionization efciency of the analytes for electrospray ionization MS analysis. The gradient of mobile phase and experimental parameters for HPLC separation were optimized. The lower limits of quantifcation were in the range of 0.05–5 ng mL−1 with wide linear range for the ten steroid hormones. The intra-day precision < 11.1% and recovery of 84.5–120% with negligible matrix efect were achieved, where within the acceptance
    [Show full text]
  • Influence of Housing and Season on Pubertal Development, Boar Taint
    Influence of housing and season on pubertal development, boar taint compounds and skin lesions of male pigs Armelle Prunier, Armelle Brillouët, Elodie Merlot, Marie-Christine Meunier-Salaün, Céline Tallet To cite this version: Armelle Prunier, Armelle Brillouët, Elodie Merlot, Marie-Christine Meunier-Salaün, Céline Tallet. Influence of housing and season on pubertal development, boar taint compounds and skin lesionsof male pigs. animal, Published by Elsevier (since 2021) / Cambridge University Press (until 2020), 2013, 7 (12), pp.2035-2043. 10.1017/S1751731113001596. hal-01210497 HAL Id: hal-01210497 https://hal.archives-ouvertes.fr/hal-01210497 Submitted on 29 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Animal (2013), 7:12, pp 2035–2043 © The Animal Consortium 2013 animal doi:10.1017/S1751731113001596 Influence of housing and season on pubertal development, boar taint compounds and skin lesions of male pigs A. Prunier1,2†, A. Brillouët1,2, E. Merlot1,2, M. C. Meunier-Salaün1,2 and C. Tallet1,2 1INRA, UMR1348 PEGASE, F-35590 Saint-Gilles, France; 2Agrocampus Ouest, UMR1348 PEGASE, F-35000 Rennes, France (Received 15 May 2013; Accepted 17 July 2013; First published online 19 September 2013) Rearing entire pigs may lead to meat quality and welfare problems in relation to pubertal development.
    [Show full text]
  • The Boar Testis: the Most Versatile Steroid Producing Organ Known
    The boar testis: the most versatile steroid producing organ known Raeside', H.L. Christie', R.L. Renaud' and P.A. Sinclair" 'Department of Biomedical Sciences and 2Department of Animal and Poultry Science, University of Guelph, Guelph, ON Canada N IG 2WI A review of the remarkable production of steroids by the testes of the boar is presented, with the principal aims of highlighting the achievements of the Leydig cells and, at the same time, pointing to the considerable deficiencies in our understanding of its biological relevance. The onset of gonadal steroidogenesis at an early stage of sex differentiation and the pattern of pre- and postnatal secretion of steroids are outlined. This is followed by a list of steroids identified in extracts of the boar testis, with emphasis on those that can reasonably be assumed to be secretory products of the Leydig cells. For example, the high concentrations of 16- unsaturated C19and sulphoconjugated compounds are noted. Next, an impressive list of steroids found in venous blood from the boar testis is given; among them are the 16-unsaturated steroids, the oestrogens and dehydroepiandrosterone, all mainly in the form of sulphates. However, the list also includes some less likely members, such as 11-0H and 19- OH androgens as well as Sce-reduced steroids. Lastly, the high concentrations of steroids reported in testicular lymph, especially sulphates, are mentioned. Although roles for testosterone are uncontested, and even for the pheromone-like Co steroids, there is little that can be said with assurance about the other compounds listed. Some speculations are made on their possible contributions to the reproductive physiology of the boar.
    [Show full text]
  • Chemosensory Communication of Gender Through Two Human Steroids in a Sexually Dimorphic Manner
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology 24, 1091–1095, May 19, 2014 ª2014 Elsevier Ltd All rights reserved http://dx.doi.org/10.1016/j.cub.2014.03.035 Report Chemosensory Communication of Gender through Two Human Steroids in a Sexually Dimorphic Manner Wen Zhou,1,* Xiaoying Yang,1 Kepu Chen,1 Peng Cai,1 and, in particular, the gender-specific physiological effects of Sheng He,2,3 and Yi Jiang1,2 two human steroids: androstadienone and estratetraenol. 1Key Laboratory of Mental Health, Institute of Psychology, Androstadienone is the most prominent androstene present Chinese Academy of Sciences, Beijing 100101, China in male semen, in axillary hair, and on axillary skin surface 2State Key Laboratory of Brain and Cognitive Sciences, [12]. It heightens sympathetic arousal [13], alters levels of Beijing 100101, China cortisol [14], and promotes positive mood state [15, 16]in 3Department of Psychology, University of Minnesota, female as opposed to male recipients, probably in a context- Minneapolis, Minnesota 55455, USA dependent manner [17, 18]. Estratetraenol, first identified in female urine [19], has been likewise reported to affect men’s autonomic responses [18] and mood [20] under certain con- Summary texts, albeit with controversies [13, 17]. These effects are further accompanied by distinct hypothalamic response pat- Recent studies have suggested the existence of human sex terns to the two steroids: androstadienone is found to activate pheromones, with particular interest in two human steroids: the hypothalamus in heterosexual females and homosexual androstadienone (androsta-4,16,-dien-3-one) and estrate- males, but not in heterosexual males or homosexual females, traenol (estra-1,3,5(10),16-tetraen-3-ol).
    [Show full text]
  • Full Text (PDF)
    The Journal of Neuroscience, April 4, 2018 • 38(14):3377–3387 • 3377 Viewpoints Excreted Steroids in Vertebrate Social Communication Wayne I. Doyle and XJulian P. Meeks University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111 Steroids play vital roles in animal physiology across species, and the production of specific steroids is associated with particular internal biological functions. The internal functions of steroids are, in most cases, quite clear. However, an important feature of many steroids (their chemical stability) allows these molecules to play secondary, external roles as chemical messengers after their excretion via urine, feces, or other shed substances. The presence of steroids in animal excretions has long been appreciated, but their capacity to serve as chemosignals has not received as much attention. In theory, the blend of steroids excreted by an animal contains a readout of its own biological state. Initial mechanistic evidence for external steroid chemosensation arose from studies of many species of fish. In sea lampreys and ray-finned fishes, bile salts were identified as potent olfactory cues and later found to serve as pheromones. Recently, we and others have discovered that neurons in amphibian and mammalian olfactory systems are also highly sensitive to excreted glucocor- ticoids, sex steroids, and bile acids, and some of these molecules have been confirmed as mammalian pheromones. Steroid chemosen- sation in olfactory systems, unlike steroid detection in most tissues, is performed by plasma membrane receptors, but the details remain largely unclear. In this review, we present a broad view of steroid detection by vertebrate olfactory systems, focusing on recent research in fishes, amphibians, and mammals.
    [Show full text]
  • Subject Index Volume 23 Number S2
    SUBJECT INDEX VOLUME 23 NUMBER S2 A B Cigarette smoking, S150 Circadian salivary cortisol levels, S105 Abnormal neuroendocrine, S97 B12 vitamin, S140 Circannual melatonin, S108 Abstinent male alcoholics, S156 Beclomethasone-induced vasoconstriction Circuitry pharmacotherapy, S73–S75 Academia, S10 (BIV), S121 Clinical diagnosis, S115 Academically-striving countries, S59 Bed nucleus of the stria terminals, S111 Clinical Global Impression Scale, S116 ACE gene, S130 Behavior problems, S100 Clinical trials, S43 ACE I/D polymorphism, S106 Behavioral effects of NK1, S23 Clobazam, S3 ACTH secretion, S29 Behavioral endocrine responses, S119 Clonidine administration, S132, S139 Acute adolescent mania, S124 Benign intracranial hypertension, S136 Clorniphene, S78 Acute major depressive disorder, S113 Benzodiazepine withdrawal syndrome, Clozapine, S54, S116, S123, S135 Acute schizophrenia, S122 S124 Cocaine, S17, S46, S133 Addiction, S17, S102 Benzodiazapines, S56 Cognition, S51, S79, S92–S94 Administrative arrangements, S9 Benzothiophenes, S79 Cognitive aging, S94 Adolescent, S82 Bilateral grand mal seizure, S91 Cognitive dysfunction, S128 Adrenal hyperplasia, S60 Biochemical markers, S110 Cognitive functioning, S8 Adrenal insufficiency, S48 Biogenic amine systems, S43 Cognitive therapeutic considerations, S99 Adrenalectomy treatment, S145 Biological Psychiatry, S35 Collaboration, S58 ␤-, ␣2-adrenergic receptors, S3 Biosynthesis, S70 Collegium International A2-adrenoceptor supersensibility, S139 Bipolar adolescents, S124 NeuroPsychopharmacologicum,
    [Show full text]
  • Re: the Search for Human Pheromones: the Lost Decades
    UROLOGIC SURVEY Basic Research Doi: 10.4274/jus.2017.04.002 Re: The Search for Human Pheromones: The Lost Decades and the Necessity of Returning to First Principles Wyatt TD University of Oxford Faculty of Medicine, Department of Zoology, Oxford, UK Proc Biol Sci 2015;282:20142994. doi: 10.1098/rspb.2014.2994. EDITORIAL COMMENT Pheromones are chemical signals that have evolved for communication with other members of the same species. We do not know yet if humans have pheromones. Over the last 45 years, some scientists have claimed that a number of molecules are human pheromones, but these claims have little scientific validity. The first chemical identification of a pheromone, the silk moth’s female sex pheromone (bombykol), achieved by the German chemist Adolf Butenandt and after this finding, four steroid molecules have been described as human pheromones: androstenone, androstenol, androstadienone and estratetraenol. The possibility of human pheromones has been downplayed in part because in the past, it has been assumed erroneously that we have a poor sense of smell. Humans have a “main olfactory system” but they do not have a functional vomeronasal organ (or “second nose”; Jacobson’s organ, is an auxiliary olfactory sense organ that is found in many animals. It lies close to the vomer and nasal bones). In the near future, researches will be focused on identification and synthesis of these bioactive molecule(s), followed by bioassay techniques, again. Especially, comparison of secretions from adult and pre-pubertal humans may highlight potential molecules involved in sexual behaviour. Further search will benefit from the techniques developed by olfactory researchers including those who have worked on the steroids previously.
    [Show full text]
  • The Metabolism of Androstenone and Other Steroid Hormone Conjugates in Relation to Boar Taint
    The Metabolism of Androstenone and Other Steroid Hormone Conjugates in Relation to Boar Taint by Heidi M. Laderoute A Thesis presented to The University of Guelph In partial fulfillment of requirements for the degree of Master of Science in Animal and Poultry Science with Toxicology Guelph, Ontario, Canada © Heidi M. Laderoute, April, 2015 ABSTRACT THE METABOLISM OF ANDROSTENONE AND OTHER STEROID HORMONE CONJUGATES IN RELATION TO BOAR TAINT Heidi M. Laderoute Advisor: University of Guelph, 2015 Dr. E.J. Squires Increased public interest in the welfare of pigs reared for pork production has led to an increased effort in finding new approaches for controlling the unpleasant odour and flavour from heated pork products known as boar taint. Therefore, this study investigated the metabolism of androstenone and the enzymes involved in its sulfoconjugation in order to further understand the pathways and genes involved in the development of this meat quality defect. Leydig cells that were incubated with androstenone produced 3-keto- sulfoxy-androstenone, providing direct evidence, for the first time, that sulfoconjugation of this steroid does occur in the boar. In addition, human embryonic kidney cells that were overexpressed with porcine sulfotransferase (SULT) enzymes showed that SULT2A1, but not SULT2B1, was responsible for sulfoconjugating androstenone. These findings emphasize the importance of conjugation in steroid metabolism and its relevance to boar taint is discussed. ACKNOWLEDGEMENTS I would like to gratefully and sincerely thank my advisor, Dr. E. James Squires, for providing me with the opportunity to be a graduate student and for introducing me to the world of boar taint. This project would not have been possible without your guidance, encouragement, and patience over the last few years.
    [Show full text]